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The dynamic behavior of a coherently pumped single-mode unidirectional ring laser with a homogeneously broad-
ened three-level active medium is studied. Our formulation is based on a set of ten real equations of the plane-wave,
mean-field Maxwell-Bloch type. The instability domain in the main control parameters space is determined. Our
numerical study of these equations for a parameter range of the type explored in the recent experiments by Weiss
and Brock [Phys. Rev. Lett. 57, 2804 (1986)] reveals some similarities, but striking differences between our
theoretical predictions and their experimental observations are also noted.

Quantum-optical systems like lasers are playing a key role in
such an active arena as the study of periodic and chaotic
instabilities in nonlinear dynamic systems.! In particular,
optically pumped lasers (OPL’s) operating in the far infra-
red appear to be? promising candidates for solving the long-
standing and challenging problem of operating an actual
laser in the chaotic regime of the Lorenz-Haken model,3
and, indeed, some experimental observations? qualitatively
confirm that prediction. Moreover, single-mode homoge-
neously broadened OPL’s show a wealth of instabilities at
reduced pump thresholds in both resonant? and off-reso-
nant® systems. Most theoretical analysis of laser-light dy-
namics reported (e.g., see Ref. 1 and references therein)
considered an incoherent pumping mechanism and there-
fore modeled the active laser medium as a two-level system.
OPL’s are, however, coherently pumped lasers, and theoreti-
cal results on their dynamic behavior are scarce, although
some progress has been made recently.6-

In this paper we report theoretical studies of the behavior
of a coherently pumped single-mode unidirectional ring la-
ser with a homogeneously broadened three-level active me-
dium in which the pumping and lasing transitions share a
common upper level (see inset of Fig. 1). We focus on the
effects of the coherent optical pumping on the dynamic
behavior of a laser, i.e., on three-level effects. Consequent-
ly, the study is made here by using the plane-wave approxi-
mation, neglecting Doppler broadening, level degeneracy,
and propagation effects for both the pump and the generat-
ed beams. The aim of these simplifying assumptions is
twofold: first, to permit a direct comparison with well-
known two-level laser results®!0 obtained under the same
conditions and second, to answer the interesting question of
how much of the experimental results can be understood on
the basis of the simple model considered here.
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We carried out a numerical integration of the OPL model
equations and discovered some similarities and also some
striking differences between incoherently and coherently
pumped lasers. Our analysis also reveals that most of the
rich OPL dynamics develop far from steady states and thus
suggests that studies based on approximate perturbative
solutions likely have only minor relevance to the OPL’s
actual behavior.

The Maxwell-Bloch type of equations in the rotating-
wave approximation for our system can be shown to be®

Poo = Yolpoo” = Poo) = 2 Im(pgy) — 28 Im(pgy),
11 = v1(o1” = p1p) + 2 Im(pgy),
Paz = Y2(pae’ = p2o) + 28 Im(py),
Po1r = —Yorpor + i[A;° = G Relpgy)/2a]pg;
= ifpg; + ialpgy — p11),
Poz2 = ~YoaPoz ~ tAgpgy — iatpyy + iB(pgy = Pan),
P12 = —Y1op12 — i[(A,° — Ap)
— G Re(pg1)/2a]p1p — icpgy — iBp1g,
&= G Im(pg;)/2 — v,0/2. (1)

Here pij (i, j = 0, 1, 2) are slowly varying envelopes of
density-matrix elements normalized to the density NO of
molecules in the three-level system, and p;;° are the zero-field
populations; y;, v;; (i, j = 0, 1, 2), and vy, are the population,
coherence, and cavity decay rates, respectively; A€ = w, —
wo; and Ag = we — wyg are detunings, where w, and w are the
cavity and pump field frequencies, respectively; and wq; and
wogz are the amplifying and absorbing transition frequencies.
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2a(t) and 28 are real Rabi frequencies that characterize the
interaction of a molecule with the generated and pump
fields, where 8 is supposed to be constant and «(t) gives a
measure of the generated field amplitude at each instant &.
G = wope2N%eh, where ug; is the transition dipole mo-
ment, is a parameter that accounts for the strength of the
molecule-generated field coupling and for the density of the
molecules. Because the p;; (i 5 j) coherences are complex
functions, the basic equations of motion [Egs. (1)] constitute
a set of ten real first-order differential equations. Finally,
we note that the generated frequency w; can be calculated by
using the following well-known frequency-determining
equation:

wy(£) = woy = Ay(t) = A — G Re(pgy) (£)/2ax.

Some predictions of this model were presented recently,’-?
but owing to the versatility of the three-level system there
remain many unexplored questions. In some cases (e.g., by
adiabatic elimination of fast variables) the dynamics of OPL
reduce to a system with less than ten degrees of freedom.
Thus Dupertuis et al.® have listed six conditions that are
required to reduce the dynamics of the present model to that
of the three-equation Lorenz—Haken model,? and Lawandy
and Ryan® worked out a four-equation version of the OPL
model that predicts instabilities at pump intensities as low
as 1.6 times above threshold. Mehendale and Harrison?
investigated the case with Aj¢ = Ag = A; = 0; v, =vij=v (i, ]
=0, 1, 2), and vy, > v, for which, surprisingly, only regular
self-pulsing instabilities were found.
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Fig. 1. Phase diagram of an optically pumped laser in the (8, Ar%)
plane as predicted by the LSA of the stationary solutions of Egs. (1).
The continuous curves correspond to the first laser threshold, and
the dashed line corresponds to the second laser threshold within the
LSA (onset of a supercritical Hopf bifurcation). The parameters
used in the calculations are given in the text. The inset represents
schematically the three-level system considered in this paper.
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Instead of imposing simplifying mathematical conditions
on the operating parameters, our numerical study of the
model equations was made for a parameter range of the type
explored in the experiments of Weiss and Brock,* who, to our
knowledge, reported the first observation of Lorenz-type
chaos in the 81.5-um emission from a ¥NHj laser pumped
with the P(13) line of the NyO laser. We considered the
cavity detuning A and the pump field amplitude 8 to be the
main control parameters. For the remaining parameters
the following values were adopted,!! referring to a 10-Pa
4NHj; pressure: yo1 =y, =6.8X 108sec ™ vo=vi=7v| =
0.28v 1572 ="v12= Y02 = 0.95 v ;7. = 2.85 v ; A = 0; p11° =
po® = 0; and N° = 1,07 X 101 m=3, To adhere to the
standard notation used in models based on two-level atoms,
we introduced the longitudinal and transverse decay rates,
) and v 1, respectively, associated with the 0-1 lasing tran-
sition. The bad-cavity condition is fulfilled, and the coinci-
dence in order of magnitude between all the relaxation rates
prevents any adiabatic elimination of variables. Thus the
results shown below correspond to the behavior of an OPL in
conditions a priori different from those required® to observe
a Lorenz instability.

The fixed points of Egs. (1) are the emissionless state « =
0 and the stationary lasing state with « > 0. As a first step,
we determined, for different values of the control parame-
ters (8, A°), the corresponding steady lasing states, which
turned out to be unique always, except for an unphysical
indetermination in the « sign!? (i.e., no multistability was
found). A linear stability analysis (LSA) allowed us to de-
termine the domain in the parameter plane (8, A;°) at which
the stationary solutions become unstable. These findings
are summarized in Fig. 1. Within the LSA, the OPL insta-
bility appears with a Hopf bifurcation at the boundaries
shown by the dashed line in Fig. 1. Even if the laser instabil-
ity appears only in a rather small domain of the (8, A%
parameter plane, this domain is within easy experimental
reach because reaching this domain requires a moderate
pump power and a resonant or near-resonant cavity tuning.
In fact, 8 values much larger than those corresponding to the
instability domain are at present difficult to obtain with
unfocused pump beams.

Next, to localize and characterize the different attractors
in the phase space of our OPL system and to study their
evolution under control parameter changes (i.e., phase or
bifurcation diagram), we solved the dynamic equations (1)
by using a seventh-eighth-order Runge-Kutta routine, and
we computed intensity-power spectra of the output field by
using a fast-Fourier-transform routine. This study is limit-
ed at present to the resonant case (A;° = 0) and to a small
range of pump powers that are close to the LSA instability
threshold, which is at present the most interesting case be-
cause it corresponds to the experiments performed thus far.*

When we studied the long-time behavior of the OPL, we
found two attractors in its phase space. Figure 2 displays
projections in the (a/y 1, Im po;) plane of these two attrac-
tors for different values of the pump field amplitude 8/v .
As expected from the LSA, the first attractor, represented
by the dashed line in Fig. 2, appears at the first laser thresh-
old (Bw/v . = 0.0067) as a fixed point (stable focus) associat-
ed with the steady lasing state and remains so up to 8/v, =
0.34. At this point the system undergoes a supercritical
Hopf bifurcation to a stable small-amplitude limit cycle,
which abruptly disappears at 8/y; = 0.35.



1006  J. Opt. Soc. Am. B/Vol. 5, No. 5/May 1988

B, (Imag. part,au) —

e
T

Pujol et al.

P

-5 0

5 10
a'lyl —

Fig.2. Phase space portraits of the two attractors for the dynamic variables Im po; and e/, for increasing values of the pump field amplitude
B/y1: dashed curve, first attractor (successive positions of the stable fixed point); dashed circumference, limit cycle; solid curves, outermost
limits of the second attractor (area surrounded or covered by the attracted trajectories). The dynamic behaviors associated with each attractor

are reported in Fig. 3.

The discovery of a second much more physically relevant
attractor, whose outermost limits are represented by the
continuous lines of Fig. 2, is our main finding. This attrac-
tor is present at first at 8/, = 0.12, where it already covers a
large region of phase space that continuously expands for
increasing 8. The basin of attraction for this attractor,
which is much larger than the basin for the previous attrac-
tor, includes the unstable fixed point o = 0 with abrupt
switching of the gain. Therefore, the laser instability ap-
pears now as a hard-mode excitation at the pump thresh-
old® Bie/v, = 0.12, a value that is much less than that
required for the Hopf bifurcation at 8/v, = 0.34.

Figure 3 represents schematically the dynamic behavior
associated with each attractor as a function of pump field
amplitude. When B/v, is increased, the second attractor
(lower strip in Fig. 3) appears abruptly and with a domi-
nance of chaos, and after two relatively large period-3 and
period-6 windows of regular pulsing in the chaotic range, the
OPL follows a regular pulsing route of period-10, period-8,
period-4 out of chaos. A period-2 pulsing was not found,
and for larger values of 8/v, the pulsing period increased
again. As noted above, the attractor inverse of the present
attractor, obtained by making the transformation (e; poi;
p12) = (—a; —po1; —p12), also exists. However, for the pa-
rameter range explored here both attractors appear uncon-
nected. For thisreason, the motion of the OPL system takes
place around only one « 5 0 center, as can be seen in Fig. 2.
This dynamic feature of the OPL is in fair contrast with the
behavior of the chaotic Lorenz system, for which the trajec-
. tory in the field-polarization plane appears to switch ran-
domly from the neighborhood of one of the (unstable) fixed
points to the neighborhood of the other fixed point.! (Com-
pare Fig. 2 also with Fig. 6 below, which shows the second
attractor in the chaotic range when some of the conditions of
Ref. 6 are approximately satisfied.)

If we examine the time evolution of the intensity «2(t),

then all the P limit cycles referred to in Fig. 8, which are
asymmetric in the (o, Im pg;) plane, will appear in the emit-
ted intensity as a periodic self-pulsing of period 2nP.

The (Re p13, @, Im 0g;) three-dimensional picture of the
second attractor, the corresponding time evolution at the (e,
Im pg1) projection, and the power spectrum of the a2 emitted
intensity are given in Fig. 4 for the chaotic range and in Fig. 5
for the period-4 pulsing range. For brevity and to facilitate
the comparison of the present attractor with the Lorenz
attractor, which is usually plotted in the field-polarization
plane (see, e.g., Ackerhalt et al.l), we chose to display only
the @, Im pg1, and Re p;2 variables of the ten possible dynam-
ic variables. We have verified, however, that all the remain-
ing variables show the same kind of dynamic behavior. Fig-
ure 5a also shows the transient temporal evolution in order
to show the characteristic outward spiraling around the un-
stable fixed point at (3.57, 3.88 X 10~4). This spiraling
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Fig. 8. Bifurcation diagram of the centrally tuned optically
pumped laser. The upper strip corresponds to the first attractor,
and the lower strip corresponds to the second attractor (see Fig. 1):
Prs, periodic pulsing of periods nP; C, chaotic emission; P3 and P8
are periodic windows within the chaotic domain. Within the chaot-
ic domain, the sign (P) at the left-hand side of the vertical dotted
line and the sign (P?) at the right-hand side indicate that the respec-
tive periodic pulsings are still apparent in spite of their strong
modulation by the intense and broad bandwidth chaos.
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Fig. 4. The second attractor (see Figs. 2and 3) at 8/y, = 0.14: a, long-term time evolution of the (a, Im po1) projection; b, (Re p12, a, Im po1)
projection of the attractor (p12 coherence gets values larger than po; coherence); ¢, power spectrum of «2(t) on a semilogarithmic scale. In ¢
note the broadband charactér of the spectrum, which is considered a signature of chaos. Thespectral line at f/y | = 0.55 and its harmonics indi-
cate that even in the chaotic range the pulsing frequency is quite well defined. This frequency f, indicated by an arrow in the figure,

corresponds to the inverse of the time interval separating two consecutive positive peaks in the a(t) signal. The corresponding frequency for
the intensity signal o2(t) is 2f.
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Fig.5. The second attractor (see Figs. 2 and 3) at 8/y, = 0.36: a, final portion of the transient time evolution of the (o, Im pygy) projection; b,
(Re p12, o, Im po;) projection of the trajectory after transients have died out; ¢, power spectrum of a?(t). Contrary to Fig. 4¢, the vertical scale
here is linear. The frequency f, marked with an arrow, is defined in the caption to Fig. 4.
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Fig.6. (o, Im poy) projection of the second attractor for Yie/vL =
6.51. Other parameters are as in Fig. 4.

evolves slowly, owing to the system memory of the first
attractor’s limit cycle, which has just become unstable at 8/
v, = 0.35. Figures 4a and 4c also show that even in the
chaotic range the basic pulsing frequency is quite well de-
fined. The broadband power spectrum characteristic of
chaotic pulsing appears superimposed upon the basic puls-
ing frequency f/v, = 0.55 and its harmonics (Fig. 4c). The
difference between this spectrum and the spectrum corre-
sponding to period-4 pulsing is striking. Figure 5c shows a
collection of well-defined peaks corresponding to the funda-
mental frequency f/y, = 0.97, the subharmonics /2 and f/4,
and their harmonics. Moreover, we can appreciate in Figs.
4b -and 5b that the two-quantum coherence pj2 has values
even larger than the pg; coherence, thus indicating a strong
coherent interaction between the pump and the generated
waves. - In fact, this coherent interaction depends on the
existence of the pio coherence and can be eliminated if a
relaxation mechanism is introduced to destroy specifically
the two-quantum coherence. This effect is shown in Fig. 6,
in which the (@, Im pg;) projection of the second attractor is
shown for an.artificially increased rate v = 6.51y, and
other parameters; as in Fig. 4. We can observe now an OPL
dynamic behavior similar to that of the Lorenz model. A
detailed study to show dynamically how the second attractor
found here approaches the Lorenz attractor when the condi-
tions of Ref. 6 become progressively satisfied is left for a
subsequent paper.

In conclusion, we have investigated numerically a model
for a resonantly tuned OPL for a parameter range of the type
explored in the .experiments of Weiss and Brock.4 This
model predicts that for pump powers high above threshold
(Bins2/Bine? = T5), a rich and varied dynamic behavior devel-
ops far from the fixed points of the OPL system and thus
cannot be obtained from descriptions based on perturbative
formulations. Our results reproduced qualitatively some
signatures of the Lorenz model observed in the experiment,*
such as an abrupt transition from continuous emission to
chaotic emission. Moreover, Fig. 3 shows coexistence be-
tween the steady-state attractor and the chaotic attractor,
which could be at the origin of the observed* hysteresis
between the chaotic state and the cw state with respect to
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the pump power. We believe, however, that this agreement
between our results and the corresponding predictions of the
Lorenz model is somewhat accidental because our condi-
tions were different than those needed to make our OPL
model equivalent to the Lorenz model. The chaotic laser
pulses appeared also in our numerical simulations with a
fairly well-defined pulsing frequency but, in contrast to the
experiment, did not show the characteristic pulsing of the
Lorenz system. This difference can be traced to the spiral-
ing of our system around only one center; spiraling around
two centers is characteristic of the Lorenz system [compare
Fig. 4a with Fig. 4(a) of Ref. 4]. We were not able to obtain
the period-3 and period-5 windows of regular motion in the
chaotic range observed in the experiment. Moreover, our
model predicts dynamic behaviors such as the sequence pe-
riod-10, period-8, period-4 of regular pulsing that is not
present in the Lorenz model. Therefore this sequence can
be considered a signature of the OPL. The extension of this
study to a wider parameter range, including the detuned (A°
= 0) case, is currently under way and will be the subject of a
future publication.
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