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INTRODUCTION

Ray tracing translates into a graphic language the algebra

supporting geometrical optics. Besides, it makes possible

to know the spatial location of light trajectories. More-

over, the graphical nature of ray tracing allows dropping

sign conventions and changeable references. Then, ray

tracing becomes the closest and most intuitive approach to

the real thing underlying the propagation of light through

optical systems.

Paraxial optics is described and analyzed elsewhere in

textbooks and reference books. The paraxial regime

allows a very well-established method of analysis of op-

tical systems. It produces relations among the location and

size of the image and the object transformed by an optical

system. It defines optical parameters, as the focal length or

the F#, characterizing optical elements and their combi-

nations. These parameters are used, disregarding their

paraxial origin, to determine the behavior of actual, or

real, optical systems. All these analytical results can also

be obtained by a graphical method based on a few and

well-defined rules. This graphical treatment is the paraxial

ray tracing.

In this contribution, we begin by presenting the very

basic rules of paraxial optics. Then, we explain a step-by-

step method to solve problems by using paraxial ray

tracing. ‘‘Easy’’ rays and auxiliary rays are presented and

traced. Some examples will be explained with detail for

those readers approaching this topic for the very first time.

The paraxial ray tracing will find one of its practical uses

in the calculation of apertures and fields.

CONSTRAINTS, LIMITATIONS, AND
ADVANTAGES OF PARAXIAL
RAY TRACING

Paraxial optics[1–7] is described within the geometrical

approach (i.e., neglecting the wave nature of light) and

when the values of the angles involved in the description

of the propagation of light are small enough to apply the

paraxial approximations; that is, the sine and tangent of

the angles are substituted by the value of the angle itself

(in radians), and the cosine of the angle is assumed to be 1.

Within the paraxial approach, the angles are usually

assumed to be below 20�, although this limit is not a

standard. This restriction applies to incidence, reflection,

and refraction angles and also to the elevation angles with

respect to the optical axis. However, as soon as we begin

to apply the graphical rules of paraxial ray tracing, we will

realize that this limitation is apparently dismissed and

forgotten. We will trace rays involving angles very well

beyond the paraxial regime. The explanation to this

apparent inconsistency is supported in paraxial optics

itself. With the use of a simple algebra, it is possible to

find a paraxial relation transforming the angles of the

rays with respect to the optical axis for a given dioptric

interface. This relation is known as the Lange equation:

n0s0 � ns ¼ h
n0 � n

r
ð1Þ

where n and n’ are the index of refraction at each side of a

diopter having a radius r, s and s’ are the angles of the

input and output rays with respect to the optical axis, and

h is the height of the impact of the input ray at the input

plane (Fig. 1). When substituting the angles by their pa-

raxial relations in terms of the distance from the diopter to

the object and image point, s and s’, as s=h/s and s’=h/s’,
we find the following equation:

n0 h

s0
� n

h

s
¼ h

n0 � n

r
ð2Þ

In this equation, the paraxial limitation is transferred to

the value of h. The height of the incidence needs to be

small enough to maintain the angle within the paraxial

approach. Besides, the paraxial ray tracing uses reference

planes attached to the vertex of the optical surfaces. This

is equivalent to neglect the sagitta of a dioptric or

reflecting surface. On the other hand, this substitution

means the use of the tangent of s and s’, transforming the

Lange equation into

n0 tan s0 � n tan s ¼ h
n0 � n

r
ð3Þ
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Then, this equation is still valid when the height of

incidence, h, increases beyond the paraxial limit.

Intrinsically related with the previous reasoning and

Fig. 1, we have made several nonexplicit assumptions that

limit the scope of application of paraxial ray tracing. For

example, we have established that light travels from left to

right. Then, a backward propagation means to have light

traveling from right to left. We have been using the con-

cept of optical axis defined as the straight line containing

the centers of curvature of the diopters. Therefore paraxial

ray tracing involves the use of tangential, or meridian,

planes, i.e., those planes containing the optical axis of the

optical system. Another limitation of paraxial ray tracing

is related with the graphical layout itself. We will usually

draw our ray-tracing problems on a sheet of paper or on

a computer graphic template resembling a given meridian

plane. Therefore the ray-tracing analysis is a two-dimen-

sional approach to a three-dimensional case. When the

optical system is a rotationally symmetric system with

the optical axis as its axis of symmetry, the analysis in the

meridian plane is a good start to understand the basic

behavior of the optical system. In those systems having

two orthogonal planes of symmetry intersecting at the

optical axis, the paraxial ray tracing can be independently

applied to those planes and the results need to be properly

combined in a three-dimensional layout.

The media usually considered in paraxial optics are

homogeneous, linear, and isotropic. They are character-

ized by the value of the index of refraction. This means

that the trajectories of light, the rays, are straight lines

that change their directions when crossing an interface

between two media (including reflection on a reflective

surface as a special case of change of index of refraction).

Paraxial and real ray tracing can be extended to aniso-

tropic media by decoupling the propagation of the or-

dinary and extraordinary polarization components.

Besides the simplicity of their algebraic relations,

paraxial optics describes optical systems behaving within

a perfect regime: perfect optical systems transform points

into points, planes into planes, and produce an image that

is proportional in size to the object. Then, real systems are

better as they approach more to the paraxial regime, and

real ray tracing always has as a reference the results

obtained from the paraxial ray tracing. Indeed, paraxial

ray tracing can still be obtained from real ray-tracing

algorithms by restricting the analysis within the conditions

of paraxial optics, typically by reducing the input pupil

and window.

The main advantage of paraxial ray tracing is the

intuitive representation and understanding that it produ-

ces. The set of rules is limited, simple, and precisely

defined. The graphical representation sticks to the real

thing and explains the basic behavior of light propagation.

Some concepts, as the reversibility of optical trajectories,

are easily represented and used. Besides its rigorous

layout, paraxial ray tracing allows powerful back-of-the-

envelope sketches that are very much appreciated in a

preliminary analysis of optical systems.

THE CARDINAL ELEMENTS
IN PARAXIAL RAY TRACING

The definition of several characteristic planes and points,

the cardinal points, in a centered optical system is of

great importance in paraxial optics. Now we will remind

the most useful properties of these elements for the case

of paraxial ray tracing. The cardinal elements are prin-

cipal points and planes, nodal points, and focal points

and planes.

The principal planes are defined as having a lateral

magnification equal to 1, b’=1. Then, the height of a ray

incident on the object principal plane remains the same at

the image principal plane, independently of the angle

of arrival to the principal plane. For optical systems

considered as thin, both the object and image principal

planes coincide. Therefore when a ray arrives to the prin-

cipal plane of a thin system (lenses or mirrors), it only

changes direction maintaining the continuity of the light

path. For a compound system having separated principal

planes, disregarding what happens in between these

planes, the ray will depart the image principal plane at

the same height of arrival to the object principal plane.

The nodal points are defined as those points on the

optical axis showing an angular magnification of 1, g’=1.

When a ray arrives to the object nodal point subtending

a given angle with respect to the optical axis, it leaves

the image nodal point subtending the same angle than the

incoming ray. When the indices of refraction at the

object and image spaces are the same, then the nodal

points coincide with the principal points (the principal

points are the intersection of the principal planes with the

optical axis). Besides, if the optical system can be con-

sidered as thin, then those rays incident at the inter-

section of the optical system and the optical axis do not

change their trajectories.

Fig. 1 Definition of the angles and distances when a ray

impinges on a curved interface separating two dielectric media.
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The image focal point is the image of an object located

at the infinity on the optical axis in the object space. Then,

a ray parallel to the optical axis needs to pass through

the image focal point, usually labeled as F’. Consequently,

the image focal plane is the image of a plane located at the

infinity in the object space. A bundle of rays coming from

an object point at infinite distance is represented as a

parallel bundle. They are parallel to the optical axis if the

object point is on the axis. For any other point, they form a

given angle with respect to the axis. Following the rules

of paraxial optics and the behavior of a perfect optical

system, all these parallel rays intersect at the same point

on the image focal plane. Therefore every point of the

image focal plane is the image of a point at the infinity in

the object space. As longer is the distance of the given

point of the focal plane with respect to the optical axis, the

angle subtended by the bundle of parallel rays coming

from infinity is larger.

The object focal point, F, is a point on the optical axis

that is the object for an image point located at infinite

distance on the optical axis in the image space. Therefore

a bundle of rays departing from the object focal point,

after crossing the optical system, becomes a bundle of

parallel rays also parallel to the axis. Following the same

reasoning than in the case of the image focal plane, all the

points on the object focal plane produce bundles of

parallel rays with an angle with respect to the optical axis

that increases as the distance between the optical axis and

the considered point on the object focal plane increases.

One of the basic rules of geometrical optics establishes

that light trajectories are reversible. This means that we

can ray-trace backward, from the image space to the

object space. This ray tracing has to be performed

carefully, understanding that the definitions of object

and image focal and principal points have to be properly

analyzed for this backward propagation.

RAY TRACING STEP-BY-STEP

In the following, we will use the previously mentioned

properties and paraxial results to define a step-by-step

graphical method to solve a given problem.

First Step

Translate into a graphical language the characteristics of a

given optical system. The graphical layout needs to be

obtained from numeric inputs or specifications. The object

or image distances, the focal lengths, the radius of

curvature and indices of refraction, the thicknesses of

the elements, the separations between consecutive optical

elements, etc. are given in terms of their values or in terms

of inner relations and conditions. Some of these

parameters may be unknown and a result for them is

what we are looking for. Therefore first of all, we need to

locate the available data with respect to a given optical

axis. Sometimes it is necessary to calculate the desired

parameters by using paraxial optics formula. The final

result of this step is a faithful graphical representation of a

meridian plane of the optical system showing as much

information as possible. The attention should be focused

on the location of the focal points, the principal planes, the

nodal points (if different from the principal points), the

transversal dimensions of optical elements, and the object

and image points and sizes. When the optical system is a

combination of several optical systems, it is necessary to

section the analysis into as many subproblems as many

subsystems we have.

Second Step

Translate into graphical language how the solution to the

problem is going to be attained. This step depends on the

type of problem under consideration. If the location and

size of the image has to be found, we may use that, for a

perfect optical system, all the rays departing from the

object point or plane arrive to the conjugated image point

or plane. On the other hand, in a two-dimensional plot, a

point is given as the intersection of two straight lines.

Then, if we are able to trace a couple of rays from a given

point of the object (e.g., its maximum lateral extension),

then the intersection of these rays in the image space will

locate that point in the image and, after applying the

proportionality between object and image, it produces the

image of the whole object. When the location of principal

or focal points of a combination of optical elements is

wanted, then the definitions of these elements need to be

applied rigorously to trace only those rays defining the

desired parameter. For example, the image focal point will

be obtained by tracing a ray parallel to the optical axis and

looking for its intersection with the optical axis in the

image space of the system.

Third Step

Choose the appropriate rays and trace them through the

system. The real trajectories of the rays are usually

represented as solid lines, while virtual trajectories are

plotted as dashed lines (real trajectories define the actual

light paths, and virtual trajectories are extension of the

real ones). Typically, the selected rays are those behaving

more easily. To properly address this selection, we itemize

the following types of ‘‘easy’’ rays (Fig. 2):

A. The optical-axis ray. A ray traveling superimposed

on the optical axis always remains on the optical
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axis. This trivial ray is very useful when considering

points located on the axis because their conjugated

points, linked by the object–image relation, are

always on the axis, and therefore we would only

need another extra ray to obtain their location.

B. The incoming parallel-to-the-axis ray. This ray

passes through the image focal point.

C. The outgoing parallel-to-the-axis ray. This ray

passes through the object focal point.

D. The nodal ray. This ray arrives to the object nodal

point and leaves the system at the image nodal point

being parallel to the incoming ray. When the system

is immersed in the same index of refraction at both

sides and it can be considered as a thin element, this

ray incided at the location of the optical element on

the axis of the system and it seems to cross the

system unperturbed.

Unfortunately, sometimes the ray we are interested in,

the problem ray, is not any of the previous ‘‘easy’’ rays.

Then, it is necessary to use auxiliary rays to help the ray

tracing progress (Fig. 3). These auxiliary rays are ‘‘easy’’

rays. Typically, the problem ray is plotted with a thicker

line than the auxiliary ones.

When the problem ray is in the object space, the

auxiliary rays will be ‘‘easy’’ rays of the types b, c, or d.

The incoming parallel-to-the-axis auxiliary ray (type b)

will be traced from the point of intersection of the problem

ray with the object focal plane. The auxiliary ray will pass

through the image focal point, and the problem ray in the

image space has to be parallel to the auxiliary ray in the

image space. An auxiliary ray of type c can also be used.

The outgoing parallel-to-the-axis auxiliary ray is passing

through the object focal point and is selected to be parallel

to the problem ray in the object space. Then, in the image

space, they have to intersect in the same point of the

image focal plane. If the auxiliary ray is a nodal ray, d-

type, this is chosen to be parallel to the problem ray, and

then in the image space, the auxiliary and the problem

rays at the image space intersect at the same point of the

image focal plane. The election between these three

auxiliary rays will depend on the type of problem and our

familiarity with the ray tracing of these ‘‘easy’’ rays. The

location of the emerging problem ray is obtained after

applying the principal planes property that keeps invariant

the height of the ray from the object principal plane to the

image principal plane.

When the problem ray is in the image space, a similar

strategy can be applied to trace auxiliary rays of the types

b, c, or d.

Fourth Step

Translate the obtained graphical solution to the expected

specifications. This step is inverse to the first one. In this

case, the graphical layout may have produced a measur-

able distance, a defined character of the object or image,

or a given trend in the evolution of some parameters with

respect to others. The same set of principles, rules and

formulas used to build up the graphical situation will be

used to analyze the graphical solution.

SOME EXAMPLES AND APPLICATIONS

In the previous section, we have explained in a quite

academic form a method to analyze an optical system by

using ray tracing. Now we are going to apply this method

to several examples. These examples clarify the use of the

virtual or real character of the objects and images, virtual

and real trajectories, and some other assumed-to-be-

known properties and behaviors that are not trivial in the

very first attempts to analyze them.

Fig. 2 Ray tracing of the four types of ‘‘easy’’ rays.

Fig. 3 Graphical solution for a given problem ray using several types of auxiliary rays in a system immersed in air (the nodal points

coincide with the principal points).
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Spherical Diopter

Let us assume that we are analyzing the image-forming

properties of the cornea and we are interested in the

location of the image of a real object placed on the optical

axis, in front of the eye at 12 mm from the corneal vertex

(Fig. 4). This optical system can be modeled as a spherical

diopter of radius 8 mm separating two media of indices

n=1 (air) and n’=1.34 (cornea). First of all, we fix the

optical axis as a line containing the center of curvature

of this diopter. After some basic calculation, we obtain

the values of the focal distances, f=�23.5 mm and

f ’=31.5 mm. These distances are measured from the

object and image principal planes, respectively. After

applying the principal planes definition, we can establish

that the system is thin and their principal plane coincides

with the intersection of the optical axis with the corneal

vertex. Then, the first step allows to obtain a graphical

layout of the system containing the location of the

principal planes, H and H’, and the focal points and

planes, F and F’. For a spherical diopter, the nodal points,

N and N’, are located at the center of curvature of the

diopter. In the second step, we define a strategy to locate

the image. The object is on the optical axis. Therefore the

optical axis ray (a-type) can be used to conclude that the

image will be placed on the optical axis also. Then, just by

tracing another ray departing from the object, we will

obtain the image at the point where this ray intersects the

optical axis. The third step is the ray tracing itself. None of

the ‘‘easy’’ rays but the optical axis ray can be directly

used in this problem. Therefore we may choose an

arbitrary ray that passes through the object point and

arrives to the object principal plane. As the image

principal plane coincides with the object one, the ray in

the image space will depart from the same point of arrival

of this ray at the principal plane location. To properly

trace this ray, we use another auxiliary ray in the object

space. In the figure, we have traced the three possible

auxiliary rays of types b, c, and d. It should be noted that

for tracing the incoming parallel-to-the-axis auxiliary ray

(b-type), we have elongated the problem ray backward to

reach the object focal plane. The problem ray in the image

space is a ray whose real trajectory does not intersect the

optical axis. However, the image can be obtained by

elongating this real trajectory on the left side of the

diopter. This is the virtual portion of this ray, but it is still

the same ray in the image space. Then, the image is virtual

and located at the intersection of this virtual trajectory

with the optical axis. We should remind that the image

space is never restricted to the semispace to the right of

the image principal plane (neither the object space is

restricted to the semispace to the left of the object

principal plane). The image space is wherever the images

are formed (real or virtually), and the object space is

wherever the objects are located (real or virtually). The

fourth step is the translation of the graphical results in an

analytical form. If the plotting has been made faithful in

distances and locations, we should be able to measure the

image distance from any reference point. The image has

been obtained using a virtual trajectory and it will be

virtual itself. Then, when observing behind the cornea, the

rays coming from the object will apparently be coming

from the obtained image located farther than the object. A

double check of these results could be performed by using

the paraxial optics formula.

The Thin Lens

Let us take a thin lens of positive focal, f ’=100 mm. In

front of the lens, we place an object with transversal size

of 10 mm and located at 300 mm from the lens (see the top

of Fig. 5). The problem is to obtain the position and size of

the image. In this case, the optical parameters are explicit

and the first step of our method is quite easy. If the lens is

thin and positive, its representation is a segment

terminated with outward-pointing arrows at both sides

(inward-pointing arrows for negative thin lenses), located

perpendicular to the optical axis. The object will be placed

at the given distance and it is usually represented by

another arrow that finishes at the height given in the

problem. Sometimes, when translating faithfully the data

into the paper, the lateral size of the object is very small

and it jeopardizes a clear representation and ray tracing.

By using the previously explained extension of the Lange

Fig. 4 Ray tracing to find the location of the image given by a

spherical diopter. After obtaining the location of the principal,

focal, and nodal points, the ray tracing of a given ray is made

using auxiliary rays. The image is virtual.
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formula, we have license to expand the lateral size and use

larger angles for the rays to be traced. This is why in this

first step we have enlarged the lateral size of the object to

make it manageable. The second step is to realize that by

tracing a couple of rays from the extreme of the object, it

is possible to obtain the image of this extreme recon-

structing the whole image. The third step is the ray tracing

itself. In the figure, we have traced three ‘‘easy’’ rays

of types b, c, and d, departing from the extreme of the

object, although only two of them are necessary to solve

the problem. The extreme of the image is obtained and the

rest of the object is extended until the optical axis on the

image plane. The fourth step is the analysis of the results.

In this case, the image is inverted with respect to its

original orientation, is real, and its size is smaller than

the object.

If we change the sign of the focal length of the lens

maintaining the object location unchanged, the results are

quite different (see the bottom of Fig. 5). However, the

first, second, and third steps are the same and we only

need to adapt the ray tracing to the negative character of

the lens. This means to use virtual trajectories to find the

location of the image. Therefore when applying the fourth

step, we have to conclude that the image is virtual, its

orientation has not been changed, and the lateral mag-

nification is lower than 1.

A Compound System: The Microscope

A microscope is formed by two main optical subsystems:

the objective and the ocular. The objective is typically a

high-power optical system characterized by its numerical

aperture and its magnification. The numerical aperture is

of limited use in the paraxial regime, but the magnifica-

tion allows us to obtain the focal length. The magnifica-

tion is also a characteristic parameter of the ocular

subsystem. Let us assume that we have a microscope

formed by an objective of 20� and an ocular of 10�. The

length of the tube of the microscope is t=160 mm (this is

the distance between the image focal point of the objective

and the object focal point of the ocular). The ocular and

the objective are compound elements for which their

object and image principal planes do not coincide. In this

example, the separation between the principal planes in

the objective is 10 mm and in the ocular is 15 mm. Our

goal is to locate the focal and principal planes of this

compound system (Fig. 6). To apply the first step, we

calculate the focal distances of the objective and the

ocular by using the definitions of magnification for the

objective and the ocular of a microscope. The results are

f ’obj=8 mm and f ’ocu=25 mm. The second step uses the

definitions of the image and object focal points as the

conjugated points of the infinity in the object and image

space, respectively. Then, in the third step, we will trace

an incoming parallel-to-the axis ray to find the image

focal point. This b-type ray needs an auxiliary ray to

progress through the ocular. The object focal point is

obtained tracing a c-type ‘‘easy’’ ray backward through

the microscope. Again, an auxiliary ray will be necessary

to cross the objective toward the object space. The fourth

step analyzes the results. The intersections of these rays

with the optical axis are the focal points. To obtain the

principal points, we elongated the portions of these rays in

Fig. 5 Ray tracing to find the image location and size, through

a thin lens. The drawing in the top is for a positive lens and

produces a real image. The plot at the bottom is for a negative

lens and produces a virtual image.

Fig. 6 Ray tracing to find the focal and principal plane of the

whole microscope. We can see that the angles involved in the

ray tracing are well beyond the paraxial approach; however, they

are still valid. We have detailed how to find the focal and

principal planes in the insets.
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the object and image space. The intersection given by

the ray defining the image focal point belongs to the

image principal plane. For the object principal plane, we

proceed accordingly.

Mirrors

The ray tracing in mirrors follows exactly the same

rules than in dioptric elements. It only changes the di-

rection of the propagation of light. An interesting property

of spherical mirrors is that the image focal point and the

object focal point coincide in the same position. This

position is located at the midpoint between the center and

the vertex of the mirror. As in the case of spherical di-

opters, a ray passing through the center of curvature of the

surface does not change its angle with respect to the axis.

Then, nodal points are located at the center of curvature.

In Fig. 7, we have obtained the location and size of

a real object for two mirrors differing only in the sign

of their curvature; one of them is concave and the other

is convex.

Apertures, Field of View,
Pupils, and Windows

Besides the intuitive insight obtained from paraxial ray

tracing in the analysis of optical systems, the evaluation of

the aperture and field of view is probably one of the most

interesting applications of ray tracing. The lateral lim-

itations can be analyzed easily with this method. A typical

application is the location and size of an optimum stop to

properly limit the field of view. The graphical language

used in ray tracing makes easier to know which is the

diaphragm of aperture in a compound system, if the stop

has to be enlarged, diminished, or moved along the axis, if

some other lens need adjustment in lateral size, etc.

As an example, we analyze the case of a compound

system of two positive thin lenses having focal lengths of

f1’=30 mm and f2’=80 mm and separated a distance of

90 mm. The object plane is located in front of the first lens

at a distance of 120 mm. The goal is to give the dimen-

sions of the lenses and the location of any necessary stop

to make a system having an F# of 4 for the object at

infinity and a field of view comprising a circle in the

object plane of 40 mm in diameter with no vignetting. The

calculation of the focal of the compound system yields

f ’=120 mm. Then, to have an F# 1:4, the diameter of the

entrance pupil has to be 30 mm. If we want the first lens to

be the diaphragm of aperture, it will be the entrance pupil

also. Therefore the F# of the first lens is 1, and its

diameter is 30 mm. To comply with this specification, we

Fig. 7 Ray tracing for two mirrors having the same value of the

modulus of the radius of curvature, but different signs. We have

made use of the ‘‘easy’’ rays to find the image.

Fig. 8 The plot at the top of the figure shows the location of

the second lens in the object space. This location is used to

find the minimum size of the second lens to have the first lens

as the diaphragm of aperture. The central ray tracing also finds

the location of the image, O’, after crossing the first lens. The

bottom ray tracing shows the field rays departing from the

extreme of the object and reaching the second lens. From this last

ray tracing, we can see that the minimum size of the second lens

is given by the point L’. At the same time, to avoid vignetting, a

field stop is placed at the location of the intermediate image. Its

diameter is also given from the ray tracing.
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trace rays, in backward propagation, to locate the position

of the second lens in the object space (see the ray tracing

in the top of Fig. 8). This ray tracing produces conjugated

points A–A’ and C–C’. The location of C’ provides a

minimum size of the second lens to have the first lens as

the diaphragm of aperture for the infinity. Now to solve

the dimensions of the second lens, and the location and

size of an intermediate stop, we trace more rays through

the system (ray tracing in the middle of Fig. 8). The first

one will be departing the object plane at its intersection

with the optical axis, O, and will pass through the outer

limit of the first lens. Its ray tracing through the system is

possible by using auxiliary rays when necessary. When

analyzing the results, we see that there exists a location

between both lenses where a real image, O’, is formed.

This will be a candidate for placing an intermediate stop.

The intersection of this ray with the second lens, B’,
provides a limitation of the size of this lens. If the second

lens were smaller than this limit, then the diaphragm of

aperture for this object position would be this second lens.

The other parameter of the optical system is the expected

field of view. This field of view is measured from the

center of the entrance pupil of the system that we have

assumed to be the rim or frame of the first lens. A field ray

passing through the center of the entrance pupil is traced

from the limit specified for the field in the object plane,

point E (this ray passes through points M–M’ in Fig. 8).

Two other field rays are traced from the same point of the

object plane and passing through the extreme points of the

entry pupil. The real trajectories in between the lenses of

these three rays intersect at a given point on the

intermediate image plane and they travel to the second

lens. The three rays intersect the second lens at different

heights, P’, M’, and L’. The fourth step of this ray tracing

makes possible to conclude a couple of things. First, the

optimum location of the intermediate stop is at the

position where the intermediate image is found. This

location is necessary, although not sufficient, to preclude

vignetting. The size of the intermediate stop is given by

the specified field of view and should not be smaller than

the size of the intermediate image. Second, the size of the

second lens should allow the three field rays to go through

it. If any of the rays were stopped, then the final image

would be vignetted by the second lens. If these two

conditions are fulfilled, the field stop is the diaphragm

located in between both lenses. Further ray tracing may be

used to find the size and location of the exit pupil and the

entry and exit windows.

CONCLUSION

In this article, we have revisited the main concepts and

characterizing parameters of optical systems within the

paraxial approach. This has been performed by using a

few, but consistent, rules based on paraxial optics. Then,

paraxial ray tracing has shown unique capabilities to

clarify the behavior of light through simple and compound

systems. In addition, the limitations of paraxial ray tracing

have been analyzed. Several examples, showing the

application of paraxial ray tracing to actual problems,

have been used to clarify the method.
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