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Abstract. A method of image analysis is proposed for detection of local
defects in materials with periodic regular texture. A general improvement
and enlargement of vision system capabilities for versatility, full automa-
tism, computational efficiency, and robustness in their application to the
industrial inspection of periodic textured materials is pursued. In the pro-
posed method, a multiscale and multiorientation Gabor filter scheme that
imitates the early human vision process is applied to the sample under
inspection. The designed algorithm automatically segments defects from
the regular texture. A variety of examples of fabric inspection are pre-
sented. In all of them defects are successfully segmented from the tex-
ture background. © 1998 Society of Photo-Optical Instrumentation Engineers.
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1 Introduction

The interest in reliable, automatic systems for visua in-
spection of industrial materials such as textile webs, paper,
or wood requires the development of image segmentation
techniques based on texture analysis. The surfaces of such
materials display complex patterns that appear visually
regular on a large scale. In a local analysis, however, the
texture components may vary in their intensity distribution,
pattern size, and pattern shape. These local variations make
inspection difficult.

Fourier-domain-based techniques are particularly suit-
able for materials that exhibit a high degree of periodicity
(e.g., most textile webs). The angular and radial analysis of
the Fourier transform of a web image provide valuable in-
formation for characterizing carpet patterns' or common
fabrics.? Other related operations, such as autocorrelation
of aweb image, have been proposed in Ref. 1 and used in
Ref. 2 to explore the yarn spacing in the weft and warp

directions. Ciamberlini et al.®> describe an optical method
using Fourier transform and spatia filtering to revea de-
fects in textile materials in rea time. Recently, Millan and
Escofet* have proposed Fourier-domain-based angular cor-
relation for pattern recognition of quasiperiodic textures. It
has been applied to web inspection for pattern identification
and classification, and also for the detection and character-
ization of defects that cause an overal distortion of the
basic structure of the material, such as shrinking and abra-
sion.

When defects only alter a small area of the image of the
material under inspection, they are caled local defects.
Fourier analysis does not provide, in general, enough infor-
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mation to detect local defects. Methods that can localize
and analyze features in the spatia as well as in the fre-
guency domain are convenient for detecting local defects.
Wavelet transforms, used as multiresolution spectral filters,
provide both frequency and spatial local information about
an image. In fact, different wavelet bases have been used to
develop applications of image analysis to local-defect de-
tection in woven fabrics.>~" In a preliminary work,” we
evidenced the feasibility of using Gabor filters® to the in-
spection of local defects in fabrics.

A Gabor filter consists of a sinusoid of a given fre-
guency and orientation, modulated by a Gaussian envelope.
This Gaussian envelope provides spatial localization. A
good reason for the use of Gabor filtersis their relationship
with current models of early vision in primates; in addition
they have optimal localization in the space and frequency
domains’ with an efficient implementation in both
domains.® The human eye is a highly efficient visual sys-
tem and a robust pattern and texture analyzer. Gabor and
related wavelets used in visua modeling have been suc-
cessfully applied to a large variety of early vision tasks.*®
Specifically, the problem of detecting local defects in a
surface can be related to texture segmentation when either
the material, the defect, or both are textured, as in textile
webs. Severa authors have proposed different approaches
based on Gabor filters for texture segmentation'*~*° and for
object detection.®

Here we present a new method for automatic detection
of local defects in a regular texture, based on a multiscale
and multiorientation Gabor scheme. This scheme imitates
the visual coding in the early stages of the human visual
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system and was proposed as an image representation
model.?” Its usefulness has been demonstrated through a
variety of applications involving loca multiscale process-
ing and texture analysis'® and synthesis.® According to this
Gabor scheme, we build an algorithm that uses the filtered
images of the textured material under inspection in order to
locate and isolate their possible defects.

We have successfully applied the method to detect a
variety of typical defects in woven fabrics of different
structure. In this paper, we present and discuss some ex-
amples.

2 Method

In this section we briefly review the multiscale and multi-
orientation Gabor scheme for feature extraction, and then
describe the procedure designed to segment defects from
the background (regular texture).

2.1 Multiscale and Multiorientation Gabor Scheme

We use the model proposed in Ref. 17, which seeks to
simulate schematically the early visual coding in humans
by applying a set of 4X4 Gabor filters to digital images.
This scheme performs a logarithmic-polar sampling of the
frequency spectrum of the image. The sampling yields four
frequency levels distributed in octaves and four orientations
(horizontal, vertical, and the two diagonals). A low-pass
residua channel (LPR channel), at the center, covers the
very low frequencies around dc. The general description of
the model we consider is contained in Sec. 2 of Ref. 18. In
particular we recall that a 2-D Gabor function in the spatial
domain of coordinates (x,y) is given by

T o202

g(X,Y)pq:eXp[_?(X +y°)
P

xexp [i2mf,(x cos O3+y sin 6y)], 1)

where the first factor represents the Gaussian envelope with
bandwidth determined by the parameter a,,, and the second
factor is a complex sinusoid. The parameters f, and 6y,
with p,q=1,...,4, represent respectively the frequency
and the orientation of the pq channel. For an input image
i(x,y) and a Gabor filter given by the complex function
Jpq(Xx,y) of Eq. (1), the magnitude of the filtered image,
i pq(X,y)|, can be computed as

i g Y| ={[ G5 Y)* 1 (X,Y) 12+ [gpg(X.y)*i (X,y)]Z}l(/;,)

where the symbol * denotes a 2-D convolution, and ggq
and ggq represent the real (even) and the imaginary (odd)
parts, respectively, of the Gabor filter gpq(X,Y).
Asdescribed in Ref. 17, an appropriate filter design with
small convolution masks allows an efficient implementa-
tion of Gabor filters in the spatial domain. Moreover, the
pyramidal structure and the symmetries of the scheme sim-
plify its application by using self-similar Gabor wavelets.
Instead of scaling the wavelet, it is preferable to under-
sample the input i (x,y) by afactor 24P corresponding to
the channel of frequency f,. The input is conveniently
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convolved with a low-pass filter (e.g., a cubic B spline'®)
before subsampling in order to remove the high-frequency
terms and avoid dliasing artifacts. For the convolution in
the spatiad domain, we use two masks of 9X 9 pixels that
represent the even and the odd parts of the Gabor filter
Opqg(X,y). The magnitudes |iq(x,y)| of the 4X 4 channels
will constitute the input of the segmentation algorithm.

2.2 Segmentation

This section describes the procedure we propose for defect
detection in regular textures. There is an extensive litera-
ture suggesting that Gabor channels are good descriptors of
texture,10-12141518 A yigible defect will cause a local
change of visua texture. If the proposed Gabor channels
are able to describe texture accurately, then we can exploit
this fact to segment the image automatically and detect rel-
evant defects visualy. The presented method must meet
three requirements. Firstly, we have to enhance changes in
the descriptors, which may correspond to a fault in such a
way that a binarization makes possible the segmentation of
defective areas from the textured background. Secondly,
the process must integrate faults captured at different ori-
entations and resolution levels of the Gabor filters into a
single binary map with the locations of defects as the out-
put. Thirdly, the procedure must be automatic, robust, and
versatile, easily adaptable to a variety of regular textures of
different materials. This third aspect entails that we will not
introduce key parameters, which may require specific ad-
justments of parameters or procedures to a particular kind
of defect or texture. In this way, we will avoid problems of
overtraining or undertraining that frequently appear when
optimizing a given method with a limited, incomplete set of
training samples.

Figure 1(a) shows a schematic diagram of the procedure.
It starts with an image of the sample to inspect: t(x,y). The
set of Gabor filters described in Sec. 2.1 is applied to the
input image t(x,y) to give the moduli of the set of 4X4
filtered complex images, |t,q(x,y)|. The low-pass residual
image, t pr(X,y) is obtained by subsampling the input
t(x,y) four times by a factor 2 (including a convolution
with the low-pass filter cubic B spline before each subsam-
pling).

In the second step, our texture descriptors are obtained
by expressing the filtered images [t,q(x,y)| in contrast
units. This can be accomplished by dividing every filtered
image [t,q(X,y)|, P.q=1,...,4, by the low-pass residual
image t pr. Thus, the set {p,q} of features T,q(X,y) is
given for each pixel (x,y) by the expression

g y)|

Tog(X,¥)= ———1, 3
pa(X.Y) tpr(X',Y") @
with (see Fig. 2)
! _1 ! y_l
X' '=1+I T , y'=1+1 T , (4)

where function 1(z) means the integer part of the argument
z.
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Fig. 1 Schematic diagram of the segmentation procedure: (a) main diagram; (b) detail of the part of
the procedure applied to a faultless sample (prototype), which provides the reference entry to the main

diagram (a) (on the left).

Before analyzing the texture to be tested, we first apply
the same procedure to a prototype defect-free sample
r(x,y) and store the mean and standard deviation of the
histograms of each feature [the block on the left in Fig.
1(a), sketched in detail in Figure 1(b)]. We assume that
both the image t(x,y) of the texture under inspection and
the image r (x,y) of the faultless reference texture are ac-
quired under the same experimental conditions of scale,
orientation, and resolution. In Fig. 1(b), the filtered images
in absolute value, |rq(x,y)|, are again converted to con-
trast units, by dividing by the corresponding LPR image
reer(X',y'):

IT pg(X,Y)]

e oy

©)

in the same way as in Eq. (3). The mean value (over al the
pixels) of each Ry, and the standard deviation o, are cal-
culated by the standard expressions

] Rpq(X.Y), (6)
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Fig. 2 Partial representation of the pyramid distribution used to ex-
press the filtered images |tpq(x,y)| in contrast units by dividing by
the low-pass residual t pr .
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where N,2) is the number of pixels of the filtered image at
the resolution level p. The two sets of sixteen (4 4) val-

ues {Ryq} and {o,q} are the reference entry to the main
procedure on the left of the scheme in Fig. 1(a).

The next step is to compare, for each pixel or location,
the features of the sample under study with those of the
reference. The closer the values, the higher the likelihood
of the sample coinciding with the prototype, and con-
versely, the larger the difference, the higher the probability
of there being a defect. Thus, we calculate, for each level p
and orientation g, the magnitude of the difference between
features of the sample under analysis and the mean of the
prototype

dpq(xvy):|qu(Xay)_§pq|' (8)

In order to reduce noise, for each pixel we set to zero those
differences d,q(x,y) below a threshold, i.e., for those val-
ues of the sample with a high likelihood of being like the
prototype. We consider a standard thresholding operation
given by the expression

dpg(X, if dyg(X,y)=70,,,

Spq(y)= Opq( y) pq(- y) pq ©
otherwise,

where the threshold is proportional to the standard devia-
tion o, caculated from the reference feature array
Rpq(X,y). We take a fairly standard constant value 7=3
according to a low-risk criterion: only points with differ-
ences above three times the standard deviation are eligible
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as defects, which strongly reduces the probability of mis-
classifying points of the background (regular texture) as
faulty areas. The resulting array of the thresholded feature
differences is represented by S,q(x,y) in the diagram in
Fig. 1(a).

For each scale level p and for every pixel (x,y), avec-
tor of four components, SY={(S;")q} with g=1,... 4,
can be built. Each component of the vector Sy is defined
by (S5”)q=Spq(x,y) and coincides with the thresholded
feature difference of pixel (x,y) at the scale level p and
orientation g. In the next stage an array K(x,y) is calcu-
|lated for each scale level p with the norm of vectors S,
that is,

4 1/2
Kp(x,y)=||33y|=’qZl [Spq(x,y)]ZJ : (10)

The definition of K,, i.e, the norm of the feature-
difference vector, is a common metric used in standard
clustering algorithms for segmentation. According to Eq.
(10), the array K,(x,y) concentrates the information on the
likely defective areas obtained in the four orientations
g=1,...,4inasingle array for the scale level p. Thus, the
result of this stage is a set of four images K,(x,y) with
p=1,...4

In the next two stages we combine the information com-
ing from the four different resolution levels p. To this end
the decompressed version of each array K,(X,y) is pre-
pared. In order to avoid false aarms, we consider that a
defect must appear in at least two adjacent resolution lev-
els. As asimple way to implement a logic ‘‘and,”’ assum-
ing that K(x,y) is proportional to the probability of there
being a defect, we then calculate the geometric means of
every pair of adjacent levels by the formulas:

Ka2(%,y) =[K1(x,y)Ka(X,y) 1%,
Kaa(x,y) =[Ka(x,y)Ka(x,y)], (11)

Kaa(%,Y) =[Ka(x,y)Ka(x,y)]¥2.

This operation reduces false alarms yet preserves most of
the defective areas. Now we combine the resulting
Ka(X,Y), Kas(X,y), and Kau(X,y) inalogic ‘‘or,”” simply
as the arithmetic mean, to allow for defects detected at
different scales:

K(X,y)= 5 [Kia(X,y) +Ka(X,y) +Kas(X,y)]. (12)

The array K(x,y) contains the joint contribution of the six-
teen pq channels.

The last stage is the binarization of K(x,y) to provide an
image B(Xx,y) where local defects (objects) appear seg-
mented from the regular texture (background). This is
achieved by thresholding K(x,y). Values below the thresh-
old are considered as belonging to the background, and
values above the threshold are considered as belonging to
defective aress.
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This threshold value is not critical and can be estimated
in different ways. One possible way is to calibrate the sys-
tem at the beginning of the process by applying the proce-
dure to an additional piece of faultless texture whose image
would be the input image ty(Xx,y). In this case the obtained
array Ko(x,y) should contain very low values. An estima-
tion of the threshold U as U=Ky+ paq, with K, being the
mean value of Ky(X,y), oy its standard deviation, and p a
standard constant of value p=3, provides an appropriate
threshold value for binarization. Alternatively, a simpler
way is to calculate U= (p/16)2,% 0,4, Which is propor-
tional to the mean value of the sixteen standard deviations
0 pq With a constant of proportionality equal to a standard
value, for example, p=3. An opening operation with a
small mask of 3X 3 pixels helps to remove the remaining
isolated noisy points from the binary output image B(X,y).

3 Results

We have applied the process described in Sec. 2 to avariety
of textile webs with different structures (plain, twill, etc.)
and with yarns of different colors affected by common lo-
cal defects. These defects are caused by missing or broken
yarns or by changes in tension during production in the
loom. The defects display a variety of shapes: line, spot,
band, ladder, hole, etc. In this section we show the results
with representative examples chosen from among those
mentioned. The examples shown below were carried out
using a Pulnix TM-765 camera and a MVP-AT Matrox
framegrabber for image acquisition in a Pentium PC envi-
ronment. The implementation of the algorithm involved
Matlab toals.

For industrial application the inspection unit should
adapt to the conditions of each particular case. The imaging
hardware may consist of either one moving camera or sev-
eral systems working in parallel for time saving, depending
on the surface to be inspected and the speed requirements.
In practice, needs can be very different. After the loom, the
fabric usually passes through a checking machine where is
inspected visually. When a defect is detected, a person de-
cides either to mend it manually (if possible), or to record
its location on aform, or even to cut the fabric from side to
side, depending on how severe the defect is. The quality
criteria applied in this checking machine are strongly de-
pendent on the type of fabric, the manufacturer’s standards,
etc., and therefore the time taken at the checking machine
also varies. We consider that there is generally enough
spare time to apply our method of defect detection between
the loom and the checking machine.

Before applying the algorithm, it is important to fix the
acquisition conditions, not only in terms of uniformity but
also in terms of scale and resolution. We consider the maxi-
mum frequency f .=fs=1/4 yarn/pixel. This means that a
woven yarn is digitized into four pixels on average. If the
yarns in the weft and warp directions are of different thick-
ness, the camera is adjusted to fit the thinner yarn to four
pixels. In our experiments this adjustment was made manu-
aly. Adjustment of lightness and scale is reasonably easy
and only needs to be done once unless we change the web.
The images of the textile samples we analyzed are 256
X 256 pixelsin size.

Figure 3(a) shows a sample of twill fabric containing
some faults. The yarns in the warp are of a different color
from the yarns in the weft. The defect appears as aligned
spots, although some isolated spots can aso be found. Our
algorithm for defect detection is applied to the image in
Fig. 3(a), which istaken as the entry t(x,y). Figures 3(b) to
3(e) show the decompressed versions of the arrays K(x,y)
for resolution levels p=4,...,1. Figure 3(f) is the image
K(x,y) with the joint contribution of al the pg channels,
and Fig. 3(g) is the binary image B(x,y), which is the
thresholded binary version of K(x,y) and constitutes the
output image. It can be seen that both the aligned and the
isolated defective spots are correctly segmented from the
background in Fig. 3(g).

An interesting case is shown in Fig. 4. A sample of twill
fabric contains a faulty band in the central part of the image
[Fig. 4(a)]. The defect is called a thin place, and is caused
by alower density of filling yarnsin this band. Figures 4(b)
to 4(e) are again the decompressed Ky(x,y) with
p=4,...,1 Figure 4(f) is the array K(x,y) with the joint
contribution of channels, and Fig. 4(g) is the fina binarized
image B(X,y). Although the faulty band is clearly seg-
mented in the final result, in this case the single resolution
level p=3 [Fig. 4(c)] aone provides a better intermediate
result. In this example, channel p=3 clearly provides the
best tuning of the defect among the four resolution chan-
nels. The later operations (multiplication and addition), de-
signed for the sake of automatism and robustness of
method, to reduce noise and to integrate information from
the four resolution channels, have the drawback of mixing
channels that are very well tuned with the defect with oth-
ers having no information. As a result, the quality of the
segmentation is not so good as it could be if we chose the
best channel aone. However, with this mixing procedure
we gain robustness. The benefits of high robustness and
automatism, regardless of the type of web or defect, are
much more important than a perfect segmentation.

In the remaining figures we present (a) the input image
of afabric to inspect t(X,y), together with (b) an image of
the joint contribution channels K(x,y) and (c) the final out-
put image B(x,y). Figures 5 and 6 correspond to twill fab-
rics with defects along a line: a missing yarn (mispick) and
adouble yarn, respectively. In both cases the output images
contain the defects correctly discriminated from the back-
ground. Figures 7 and 8 correspond to twill samples with
defects in a dotted distribution: severa broken yarns and a
down heddle defect respectively. The broken yarns are cor-
rectly segmented in Fig. 7(b). The small size of the defects
in the down heddle defect makes for difficulty in detecting
some dots and discriminating them from the background.
Careful observation of the array K(x,y) with the joint con-
tribution of channels in Fig. 8(b) allows us to locate all the
faults. The result of the final opening operation is, in this
case, that some points are removed [Fig. 8(c)]. However,
more than 50% of point defects (8 out of 15) are detected
by applying the general method.

The plain fabric in Fig. 9(a) has two spots of very dif-
ferent intensity. The spots are quite big in comparison with
previous dotted defects. Both spots are successfully seg-
mented in Fig. 9(b) and 9(c).
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Fig. 3 (a) Faulty twill fabric (multiple threads broken); (b) to (e) decompressed versions of the arrays
Kp(x,y) for the resolution levels p=4,. .., 1, respectively; (f) array K(x,y) with the joint contribution of

all the pg channels; (g) binary output image B(x,y).
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Fig. 4 (a) Thin-place effect in a twill fabric; (b) to (e) decompressed versions of the arrays K,(x,y) for
the resolution levels p=4,. . .,1, respectively; (f) array K(x,y) with the joint contribution of all the pg
channels; (g) binary output image B(X,Y).
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Fig. 5 (a) Twill fabric with missing yarn (mispick); (b) K(x,y); (c)
output image B(x,y).

Finally, Fig. 10 contains a fabric with yarns of the same
color. The defect is due to the crossed breaking of some
yarns in both the warp and weft directions. After process-
ing, the defect in the two perpendicular directions is cor-
rectly segmented [Figs. 10(b) and 10(c)].

4 Conclusions

The method proposed for local-defect detection has been
shown to be a useful tool for inspecting industrial materials

2304 Optical Engineering, Vol. 37 No. 8, August 1998
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Fig. 6 (a) Twill fabric with double yarn defect; (b) K(x,y); (c) output
image B(x,y).

with periodic regular texture. The method is based on a
multiscale and multiorientation Gabor filter scheme that
roughly imitates the early human vision process.

As we intended, a general improvement and enlarge-
ment of the vision system capabilities can be achieved by
using the proposed algorithm to detect local defects in
regular textures. Versatility, full automatism, computational
efficiency, robustness, and industrial applicability were the
pursued properties of the method, and we have demon-
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Fig. 7 (a) Twill fabric with broken yarns; (b) K(x,y); (c) output im-
age B(x,y).

strated them through a selection of results obtained from
textile inspection.

We have built an algorithm for the automatic application
of the method to an input image of the sample under
inspection. The algorithm applies the Gabor filter scheme
in the spatial domain following a fast pyramid implemen-
tation for computational efficiency. Animage with the joint
contribution of the complete set of multiresolution and
multi-orientation channelsis binarized. In the binary output

r
__‘ L 4
. - - -
(b)
- . >
‘ -
|
] - L] = -

©

Fig. 8 (a) Twill fabric with down heddle defect; (b) K(x,y); (c) out-
put image B(x,y).

image local defects appear segmented from the back-
ground.

One of the most important advantages of the method is
that it is multipurpose without requiring any adjustment.
The only considerations that require attention are optical
conditions such as lightness and scale to guarantee optimal
performance, and a preliminary analysis of a prototype
defect-free sample to extract the mean and standard devia-
tion of its texture descriptors. We have avoided the use of

Optical Engineering, Vol. 37 No. 8, August 1998 2305
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(b)

©)

Fig. 9 (a) Large defects of different colors in a plain fabric with black
and white threads; (b) K(x,y); (c) output image B(x,Y).

adjustable weighting functions or parameters that might
make the inspection process too dependent on adjustment
to a particular reduced set of textures or defects. The
method is robust. It is resistant to common input variations
such as changes of illumination. It works with contrast
rather than luminance units, and therefore it should work
well under reasonable changes of brightness level. Further-
more, it can be applied to composite patterns with elements
of different brightness without any particular adaptation. In

2306 Optical Engineering, Vol. 37 No. 8, August 1998

(®)

Fig. 10 (a) White twill fabric with crossed break of multiple threads;
(b) K(x,y); (c) output image B(x,Y).

addition, there is no preferred orientation in which the tex-
ture has to be fixed before applying the method.

In this paper, we have applied this multipurpose method
to web inspection and noted its capabilities in detecting
common local defects in woven fabrics. Although Jasper
et a.® did not rely on the capability of Gabor filters to
detect local defects, we have demonstrated in this work that
they actually can. Thisfact confirms our preliminary results
previously reported.’
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We have tested the proposed method on a wide variety
of defective fabric samples, obtaining, in general, very
good results. We have presented several representative
cases where different shapes, structures, colors, sizes, etc.
of defects and textured background have been correctly
segmented.

The versatility of the method has been demonstrated not
only by its applicability to different regular textures but
also, for a given texture, by its detecting a variety of de-
fects. The method does not need human supervision or pre-
vious knowledge about the texture or defect. In fabric in-
spection, for example, it does not need information on the
repeat pattern, in contrast with the method proposed in Ref.
6.

The results of defect detection in fabrics shown and dis-
cussed in this paper lead—as a first application—to textile
inspection. Except for minor adaptations to each particular
case, the method is ready to be used in an on-line industrial
inspection system.
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