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We analyze the performance of a multispectral system that works in the near-infrared (NIR) region of the
electromagnetic spectrum (NIR: 800–1000 nm). The system, which uses a CCD camera as a sensor with
five acquisition channels, is capable of reconstructing the NIR spectral reflectance curves for a wide range
of samples with a high degree of accuracy. We carried out a study of the sources of error in the
experimental system, developed a luminance adaptation model to remove the dependence of the captured
images on the exposure time of the camera and the f-number of the objective lens, and performed
reconstructions of the spectral reflectances of a set of 80 samples. We achieved the best results by using
a 12-bit camera, considering a different luminance adaptation transform for each channel, and by using
the pseudoinverse reconstruction method. Under these conditions, the system provided mean percentages
of reconstruction higher than 99.8% and root-mean-square-error values lower than 0.17, and is therefore
suitable for use as a spectrophotometric instrument. © 2006 Optical Society of America

OCIS codes: 040.1520, 110.3080, 110.4190, 300.6340, 350.2460, 350.4600.

1. Introduction

In this study we analyze the experimental perfor-
mance of a multispectral system, which was devel-
oped to obtain the reflectance spectra of samples in
the near-infrared (NIR) region of the electromagnetic
spectrum (NIR: 800–1000 nm) as a continuation of
work undertaken in previous studies.1–4 Up to now,
conventional multispectral imaging systems5,6 have
mainly been used in applications that involve the
measurement of visible light. These systems have
started to be used in many different fields, such as
the conservation of paintings,7,8 color reproduc-
tion,9–11 e-commerce, and telemedicine.11 However,
their use in other parts of the electromagnetic spec-
trum is still uncommon. The multispectral system
developed in this study consists of an illumination
system used to light the samples that emit a consid-
erable amount of NIR radiation, five spectral bands
composed of interference filters with different trans-
mittance profiles in the NIR, and a digital CCD cam-
era attached to an automated zoom lens. Because of

the difference in spectral sensitivity of the NIR mul-
tispectral channels, it was possible to obtain spectral
information on the samples analyzed in the spectral
range considered.

Because the spectral information in the NIR is
related to the chemical properties of the materials, it
is used as an analytical tool known as NIR tech-
nology.12–14 In the NIR, there are absorption peaks
resulting from the vibrations of molecules that are
present in the materials, such as biological sub-
stances (e.g., proteins, fiber, moisture, and fats) and
other chemical constituents (such as those that are
present in textiles, plastics, and petrochemical prod-
ucts). Although these spectral bands are usually
highly overlapped, to overcome this limitation the
NIR technology relates the spectra of the objects an-
alyzed to the corresponding chemical components
with the use of complex multivariate mathematics, so
that they can be identified.12 This technology has a
wide range of applications and is used in areas such
as agriculture, food and pharmaceutical analysis, and
the textile, paint, chemical, and petrochemical indus-
tries. The multispectral system developed in this
work is capable of reconstructing NIR spectra with a
certain degree of smoothness, as is typical in these
kinds of systems. Taking into account that the NIR
absorption peaks are usually overlapped and there-
fore that the associated spectra are quite smooth, the
multispectral system developed can be used as an
auxiliary tool in NIR technology, and some of the
properties of the samples analyzed with peaks in the
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considered range can be deduced from the informa-
tion that is available instead of using conventional
spectrophotometers, which are commonly employed
for this purpose. Furthermore, commercial spectro-
photometers for NIR applications usually use a dif-
fraction grating and more specific detectors such as
InGaAs or PbS,12 which can be relatively expensive.

The system uses a CCD camera15 as a sensor. CCD
cameras are commonly used in areas such as image
processing and artificial vision and in more specific
fields such as photometry or radiometry, many of
which are still in their experimental stages. They are
used for these applications because their maximum
spectral response is within the visible region, that is,
between 380 and 780 nm. However, CCD sensors are
still highly sensitive in the NIR, and CCD cameras
with improved response in the NIR have recently
appeared on the market. Furthermore, CCD cameras
are composed of an array of sensors and can therefore
obtain high-resolution information from many parts
of the image simultaneously, which is a major advan-
tage over conventional spectrophotometers. There-
fore, in this paper, we propose the use of CCD
cameras for NIR measurements. Both 8-bit and 12-
bit cameras were analyzed to obtain good spectral
reflectance reconstructions of the samples.

To reconstruct the spectral reflectance curves, sev-
eral multispectral images were acquired through the
system’s various acquisition channels. In previous
studies,1–3 five channels were found to provide opti-
mum results in the NIR. Subsequently, a luminance
adaptation model3,16 was applied to the images to free
them from their dependency on the exposure time
�texp� of the camera and the f-number (N) of the zoom
lens. These two parameters expand the dynamic
range of the camera along which the measurements
can be made, and therefore different amounts of ra-
diation can be measured.

Once the images had been corrected by the lumi-
nance adaptation model, several mathematical algo-
rithms were used to recover the reflectance spectra of
the samples analyzed from the multispectral mea-
surements performed. In previous research1–3 we

analyzed several methods of reconstruction by num-
erical simulation, some of which were based on inter-
polation algorithms and others on more accurate
estimation techniques; we determined that the best
results were given by the latter methods, particularly
by pseudoinverse estimation2,17 (PSE), a nonlinear
estimation18–20 (NLE) method that uses a second-
order polynomial, and principal-component analy-
sis21,22 (PCA). In this study we analyze the capacity of
these three methods to reconstruct spectral reflec-
tances in the NIR.

Finally, the NIR multispectral system developed
was used to study a wide range of representative
samples, including natural and manufactured ob-
jects. Because of the different composition of these
materials, they tend to exhibit different behaviors
from a spectral point of view in the presence of NIR
radiation, although their reflectance profiles are typ-
ically smooth. The samples included materials such
as textiles, plastics, marble, paper, cardboard, wood,
plants, and leather, and different kinds of food such
as cheese, bread, crackers, meat, vegetables, and
fruit. The results of the reconstruction show the po-
tential of the proposed method and the usefulness of
the system for obtaining information on the reflec-
tance of the samples.

The paper is structured as follows. Section 2 de-
scribes the experimental setup, the luminance adap-
tation model and the spectral reconstruction method.
Section 3 presents a summary of the results, with a
preliminary study of the sources of error that affect
the system and the experimental reconstructions ob-
tained with 8-bit and 12-bit cameras. Finally, the
most relevant conclusions are discussed in Section 4.

2. Method

A. Experimental Setup

The experimental setup of the multispectral sys-
tem (Fig. 1) consisted of a halogen lamp (Philips
15V 150W, Tc � 3357 K) (see Fig. 2), which emitted a
considerable amount of light in the NIR interval
studied and was connected to a Hewlett Packard
6642A dc power supply for the stable illumination
of the sample; a wheel with five interference filters
(ThermoCorion) with a full-width half-maximum
(FWHM) of �70 nm and equispaced transmittance
peaks in the NIR (Fig. 3); two more filters (a cutoff
infrared filter and a cutoff visible ThermoCorion fil-
ter) to ensure that the radiation reaching the sensor
came only from the NIR range considered (Fig. 4);
and finally a CCD camera attached to an automated
objective lens (Cosmicar Pentax C6Z1218M3-1
12.5–75 mm).

The automated zoom lens provided accurate con-
trol over the focus, zoom, and iris (f-number). Often
the manual mechanical positioning of these factors in
conventional objectives does not guarantee high pre-
cision, so highly consistent measurement conditions
are not achieved. Because multispectral systems are
to a certain degree affected by the errors present, to

Fig. 1. Experimental setup of the NIR multispectral system: 1,
CCD camera; 2, automated zoom lens; 3, cutoff infrared and visible
filters; 4, multispectral filters wheel; 5, halogen lamp; 6, sample
support; 7, personal-computer unit and developed software inter-
face.
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achieve good reconstructions the zoom lens had to be
motorized.

Two different types of CCD camera were tested for
use in the NIR multispectral system: a Hamamatsu
C7500-51 with improved response in the NIR and
8-bit depth and a Photometrics Sensys KAF0400-G2
with 12-bit depth. The spectral sensitivities of both
cameras are shown in Fig. 5. The spectral features of
the emission of the halogen lamp and the transmit-
tance of the filters, as well as the number of channels
used in the system, were chosen according to the
results obtained in previous studies,1–3 in which sev-
eral simulations were performed to optimize the re-
constructions in the NIR.

B. Luminance Adaptation Model

The experimental system described above allows us
to obtain five multispectral images of the samples we
analyzed through the acquisition channels by using

different exposure time values for the camera �texp�
and different f-numbers for the zoom lens (N). The
variability of these parameters is useful since it al-
lows us to adapt the dynamic range of the sensor to
the amount of incident light and therefore to measure
a wide range of inputs with different luminous fea-
tures, obtaining digital levels centered within the lin-
ear range of the camera for each acquisition channel.
The camera responses are highly dependent on the
channel that is used because of the different trans-
mittances of the multispectral filters and the typi-
cally decreasing profile of the spectral sensitivity of
the CCD sensor in the NIR.

To free the images acquired from dependence on
the exposure time and f-number, it was necessary to
develop a luminance adaptation model. The model
developed in this work transforms the measured
camera responses or digital levels for each texp and N
value into theoretical camera responses. The theoret-
ical camera responses are independent of both pa-
rameters and may be calculated as follows:

Xi ��
�min

�max

i���r���Fi���S���d�, (1)

where Xi is the theoretical camera response obtained
for a certain channel �i � 1, . . . , 5�, i(�) is the spec-
tral radiance of the lamp, r��� is the measured spec-
tral reflectance of the sample, Fi��� is the spectral
transmittance of the filters, and S��� is the spectral
sensitivity of the CCD camera used.

The model developed applies a linear correction to
the digital levels measured �DL�texp, N�� and trans-
forms them into theoretical camera responses �Xi�. In
the literature, only one theoretical model16 that uses
optoelectronic conversion functions (OECFs) was
found.

We calculated the transformations corresponding
to the luminance adaptation model for each of the

Fig. 2. Spectral radiance emitted by the halogen lamp in the NIR
region.

Fig. 3. Transmittance of the five multispectral filters in the NIR
region. The corresponding peak wavelengths are F1, 800; F2, 860;
F3, 890; F4, 960; and F5, 980 nm.

Fig. 4. Transmittance of the cutoff visible and infrared filters in
the NIR region.
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�texp� and N values by taking into account a set of
reference samples of known spectral reflectance in
the NIR, measured by means of a telespectrophotom-
eter (Instrument Systems Spectro 320), and we ob-
tained them by fitting the normalized digital levels
�NDL�texp, N�� to the theoretical camera responses
�Xi�. These kinds of regressions are referred to as
type 1 transformations. We performed the linear fit-
tings for a wide range of exposure times �texp� and
f-numbers (N). Because the zoom lens was motorized,
the f-numbers provided (N*) are not the real
f-numbers but instead correspond to a specific posi-
tion of the motor that controls the automated iris of
the zoom. These positions may vary from 0 (equiva-
lent to an f-number of 1.4) to 1750 (equivalent to a
completely closed iris), increasing in steps of 1. The
values tested for texp were 10, 20, 40, 70, 100, 150, 200,

300, 400, and 500 ms (maintaining N* � 550), and for
N*, 100, 200, 300, 400, 500, 600, 700, 800, 900, and
1000 (maintaining texp � 100 ms). An example of a
correction obtained for texp � 20 ms and N* � 550 is
given in Fig. 6. Table 1 shows the parameters for the
correction, that is, the slope value (m), the offset
value (n), and the regression coefficient r.

For each pair of parameters �texp, N*�, a different
linear transformation was found. The slope value of
the transformations corresponded to a scale factor
that was necessary for readjusting the responses and
to treat them in absolute terms of energy. This was
because the amount of light reaching the CCD sensor
depended on the exposure time and f-number and
also because in the theoretical camera responses we
considered the spectral radiance of the halogen lamp
instead of the exposure reaching the sensor; likewise,
the spectral sensitivity of the camera was expressed
in relative terms. The offset value was an uncontrol-
lable correction factor that was due to experimental
errors and noise. It presented a random value close
to 0.

Another kind of fitting that can also be performed
to correct multispectral images is to take into account
a different transformation depending on the acquisi-
tion channel considered, in addition to the exposure
times and f-numbers. These kinds of association,
which are referred to as type 2 transformations, al-
lowed us to take into account the influence of the
wavelength on the f-number and to better compen-
sate for several systematic errors in the system that
affected the multispectral bands. Examples of these
errors include the approximations performed in the
outermost channels, corresponding to filters F1 and
F5, in which we considered that all the energy that
did not come from the spectral interval (800–
1000 nm) was removed by using the cutoff filters
(which was not exactly true because of their trans-
mittance curves) and the lower sensitivity of the spec-
tral bands of longer wavelengths that was due to the
decreasing profile in the spectral response of the cam-
era in the NIR [which may cause these channels to

Fig. 5. Spectral sensitivity of the cameras used in the experimen-
tal setup: (a) Hamamatsu C7500-51 and (b) Photometrics Sensys
KAF0400-G2.

Fig. 6. Luminance adaptation correction obtained for texp � 20 ms
and N* � 550 with type 1 transformation.
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have a lower signal-to-noise ratio (SNR)]. Therefore
subsequent reconstructions were more accurate if the
corrections were performed with these transforma-
tions, that is, independently for each channel. An
example of a type 2 transformation is shown in Fig. 7.
The corresponding slope values (m), offset values (n),
and regression coefficients (r) are listed in Table 1. As
can be seen, in most cases, the regression parameters
we obtained by using these corrections are better
than those we obtained with type 1 transformations,
and therefore the reconstructions are expected to be
more accurate using these corrections.

Finally, the slope values can be modeled with the
exposure time for a constant f-number and, simi-
larly, they can be modeled with the f-number for
each exposure time. This is accomplished for trans-
formations of types 1 and 2, in the latter case by the
consideration of each channel independently. The
best fitting functions encountered correspond to
quadratic regressions and can be expressed as fol-
lows:

Exposure time �texp� : m � 1��a � btexp � ctexp
2�

�N � constant�,

f-number �N*� : m � 1��a � bN* � cN*2�

�texp � constant�. (2)

The prediction of the slope values by means of
these fittings is very useful because the luminance
adaptation model can be extrapolated for exposure
times and f-numbers that have not been experimen-
tally measured. Moreover, we did not find any simple
fitting function for the offset parameter and the ex-
posure time or the f-number position. This is because
this parameter is related to experimental errors and
has a random value, so it cannot be modeled. How-
ever, it can be rejected because of its insignificant
value. Specific examples of these regressions can be
seen in Figs. 8 and 9.

C. Spectral Reconstructions

Once the digital levels measured have been correc-
ted with the luminance adaptation model, they can be
inserted into a reconstruction algorithm to recover
the spectral reflectance profile of the sample ana-
lyzed. In this study, we applied three different
mathematical reconstruction methods, PSE, NLE,
and PCA, and compared their performance in the
NIR. All three algorithms use a training set of known
spectral reflectances to perform the reconstructions.

The PSE and NLE methods reconstruct the spec-
tral reflectance curves from the camera responses
using a transformation matrix that is calculated as
follows:

r̃ � MT · X � OrXOr

T�XOr
XOr

T��1 · X, (3)

Fig. 7. Luminance adaptation correction obtained for texp � 20 ms
and N* � 550 with type 2 transformation.

Fig. 8. Quadratic regression between the slope value and the
exposure time for type 1 transformations (N* � 550).

Table 1. Correction Parameters of the Luminance Adaptation Model Obtained for texp � 20 ms and N* � 550 with Transformations 1 and 2

Transformation Channel Slope Value (m) Offset Value (n) Coefficient (r)

Type-1 — 0.1634 �1.7303e-3 0.9932
Type-2 F1 0.1523 �2.9010e-3 0.9980

F2 0.1707 �4.2451e-3 0.9979
F3 0.1739 �5.2970e-3 0.9972
F4 0.1830 �3.8571e-3 0.9965
F5 0.1815 �2.9184e-3 0.9955
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where r̃�n � 1� is a column vector representing the
spectral reflectance of the sample evaluated at n
wavelengths, MT�n � m� is the transformation ma-
trix, and X�m � 1� is a column vector representing
the camera responses for the m multispectral chan-
nels of the sample �Xi�. Or�n � p� is a matrix whose
columns are the known spectral reflectances of the
samples belonging to the considered training set
evaluated at n wavelengths. For the PSE method
XOr

�m � p� is a matrix whose columns contain the
camera responses for the m multispectral channels
belonging to the p samples of the training set. On the
other hand, for the NLE method the columns of XOr
are polynomial combinations of the m camera re-
sponses of the p samples, and therefore the number of
rows of the matrix depends on the polynomial used.

Specifically, for PSE and NLE, the XOr
matrixes are

as follows:

PSE:

XOr
� �

X1,1 · · · X1,p

X2,1 · · · X2,p

É É

Xm,1 · · · Xm,p

	,
NLE:

XOr
�





 1 · · · 1

X1,1 · · · X1,p

X2,1 · · · X2,p

· ·
X1,1

2 · · · X1,p
2

X2,1
2 · · · X2,p

2

· ·
X1,1X2,1 · · · X1,pX2,p

· · · · · 




. (4)

However, with the PCA technique, we obtain the
spectral reflectance for each sample by combining the
following expressions:

X � Cr, (5)

r̃ 
 rM � �vr1 � �vr2 � �vr3 � 	vr4 � · · · � 
vrq,

q � n, (6)

where C�m � n� is a matrix whose rows are the
spectral sensitivities for each multispectral channel,
rM is the mean spectral reflectance of the samples
belonging to the training set, �, �, . . . , 
 are scalar
coefficients, and vr1, vr2, . . . , vrq are the principal
components calculated with the training set.

We calculate the scalar coefficients for each sample
analyzed by solving the system using as many prin-
cipal components as the number of multispectral
channels used in the reconstruction. Once the scalar
coefficients are known, the spectral reflectance can be
recovered.

For the methods tested, all of which can easily be
implemented with the commercial MATLAB soft-
ware, we performed the reconstructions by using two
to five acquisition channels. The multispectral filters
considered for the reconstructions with fewer chan-
nels than five were the following: two channels, F2,
F4; three channels, F2, F3, F4; and four channels, F1,
F2, F3, F4.

The reconstructions were carried out for a set of 80
different samples with different reflectance spectra in
the NIR. The samples included natural and manu-
factured objects such as textiles, plastics with differ-
ent compositions, marble, different kinds of wood and
paper, plants, leather, and food (e.g., cheese, bread,
crackers, meat, vegetables, and fruit). Several exam-
ples of the reflectance spectra of the samples mea-
sured with the telespectrophotometer (Instrument
Systems Spectro 320) are shown in Fig. 10. The
telespectrophotometer integrated the data over a re-
gion of 0.5 cm in diameter, where the samples pre-
sented fairly constant features and the illumination
was uniform. An area of approximately 8000 pixels
over the sensor, equivalent to the zone measured
with the telespectrophotometer, was used to obtain
the averaged digital levels of each analyzed sample.

Fig. 9. Quadratic regression between the slope value and the
f-number position for type 1 transformations (texp � 100 ms).

Fig. 10. Spectral reflectances in the NIR region of some analyzed
samples measured with the telespectrophotometer.
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To evaluate the quality of the reconstructed spec-
tra, we used the following two parameters:

● percentage of reconstruction:

Prec � �1 �
��min

�max �r � r̃�2

��min
�max �r�2 � 100, (7)

● root-mean-square error23,24 (RMSE):

RMSE � � 1
N�

�
�min

�max

�r � r̃�21�2

, (8)

where r are the experimentally measured compo-
nents of the reflectance curves, r̃ are the recon-
structed values, and N� is the number of wavelengths
in which the measurements were taken. In this study
the measurements and reconstructions are per-
formed with a wavelength step of 10 nm so that N� is
always considered 21.

While the RMSE is a commonly used parameter in
multispectral imaging and its value is related to the
distance between the measured and reconstructed
spectra, Prec provides an intuitive idea of the quality
of the reconstruction, since its maximum value is 100.
We have shown in previous works1–3 that RMSE val-
ues similar to 0.01 and percentages of reconstruction
close to 99.9% lead to almost perfect reconstructions
of the NIR spectral reflectances of most samples.

3. Results

A. Analysis of the Sources of Error

Before performing the experimental reconstructions,
we evaluated the different sources of error in the
system developed. Only a few authors25–27 have
briefly analyzed the implications of these errors for
reconstructions. Common sources of error found in

conventional multispectral systems are the noise
made by the CCD camera, the mechanical positioning
of the elements, the oscillations in the emission of the
illumination source, the different geometries used in
the spectral measurements, and the mathematical
approximations performed by the methods of recon-
struction employed.

In this study, all the controllable experimental er-
rors were reduced before the measurements were
performed. We motorized the objective lens, and the
errors introduced into the averaged camera re-
sponses by means of the zoom, focus, and iris changes
had a standard deviation below 0.2%. The multispec-
tral filters were mounted on a wheel, and a special
support was built to hold the samples and thus guar-
anteed a high degree of precision in the mechanical
positioning during the measurements. Furthermore,
the halogen lamp was attached to a dc power supply
to obtain a stable illumination of the samples ana-
lyzed. Its emission was temporally characterized, and
the standard deviation associated with the mean ra-
diance measured showed a variation of less than
0.5%. Another factor that must be taken into account
is the geometry with which the measurements are
taken. In some cases, the geometries used to deter-
mine the spectral reflectances of the samples with a
conventional spectrophotometer and the multispec-
tral acquisitions are different. In our case, the
telespectrophotometer placed in the same position as
the camera was used to measure the spectra.

Nevertheless, the methods of reconstruction are
not exact because the methodologies used apply
mathematical techniques that are approximative,
such as the least-squares regression. Other more
practical reasons included the fact that in the calcu-
lations associated with the process of reconstruction
we considered only the wavelengths included in the
800–1000-nm range, although the cutoff filters did
not completely remove all the radiation, and the fact
that the theoretical calculations were performed with
a wavelength step of 10 nm. We optimized this latter
factor by taking into account the results we obtained
by using other step values. Because of the high degree
of smoothness of the spectral profiles of the samples
in the NIR,12 it was seen that 10 nm was enough to
ensure highly accurate reconstructions.

Fig. 11. Spectral reflectances in the NIR region of some of the 19
textile samples considered in the simulations measured with the
telespectrophotometer.

Fig. 12. Simulated results of reconstruction (mean Prec and
RMSE) obtained for the 19 textile samples without noise being
introduced.
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Finally, we analyzed the errors introduced by the
CCD cameras,28,29 which are one of the most relevant
sources of noise in multispectral systems. CCD cam-
eras are affected by many different types of noise, of
which the following three were studied: dark current,
shot noise, and quantization noise. Because of the
configuration of our experiment, the dark current
was reduced by use of a cooling system when the
12-bit sensor was used. To take advantage of the
entire dynamic range of the camera, we eliminated
the dark-current image by changing the gain and
offset parameters. We also minimized the shot noise
by averaging several images for each acquisition per-
formed. The quantization noise was analyzed with
both 8-bit and 12-bit sensors.

To quantify the influence on the reconstructions of
the different kinds of camera noise, simulations were
carried out. First, simulations were performed on a
set of only 19 textile samples to simplify the calcula-
tions. In Fig. 11 the most representative samples of
this set can be seen. The samples that are not pre-
sented are very similar to those of some of the curves
shown. Figure 12 shows the ideal mean Prec and
RMSE values for this set of samples that would be
obtained with our system without noise. In this case,
the reconstructions improved with the number of
channels, as was expected, and they are highly accu-
rate, with Prec values higher than 99.9% and
�RMSE � 100� values lower than 1. The best per-
forming methods were NLE, PCA, and PSE respec-
tively.

The influence of the quantization noise on the sys-
tem was analyzed by the introduction of the corre-

sponding errors in the simulations. To achieve this,
the theoretical camera responses used in the simula-
tions were transformed into digital levels by use of
Eq. (9), and the quantization errors were subse-
quently introduced by means of the integer function:

DLi � integer�Xi

DLmax

�Xi�max
, (9)

where DLi is the digital level for each channel and
sample, Xi is the theoretical response of the camera,
DLmax is the maximum digital level corresponding to
the number of bits used (255 for 8 bits and 4095 for
12 bits), and �Xi�max is the theoretical response of the
camera to an ideal sample with spectral reflectance 1
at all wavelengths. The integer function provides the
closest integer number to the value we obtained by
performing the mathematical operations.

Using the inverse transformation, we again ob-
tained the theoretical camera responses affected by
the error and carried out the corresponding recon-
structions, Fig. 13 illustrates the results obtained.
Table 2 shows the mean SNR [Eq. (10)] associated
with the samples for each acquisition channel:

SNRi � 10 log��DLi�2  �DLnoise i�2�, (10)

where DLnoise is the increment or decrement of the
digital level corresponding to the quantization noise.

PSE and PCA methods yielded very similar results.
With 8-bit quantization noise, the reconstructions
were worse when three and four channels were used
than they were when two channels were used. This
can be explained by the greater proportion of errors in
the calculations when more channels are used and by
the smoothness of the reflectances, which makes it
possible to obtain good reconstructions by use of just
a small number of bands. This behavior is eliminated
when five channels are used because the errors are
compensated for by the additional information. Con-
versely, with the NLE method, the reconstruction
results always deteriorate with the number of filters
used. This is true even in the case of five filters. The
reason for this is that this method uses second-order
polynomials of the camera responses, so the errors
are amplified considerably. In conclusion, PSE and

Fig. 13. Simulated results of reconstruction (mean Prec and
RMSE) obtained for the 19 textile samples introducing quantiza-
tion noise corresponding to (a) 8 bits and (b) 12 bits.

Table 2. Mean Signal-to-Noise Ratio Obtained for the 19 Textile
Samples Corresponding to Each Channel with Different

Errors Introduced

SNR F1 F2 F3 F4 F5

Quantization
noise 8-bit

49.514 52.874 51.581 53.526 53.581

Quantization
noise 12-bit

70.563 74.447 74.763 73.191 74.330

Proportional
noise 1%

47.195 49.380 44.581 47.708 49.558

Proportional
noise 0.5%

56.792 53.665 56.281 56.140 56.970
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PCA methods are recommended when the reflectance
spectra of samples with an 8-bit system are being
recovered. Using these two methods and five chan-
nels, the reconstruction parameters fulfill the condi-
tions imposed, that is, Prec � 99.9% and �RMSE
� 100� � 1.

However, when a 12-bit quantization noise was
included in the simulations, the results improved sig-
nificantly and reconstruction parameters similar to
the ideal ones and a higher SNR were achieved. In
this case, the reconstructions always improved with
the number of channels, except when the NLE
method was used. With 12 bits, the reconstruction
results verify the conditions imposed, even when
fewer than five channels were used.

Finally, to simulate the shot noise of the camera
and its influence on the reconstructions, an additive
term that represented a percentage of the signal was
introduced in the simulations:

Xi� � Xi � �i, (11)

where Xi� are the camera responses affected by noise
and �i is the proportional noise introduced. It was
defined by use of the RAND function in MATLAB,
which generates a random number between 0 and 1.
For instance, a noise equivalent to 1% is introduced
by the following expression:

�i � �0.02 RAND � 0.01�Xi. (12)

The reconstruction results obtained when this
noise is introduced into the simulations is shown in
Fig. 14, and the corresponding SNR is shown in Table
2. In this case, the SNRs obtained are even worse
than when a quantization noise of 8 bits was intro-
duced. This causes the reconstructions to behave in
the same way: They deteriorate with three and four
channels and improve with five channels, except in
the case of the NLE method. When the PSE and the
PCA methods and five channels are used, a shot noise
lower than 1% guarantees that the reconstruction
parameters will verify the conditions imposed �Prec
� 99.9%, �RMSE � 100� � 1]. For the NLE method,
the noise must be lower than 0.5% to obtain these
values.

B. Reconstructions with 8-bit Cameras

In this section, we describe the experimental reflec-
tance reconstructions with the multispectral sys-
tem developed by using an 8-bit Hamamatsu
C7500-51 camera, even though the simulated re-
sults obtained in the previous subsection were not
optimal under these conditions. First, to carry out a
straightforward test of the system, we also used a
set of just 19 textile samples. The reconstructions
were performed with the luminance adaptation
model and transformations of types 1 and 2. For
each sample, the most adequate f-numbers and ex-
posure times were used, that is, those that provided
digital levels within the linear range of the camera.
The results obtained for the reconstructions are
shown in Fig. 15. The results obtained with type-1
transformations were clearly worse than those ob-
tained with type-2 transformations. With type 2,
the experimental errors that variously affect the
multispectral channels were better compensa-
ted for, so more accurate reconstructions were ob-
tained. The methods behave in the same way as
they did in the noise simulations, that is, PSE and
PCA give worse results with three and four chan-
nels, but with five channels this tendency was elim-
inated. With NLE, the results always deteriorated
when the number of channels increased. However,
this tendency was significantly reduced with type-2
transformations. When PSE and PCA with five
channels were used, the Prec values were higher than
99.8% and the �RMSE � 100� values were lower than

Fig. 14. Simulated results of reconstruction (mean Prec and
RMSE) obtained for the 19 textile samples when a proportional
noise of 1% is introduced (and 0.5% in the case of the NLE
method).

Fig. 15. Experimental results of reconstruction (mean Prec and
RMSE) obtained for the 19 textile samples with the 8-bit camera
and the luminance adaptation model with (a) type 1 transforma-
tions and (b) type 2 transformations.
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2.5. For the NLE method, the Prec values were higher
than 97.6% and the �RMSE � 100� values were lower
than 4. As there are additional experimental sources
of error in the system that did not exist in the simu-
lations performed before 8 bits were introduced, the
resolution of the results obtained is more limited.

C. Reconstructions with 12-bit Cameras

In this subsection, we present the reconstruction re-
sults obtained by using a Photometrics Sensys
KAF0400-G2 camera with 12-bit depth. Figure 16
shows the mean reconstruction parameters obtained
for the 19 textile samples. Again, the reconstructions
obtained by means of type-1 transformations were
limited and similar to those obtained with 8 bits,
thus making it highly advisable to use the lumi-
nance adaptation with type-2 transformations. In
this case, the parameters obtained were almost con-
stant with the number of channels, except for the
NLE method for which slightly worse results were
observed when more channels were used. The con-
stancy observed in the results can be explained by
the smoothness of the reflectances of the 19 sam-
ples, which can be reconstructed by use of a small
number of spectral bands. The Prec values were
higher than 99.8% and the �RMSE � 100� values
were lower than 1.9 when five channels and PSE and

Fig. 16. Experimental results of reconstruction (mean Prec and
RMSE) obtained for the 19 textile samples with the 12-bit camera
and the luminance adaptation model with (a) type-1 transforma-
tions and (b) type 2 transformations.

Fig. 17. Experimental results of reconstruction (mean Prec and
RMSE) obtained for the whole set of 80 samples with the 12-bit
camera and the luminance adaptation model with type 2 transfor-
mations.

Table 3. Mean, Maximum, and Minimum Values for Prec and RMSE, Obtained for the Whole Set of 80 Samples with the 12-bit Camera and the
Luminance Adaptation Model with Transformations 2

Method Number of filters 2 3 4 5

PSE Mean Prec 99.605 99.712 99.780 99.820
Max Prec 99.994 99.997 99.996 99.998
Min Prec 98.216 97.537 96.350 96.945
Mean (RMSE � 100) 2.011 1.913 1.690 1.660
Max (RMSE � 100) 5.500 5.836 6.393 6.613
Min (RMSE � 100) 0.488 0.268 0.310 0.300

NLE Mean Prec 99.842 99.828 99.601 99.200
Max Prec 99.997 99.997 99.997 99.997
Min Prec 98.030 97.716 96.556 97.378
Mean (RMSE � 100) 1.624 1.633 1.950 2.302
Max (RMSE � 100) 6.115 6.583 7.163 8.054
Min (RMSE � 100) 0.324 0.266 0.276 0.259

PCA Mean Prec 99.621 99.619 99.515 99.302
Max Prec 99.994 99.997 99.997 99.997
Min Prec 98.343 97.527 95.295 95.156
Mean (RMSE � 100) 2.201 2.002 2.050 2.800
Max (RMSE � 100) 5.535 5.785 7.448 10.681
Min (RMSE � 100) 0.531 0.273 0.308 0.339
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PCA were used, while the Prec values were higher
than 99.3% and the �RMSE � 100� values were lower
than 2.2 with NLE. These results are better than
those obtained with 8 bits, so they are closer to the
ideal conditions obtained in the simulations, that is,
99.9% for Prec and 1 for RMSE.

Therefore, using the optimal configuration, that is,
the 12-bit camera and the luminance adaptation
model with type-2 transformations, we reconstructed
80 samples of a wide range of materials. The results
obtained are shown in Fig. 17 and Table 3, in which
more detailed information is provided. NLE provided
very similar reconstructions to those obtained for the
19 textile samples and PSE also gave good results,
with a slight improvement as the number of channels
increased because of the greater variation in the spec-
tral reflectances of the 80 samples. PCA did not yield
satisfactory results. Because of the greater variation
in the curves, the principal components used did not,
in this case, accurately describe all of the profiles
analyzed. This caused the reconstructions of some
samples to have poor Prec and RMSE values. In gen-
eral, because of the amplification of errors with NLE,
although it provides quite good results with a rela-
tively small number of channels, and the poorer per-
formance of PCA when many samples are taken into
account, the PSE method is preferred. Moreover, with
the PSE method no characterization of the system is
needed, while with the PCA technique the spectral
sensitivity of each multispectral channel must be
known, which makes this method more difficult to
implement. With PSE, using five channels and taking
the 80 samples analyzed into account, we find that
the reconstruction parameters have the following
mean values: Prec � 99.8%, �RMSE � 100� � 1.7,
which are fairly close to the ideal conditions imposed
�Prec � 99.9% and �RMSE � 100� � 1]. To illustrate
the reconstructions obtained, several examples are
shown in Fig. 18.

4. Conclusions

We performed a complete study of an experimental
multispectral system developed to work in the NIR of
the electromagnetic spectrum. The system, which
was composed of a halogen lamp, five acquisition
channels, and a digital CCD camera with an auto-
mated zoom lens, was capable of reconstructing the
spectral reflectance curves of the samples analyzed
between 800 and 1000 nm. The samples considered
constituted a representative set, and they all pre-
sented typical smooth profiles in the NIR. We also
developed a luminance adaptation model to remove
the dependence of the multispectral images on the
exposure time of the camera and the f-number of the
objective lens used in the acquisition process. This
allowed us to adapt the dynamic range of the camera
to the amount of incident light, which depends on the
reflectance levels of the sample and on the channel
that is used. Specifically, two classes of fittings were
applied: one in which the five channels were consid-
ered as a whole (type 1) and one in which a different

Fig. 18. Measured and reconstructed spectral reflectances for
some samples corresponding to an area of 0.5 cm in diameter,
obtained with the 12-bit camera and the luminance adaptation
model with type 2 transformations: (a) fabric, (b) plastic, and (c) red
pepper.
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correction was performed depending on the acquisi-
tion channel (type 2). Once the images had been cor-
rected by use of the luminance adaptation model,
several mathematical reconstruction methods were
applied: PSE, NLE, and PCA.

To optimize the reconstruction process, we first an-
alyzed the sources of error found in the system. This
involved studying errors resulting from the mechan-
ical positioning, the stability of the illumination, the
mathematical approximations performed, and the
different kinds of noise introduced by the CCD cam-
era, such as dark current, quantization, and shot
noise. Subsequently we compared the experimental
results of the reconstruction that we achieved by us-
ing CCD cameras with 8- or 12-bit depth for a set of
80 samples with different reflectance spectra in the
NIR. The best results were achieved using the
pseudoinverse method, the luminance adaptation
model with type 2 transformations, and the 12-bit
CCD camera. Under these conditions, using five
channels, we obtained a mean percentage of recon-
struction averaged over the whole set of samples
higher than 99.8% and a �RMSE � 100� value lower
than 1.7, which are very close to the ideal ones
obtained in the simulations �Prec � 99.9%, �RMSE
� 100� � 1]. This demonstrates the capacity of the
system we developed to reconstruct the spectral re-
flectance curves of samples in the NIR region of the
electromagnetic spectrum.
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