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sitive to wavelengths up to 1000 nm, we can make use
of this standard instrumentation in order to achieve our
purpose.

In previous studies,4–6 we developed a multispectral
system composed of a conventional CCD camera and
various filters for recovering the spectral reflectances
of samples in the NIR region. We performed several
simulations and experimental measurements, and ana-
lyzed the optimum spectral transmittance of the filters
to be used in the setup. We also determined that five
channels were enough to perform the reconstructions
of the spectral profiles. In this study, we make use of
this five-channel configuration, although three bands
were enough to obtain a pseudo-colored image, in order
to obtain a color visualization system for multispectral
images in the near-infrared region. The process that we
have used can be divided into the following two main
stages:

Definition of the Color Representation Space
Using five monochromatic images of several samples
analyzed, which correspond to the different spectral
bands of the NIR obtained with the multispectral sys-
tem, we must define a color representation space in or-
der to obtain a pseudo-colored image.7,8 Thus, we
combine the five multispectral images and generate
three new signals (RNIR, GNIR and BNIR) that allow us to
obtain a pseudo-colored image. In this article, several
possible combinations are proposed, some of them based
on methods which attempt to imitate human color vi-
sion9,10 and others that maximize the colorimetric dis-

Introduction
The near-infrared region of the spectrum (NIR, 800–
1000 nm)1–3 can contain information related to the
chemical properties of the objects. Therefore, it is use-
ful in many applications, and can be used as an analyti-
cal tool in several fields, such as the textile and chemical
industries, environmental science, and military appli-
cations. For instance, samples with the same color or
appearance in the visible region can differ in spectral
terms of reflectance or transmittance in the NIR because
of their constituents. Therefore, they may be differenti-
ated by taking into account the extra information pro-
vided by this region.

The aim of the process used in this study is to obtain
a pseudo-colored image from several NIR, monochrome,
multispectral images of a given sample and therefore
to visualize the NIR region, which is invisible to the
human eye. Because conventional CCD cameras are sen-
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The aim of this study is to develop a color visualization system for multispectral images in the near-infrared region (NIR, 800–
1000 nm). Samples with the same color or appearance in the visible region, which are therefore indistinguishable to the human
eye, can have different reflectance or transmittance spectra in other parts of the electromagnetic spectrum, specifically in the
NIR. Therefore, these samples can be differentiated by taking into account this extra information. In this work, we use a multi-
spectral system that we have developed recently in order to obtain five images of several samples with varying spectral reflec-
tance, corresponding to different spectral bands. We then define a color space representation which associates the camera responses
to the color channels of a calibrated CRT monitor. Therefore, a pseudo-colored image is obtained. Several possible associations
are presented, some of them based on methods which attempt to imitate human color vision but in the NIR region, and others for
maximizing colorimetric discrimination between the objects, based on principal component analysis (PCA). Finally, the color
differences between samples are evaluated using several parameters. The methods which provide the best results in terms of
visual discrimination are based on PCA analysis, but the methods related to human color vision keep information of the NIR
spectral reflectance of the samples.
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crimination between objects based on Principal Compo-
nent Analysis (PCA).11,12

Calibration of the Visualization Device
In order to obtain a final pseudo-colored image which is
independent of the visualization device used, the RNIR,
GNIR and BNIR signals must be adequately transformed.
For this purpose, it is necessary to calibrate the dis-
play,13–15 in our case, a conventional CRT monitor, and
to define three new signals called RMonitor, GMonitor and
BMonitor, which take into account the characteristics of
the primaries and the white of the display. The corre-
sponding digitized signals represent the amount of pri-
maries needed to visualize the final color on the monitor.

Once the two steps described above were carried out,
we tested the proposed methodology using five simu-
lated multispectral images corresponding to a set of
twenty-five textile samples with different spectral re-
flectance in the NIR region. Using the simulated im-
ages, which allowed better control over the process, we
compared the different possible color representations
and performed an analysis of the colorimetric differences
between the samples using several different parameters,
such as pseudo-color differences, contrast levels and
CIELAB color differences.

Finally, using the multispectral system developed, we
captured several images corresponding to real samples.
The pseudo-coloring methods were also applied to these
images, and an analysis of the colorimetric results was
performed and compared with the previous simulations.

Method
Experimental Setup
In this study, we used an NIR multispectral acquisition
system (Fig. 1) consisting of a monochrome CCD camera
(Photometrics Sensys KAF1400-G2) with a 12 bit depth.
An automated zoom lens, which was developed in order
to control the exposure of the digital camera, was attached
to the camera. The experimental setup involved an illu-
mination system composed of a halogen lamp (Philips 15
V 150 W); five multispectral interference filters
(ThermoCorion), which were equispaced in the region
studied and which defined the different spectral acquisi-
tion bands (Fig. 2); and finally, two more filters, a cutoff
IR filter and a cutoff VIS filter (ThermoCorion), which

removed the radiation that was not within the NIR range
considered.

Definition of the Color Representation Space
Using the experimental configuration described above,
we obtained five multispectral images of the samples.
Once the five monochrome images were captured, it was
necessary to define a color representation to obtain a
single pseudo-colored image with a wide range of dif-
ferent colors and therefore a high level of discrimina-
tion between samples. Basically, the pseudo-coloring
methods used in this study may be classified into the
following two groups: methods related to human color
vision, and methods maximizing the colorimetric dis-
crimination between samples. The first group attempts
to imitate the color vision that the human eye has in
the visible range, but for radiation within the NIR re-

Figure 1. Experimental setup of the NIR multispectral acquisition system.

Figure 2. Spectral transmittance of the NIR multispectral fil-
ters used in the experimental setup.
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gion. The second type includes methods which increase
color differences between objects, without taking into
account human color vision.

As an initial approximation to the first method, we
used linear combinations by directly associating several
of the multispectral monochromatic images with the sig-
nals RNIR, GNIR and BNIR. The images or spectral bands
corresponding to long wavelengths were associated with
red, medium wavelengths with green, and short wave-
lengths with blue. We analyzed several possible combi-
nations; two of these can be seen in Eqs. (1) and (2):
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where Im_Fi(i = 1, ..., 5) are the NIR monochromatic
images obtained for the various spectral bands. The first
combination (Eq. (1)) uses information from the five mul-
tispectral bands of the system while the second combi-
nation (Eq. (2)) uses only the three bands that are
included in their totality within the NIR region consid-
ered (Fig. 2). If we want to perform a pseudo-color visu-
alization, three spectral bands should probably be
enough. However, because our experimental system pro-
vides five images corresponding to five spectral bands,
we use them in order to make full use of all the infor-
mation available.

A more complex method would be to display a care-
fully selected combination of the monochromatic images
that accounts for the RGB responses of the CIE-1931
standard observer,16 that is, the tristimulus values de-
fined in this color space, but for the NIR region. Trans-
lating and compressing the color matching functions of
this space into the range analyzed is necessary in order to
obtain a behavior in the NIR which is equivalent or simi-
lar to that of the visible region. The pseudo-color match-
ing functions in the NIR must be approximated from a
combination of the spectral transmittance of the five fil-
ters used. This was performed using least squares regres-
sion. The mathematical expression of this fitting can be
seen in Eq. (3). As shown in Fig. 3, the original, Eqs. (1)
and (2), approximated functions differed considerably.

    

R

G

B

NIR

NIR

NIR

=
−

+ + −

=
− +
+ − +

=
+ −
+ −

0.493Im_F 1 2.075Im_F 2
2.265Im_F 3 0.451Im_F 4 0.133Im_F 5,

0.091Im_F 1 0.177Im_F 2
1.296 Im_F 3 0.456 Im_F 4 0.075Im_F 5,

0.417Im_F 1 1.036 Im_F 2
0.658 Im_F 3 0.247Im_F 4 0.042Im_F 5.

(3)

In addition to the two methods described so far, other
typical color appearance models9,10 used in the visible

region can be translated into the NIR region, such as
simple LMS models (cone excitation space) and more
complex models, such as ATD (neural or zone) models.
LMS models simulate the response for each type of pho-
toreceptor and calculate the quantities L, M and S us-
ing the tristimulus values of the CIE-1931 standard
observer. These values can also be associated with the
RNIR, GNIR and BNIR signals (Eq. (4)):
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where M is the corresponding transformation matrix
which depends on the model considered. Here, the R, G
and B signals are the pseudo-tristimulus values of the
CIE-1931 standard observer in the NIR, obtained using
Eq. (3).

More complex color appearance models, such as ATD,
take into account the opponent colors theory. They usu-
ally compute three new signals: A, the achromatic sig-
nal, T, the red-green signal, and D, the yellow–blue
signal. The A, T, and D signals, which are computed
using a different matrix transformation depending on
the model applied, can be associated with the RNIR, GNIR

and BNIR values as follows:
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  (if   0).
(5)

Finally, we studied a further method that we have
called the complementary colors model.7 According to

Figure 3. Pseudo-color matching functions corresponding to
the CIE-1931 standard observer translated and compressed
into the NIR region (lines) and the best approximations ob-
tained from the spectral transmittance of the filters used (lines
with symbols).
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this model, the monochromatic images corresponding to
spectral bands that have longer wavelengths are asso-
ciated with the RNIR channel, and images corresponding
to shorter wavelengths are simultaneously displayed on
the GNIR and BNIR channels, thus giving the cyan color.
By means of this combination, samples with a high re-
flectance at long wavelengths appear reddish and
samples with high reflectance at short wavelengths are
represented as cyan. A sample with a constant reflec-
tance would appear gray. This method is usually used
when only two spectral bands are available. Because
we have more, we perform a combination of at least three
spectral bands in order to use more of the spectral in-
formation available in our multispectral system:
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NIR

NIR

=
= +
= +

Im_F 4,

0.5Im_F 2 0.5Im_F 3,

0.5Im_F 2 0.5Im_F 3.
(6)

All of the combinations described (methods which at-
tempt to imitate the human color vision) carry spectral
information on the samples analyzed. When the reflec-
tance spectra of the samples are fairly constant over
the wavelengths of the NIR region, which is common, a
high correlation of the different five spectral bands ap-
pears. In order to resolve this, we can simply use
decorrelation methods that facilitate the colorimetric
discrimination between objects. In this case, we first
propose using Principal Component Analysis (PCA).
Using this method, each pixel can be associated with a
vector of five components, which correspond to the gray
level of each spectral band. By applying PCA to the set
of vectors, i.e., the scene statistics, it is possible to es-
tablish a new coordinate system whose axes are in the
direction of the eigenvectors, that is, the main direc-
tions common to all the pixels of the images. In this
way, the mechanism can decorrelate the data. If a high
correlation between the different spectral bands exists,
many of the samples have a large contribution by the
first eigenvector on its components. Thus, we can asso-
ciate, for instance, the first principal component of the
images with a color palette (we have named this method
“PCA V1-Palette”). The corresponding coefficients are
normalized conveniently so they have positive values
and can be associated to the digital output levels. There-
fore, each pixel will have a specific RNIR, GNIR and BNIR

set of values associated with it. On the other hand, we

can choose the three principal component directions
(eigenvectors related to the three largest eigenvalues)
and associate them with the RNIR, GNIR and BNIR signals
(PCA V1-R, V2-G, V3-B, for example). With this kind of
association, it is possible to assign very different colors
to samples with similar reflectance spectra, that is,
highly correlated samples. Applying this kind of method,
we obtain chromatic discrimination between samples,
but the spectral information is lost. In order to over-
come this limitation and to keep some spectral infor-
mation intact, a transformation of this association can
be performed. This transformation (modified PCA
method), consists of simultaneously associating the first
principal component of the scene statistics with the RNIR,
GNIR and BNIR signals. Therefore, this component of the
pixels accounts for the brightness. The second and third
principal components constitute an orthogonal plane to
the brightness direction and can be considered a chro-
maticity plane. For example, considering the conven-
tional rectangular color representation, the second
principal vector can be associated with the red–green
direction and the third can be associated with the yel-
low–blue direction. Thus, if the contribution of the pixel
analyzed into the direction of the second principal vec-
tor is positive, it can be interpreted as red, and, if nega-
tive, as green. Equivalently, depending on the sign of
its component along the third principal direction, it can
be interpreted as yellow or blue. Figure 4 shows the color
space associated to this method. In this figure, only three
of the five NIR spectral bands are illustrated because
of obvious reasons of dimensionality.

Finally, another simple empirical method included in
the second group was studied. Using this method, an op-
timization process maximizing the color difference be-
tween samples was performed. Due to the great number
of free parameters and the associated resulting high com-
putational cost, we assume that the RNIR, GNIR and BNIR

signals must be linear combinations of the five mono-
chrome images and that the coefficients of the combina-
tions must take one of two possible values: 0.1 or 0.9.

Calibration of the Visualization Device
Once the color representation space used to transform
the information included in the NIR into visible infor-
mation is defined, the RNIR, GNIR and BNIR signals ob-
tained must be displayed on a visualization device; in
our case, a conventional CRT monitor. Depending on the
characteristics of the device used, the samples may ap-
pear to be pseudo-colored differently. In order to pre-
vent this, we can previously transform these signals
conveniently, taking into account the color calibration
of the specific display used. Thus, the final colors rep-
resented on the screen will not depend on the monitor
used.

The process used to transform the signals is summa-
rized in Fig. 5. First of all, the RNIR, GNIR and BNIR sig-
nals were transformed into the tristimulus values XD65,
YD65 and ZD65, taking into account the standard space
sRGB.17–19 The CIE sRGB space is defined using an av-
erage value for all conventional CRT monitors. The ref-
erence white used in this space is illuminant D65. On
the basis of this first transformation, we considered that
the RNIR, GNIR and BNIR signals corresponded to the sig-
nals that would be associated with the channels of the
standard monitor of the sRGB space. However, depend-
ing on the primaries of the monitor that are actually
used, the reference white may not be illuminant D65.
For this reason, a chromatic adaptation is needed,20–22

because it allows a color to be conveniently transformed

Figure 4. Representation of the color space associated to the
modified PCA method, with the corresponding brightness di-
rection and the cromaticity plane.
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so that it gives the same chromatic sensation under
illuminant D65 as it would under the new reference
white (XW, YW and ZW). With these new tristimulus val-
ues and the color calibration parameters of the monitor
used, it is possible to obtain the final digital values that
must be associated with the channels of the monitor used
(RMonitor, GMonitor and BMonitor). The method that we used to
perform the calibration was the standard GOG (Gamma,
Offset, Gain) method defined by the CIE.13 Using the
information of the primaries and the tone reproduction
curves of the monitor, which relate the relative lumi-
nance of the primaries to the normalized digital output
levels for each channel, the GOG model provides the
parameters of the color calibration.

In this study, we used a conventional CRT monitor
(Hansol) to perform the visualization. The contrast and
brightness of the monitor were adjusted in order to ob-
tain a maximum luminance similar to that of the stan-
dard monitor (105.4 cd/m2). The characteristics of the
primaries and the white can be seen in Fig. 6 and Table
I. The primaries of the monitor used and the standard
monitor sRGB cover a similar area of the chromatic dia-
gram, and therefore, for this specific case, the transfor-
mation of the signals is small. However, it might be
considerable in other cases. The parameters for the color
calibration of the monitor are shown in Table II.

Finally, we summarize the overall transformation pro-
cess of the signals as follows:
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Figure 5. Diagram showing the transformation of the RNIR,
GNIR and BNIR signals to RMonitor, GMonitor and BMonitor, in order to
obtain a color visualization that is independent of the monitor
used.

Figure 6. (a) Spectral emission of the primaries and white of
the monitor used and (b) chromaticity coordinates of the pri-
maries and white of the monitor used (black circles and solid
line), and the standard monitor sRGB (gray circles and dashed
line).

TABLE I. Chromaticity Coordinates and Luminance of the
Primaries and White of the Monitor Used

x y Lmax (cd/m2)

R 0.6246 0.3369 19.50
G 0.3016 0.6015 79.59
B 0.1499 0.0753 11.71
White 0.2884 0.3210 105.4

TABLE II. Parameters of Calibration (GOG) of the Monitor

gain offset γ

R 0.8088 0.1912 2.5170
G 0.9334 0.0666 2.0933
B 0.6938 0.3062 2.8093
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where k = R, G and B, gk = 0.95, ok = 0.05 and γk = 2.40
(parameters of calibration of the sRGB standard moni-
tor), and NDOkNIR are the original, normalized, digital
output levels, and XD65, YD65, ZD65  are in cd/m2.

Chromatic Adaptation
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where 80 and 105.4 cd/m2 are the maximum luminance
of the standard monitor (sRGB) and the monitor Hansol,
respectively. Madapt was calculated using the Bradford
chromatic adaptation transform MBFD, that is:
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Monitor Calibration
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Results
In order to test the method described above, we first
simulated five multispectral images corresponding to a
set of twenty-five textile samples with different spec-
tral reflectance in the NIR region (Fig. 7). The images
were simulated in order to attain a better control over
the process of coloration. A pseudo-white balance pro-
cess was needed in order to obtain equal responses
through all channels for a sample with constant spec-
tral reflectance. After that, the five images were com-
bined using the methods described above in order to
obtain the pseudo-colored image. This was transformed
according to the display unit. Finally, we compared the
different possible color representations and quantified
the results in terms of colorimetric discrimination us-
ing the following parameters:

Pseudo-Color Difference
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where DOkMonitor are the transformed digital output lev-
els in color channel k.

This parameter mainly provides information on the
lightness difference, as well as the chromatic difference.
This parameter is calculated using the digital outputs
of the channels of the monitor and it does not therefore
have a perfect correlation with the visual perception of
the image.

RG–RB–GB Contrast
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Figure 7. Visible image and five NIR monochromatic images of the twenty-five textile samples. Supplemental Material—Figure 7
can be found in color on the IS&T website (www.imaging.org) for a period of no less than two years from the date of publication.
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This parameter gives an idea of the nuances or de-
gree of coloration included in the images. The smaller
the parameter, the grayer the samples in the pseudo-
colored image. This parameter is also calculated using
the digital signals of the channels of the monitor.

CIELAB Color Difference

    

∆ ∆ ∆ ∆
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E L C H

L a b

= ( ) + ( ) + ( )[ ]
= ( ) + ( ) + ( )[ ]

* * *

* * *

/

/

2 2 2 1 2

2 2 2 1 2 (17)

As expected, this parameter is most closely correlated
to the visual judgments of the resulting pseudo-colored
images. In some of the analyses performed, other colo-
rimetric parameters such as luminous contrast (K) (Eq.
(18)), lightness difference (∆L*), chroma difference
(∆C*), and hue difference (∆H*) were also used.

    
K

L L
L L

S S

S S
=

−
+

1 2

1 2
. (18)

LS1, LS2 represent the lightness values of two different
samples.

The CIELAB color differences between samples were
measured by displaying the images on the monitor and
using a telespectracolorimeter (PhotoResearch PR-650).
The white of the Hansol monitor was used as the refer-
ence white in the corresponding calculations.

The pseudo-colored images obtained for the twenty-
five samples with the various methods proposed are
shown in Fig. 8. The pseudo-colored images obtained
using the first linear combination (Eq. (1)) and the RGB
CIE-1931 method are presented. As can be seen, they
provide very similar results. In general, very similar
pseudo-colored images are achieved by all the linear
combinations tested. Examples of color appearance mod-
els, specifically ATD models, include the Hurvich–
Jameson model, Guth et al., Ingling and Tsou. and
CIELAB, which were also evaluated. In the figure, the

CIELAB model is shown because it provides the best
results. The complementary colors model is also pre-
sented, as well as methods which use PCA analysis: PCA
V1-Palette, the specific case of PCA V1-R, V2-B, V3-G,
the modified PCA method and, finally, the empirical
method with coefficients 0.1 and 0.9.

The quantification of the colorimetric differences for
the examples presented, that is, the pseudo-color dif-
ference, RG-RB-GB contrast and CIELAB color differ-
ence, are summarized in Table III. Table IV shows the
detailed results of the luminous contrast, hue and
chroma differences. The best results in terms of visual
discrimination are achieved by methods based on PCA.
With these methods, the CIELAB color differences have
maximum values, basically using the method which as-
sociates the first principal vector with a color palette
(PCA V1-Palette). The greater contribution towards this
color difference is due to the considerable differences in
hue between samples that this class of methods achieves.
In general, with these methods, the RG-RB-GB contrasts
also have large values. This means that the pseudo-col-
ored samples belonging to the images do not have neu-
tral colors. For the PCA V1-Palette method, the
RG-RB-GB contrast cannot be calculated: the denomi-
nator is 0 in many cases because some of the colors of
the palette used have null digital values for different
channels. The largest pseudo-color difference is also
achieved with the PCA V1-Palette method. The results
obtained with the PCA V1-R V2-B V3-G method are not
as good as when using PCA V1-Palette. However, this
method is preferable if the aim is to discriminate be-
tween samples with very similar reflectance spectra,
because more information is used (principal vectors V2

Figure 8. Pseudo-colored images of the twenty-five textile
samples obtained applying the various methods. Supplemen-
tal Material—Figure 8 can be found in color on the IS&T website
(www.imaging.org) for a period of no less than two years from the
date of publication.

TABLE IV. Luminous Contrast (K), Chroma Difference (∆∆∆∆∆C*)
and Hue Difference (∆∆∆∆∆H*) (Mean and Standard Deviation of
the Twenty-Five Simulated Textile Samples)

METHOD K ∆C* ∆H*

Linear Combination 0.22 ± 0.20 14.85 ± 14.07 4.55 ± 4.87
RGB CIE-1931 0.25 ± 0.24 15.05 ± 14.99 4.57 ± 4.99
CIELAB model 0.15 ± 0.17 20.51 ± 20.55 8.85 ± 8.58
Complementary colors 0.24 ± 0.22 8.65 ± 7.18 4.38 ± 5.04
PCA V1-Palette 0.23 ± 0.17 20.29 ± 17.10 90.82 ± 59.92
PCA V1-R V2-B V3-G 0.14 ± 0.10 20.97 ± 25.12 38.95 ± 34.53
Modified PCA 0.18 ± 0.16 15.97 ± 17.74 25.98 ± 28.50
Empirical Method (0.1–0.9) 0.22 ± 0.19 19.56 ± 13.44 24.93 ± 29.54

TABLE III. Parameters of Quantification of the Color Differences:
Pseudo-Color Difference, RG-RB-GB Contrast and CIELAB
Color Difference (Mean and Standard Deviation of the Twenty-
Five Simulated Textile Samples)

Pseudo-color RG-RB-GB CIELAB color
METHOD difference (∆E) Contrast (CTOT) difference (∆E)

Linear Combination 111.38 ± 76.79 0.2499 ± 0.3787 30.76 ± 19.22
RGB CIE-1931 115.55 ± 79.69 0.2516 ± 0.3833 32.36 ± 20.31
CIELAB model 83.06 ± 57.15 0.3360 ± 0.5404 29.99 ± 21.68
Complementary colors 109.40 ± 78.71 0.1309 ± 0.1980 27.75 ± 18.66
PCA V1-Palette 213.43 ± 116.97 Ind.* 101.1 ± 59.98
PCA V1-R V2-B V3-G 104.94 ± 59.70 0.6526 ± 0.5553 50.83 ± 39.42
Modified PCA 104.33 ± 63.97 0.5110 ± 0.5340 39.97 ± 30.50
Empirical Method (0.1–0.9) 125.60 ± 89.02 0.5275 ± 0.2496 41.55 ± 29.76

*Ind.: Indeterminate. The parameter cannot be calculated because the
denominator is 0 in many cases (some colors of the palette used have
null digital values for different channels).
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and V3). The colorimetric parameters obtained using the
modified PCA method are not as good as for the rest of
the methods mentioned above. However, the samples
with fairly constant spectral reflectance preserve simi-
lar tones, meaning that some spectral information is
kept. With the empirical method, the results obtained
do not justify the long computation time needed.

The methods which attempt to imitate human color
vision do not have large CIELAB color differences and
RG-RB-GB contrasts, but they do carry spectral infor-
mation on the pseudo-colored samples. The correspond-
ing hue differences are small, the contribution to color
differences due to luminous contrast and chroma differ-
ences being greater. However, the chroma differences
achieved are generally smaller than those obtained us-
ing PCA-based methods. As shown in Fig. 8, these meth-
ods provide images with many samples colored with
neutral tones. This can be explained by the flat profile
of the reflectance spectra of these samples in the NIR
region (garnet and blue samples in the visible image).
Although the spectra of these samples is almost con-
stant, they present different reflectance values in the
NIR region. Therefore, they result in a different gray
level and can be differentiated, while they are indistin-
guishable in the visible region. The other samples of
the image, which generally appear reddish, have greater
spectral reflectances at longer wavelengths. Some of
these methods, such as linear combination and RGB
CIE-1931, have large values for the pseudo-color differ-
ence parameter. As previously stated, this parameter
essentially accounts for the lightness changes, as well
as the chromatic differences.

Figure 9 shows the spectral reflectance curves for
three samples. In Table V, the lightness, chroma and
hue values for each sample are shown. Using linear com-
bination, the chroma values for samples S2 and S3 are
small due to the neutral coloration, because of their flat
spectral profile. Sample S1, however, has a larger
chroma value, showing the higher spectral purity of its
reflectance. With the PCA V1-Palette method, larger

values of chroma result for the three samples, thus dis-
regarding the associated spectral information. Samples
S2 and S3 have similar pseudo-colors with the linear
method, because of the similarity of their reflectance
spectra (∆E = 0.92). Using the PCA V1-R V2-B V3-G
method, a considerable CIELAB color difference is
achieved (∆E = 28.04), while the PCA V1-Palette method
yields a smaller difference, since only the first princi-
pal component is used (∆E = 5.91). The PCA V1-R V2-B
V3-G method yields very different hue angles between
these two samples, due to the use of the second and third
principal components, so the color differences increase.

Once the simulations were performed, we used the
multispectral system4–6 developed to experimentally
capture various images corresponding to real samples,
and applied the methodologies that were shown to
achieve the best results. First of all, we analyzed some
of the real textile samples which had been simulated
beforehand, some of them with a fairly constant spec-
tral reflectance (Example 1) and others with increasing
spectral reflectance (Example 2). The results obtained
can be seen in Fig. 10. We also analyzed an image of a
landscape (Fig. 11) in order to show the utility of the
methods for any type of image. The CIELAB color dif-
ferences obtained between samples in all the experimen-
tal images are shown in Table VI. For the images of
textile samples, each of the four samples were tested.
For the landscape image, the zones analyzed are marked
on the corresponding figure. Experimentally, the tex-
ture, inhomogeneities etc. can affect the coloration of
the object. For this reason, some of the samples do not
appear pseudo-colored in a uniform way. As in the simu-
lations, the best color representations in terms of vi-
sual discrimination, that is, maximum CIELAB color
differences between samples, were achieved by meth-
ods based on PCA analysis, mainly with the PCA V1-
Palette method. The methods related to human color
vision provide spectral information of the samples in
the NIR region. Thus, the samples belonging to Ex-
amples 1 and 2 appear grayish and reddish, respectively,

Figure 9. Spectral reflectance curves for samples S1, S2
and S3.

TABLE V. Lightness, Chroma and Hue Angle Values for
Samples S1, S2, and S3.

METHOD SAMPLE L* C* h (º)

Linear Combination S1 50.48 49.70 81.85
S2 87.88 1.86 105.15
S3 88.12 0.96 104.32

PCA V1-Palette S1 90.29 72.58 151.78
S2 35.41 70.41 52.83
S3 34.87 65.71 34.18

PCA V1-R V2-B V3-G S1 38.42 110.20 309.00
S2 63.70 25.81 65.10
S3 74.09 38.76 106.93
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TABLE VI. CIELAB Color Differences ∆∆∆∆∆E (Mean and Standard
Deviation) of the Four Real Textile Samples (Examples 1 and
2) and the Four Marked Zones of the Landscape Image

METHOD Example 1 Example 2 Landscape

Linear Combination 11.65 ± 7.28 30.59 ± 14.78 19.27 ± 9.01
Complementary colors 12.61 ± 8.16 27.01 ± 14.60 16.65 ± 97
PCA V1-Palette 54.24 ± 34.81 69.98 ± 39.30 82.38 ± 49.12
PCA V1-R V2-G V3-B 22.26 ± 16.56 39.581 ± 22.83 33.09 ± 15.02

(Example 1 and Landscape)
V1-G V2-R V3-B (Example 2)
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Figure 10. Visible image, spectral reflectance curves, NIR multispectral images, and pseudo-colored images obtained using
various methods of four real textile samples (a) samples with a fairly constant spectral reflectance (Example 1) and (b) samples
with an increasing spectral reflectance (Example 2). Supplemental Material—Figure 10 can be found in color on the IS&T website
(www.imaging.org) for a period of no less than two years from the date of publication.

 (a)

 (b)

Figure 11. Visible image, NIR multispectral images, and pseudo-colored images of a landscape. Supplemental Material—Figure
11 can be found in color on the IS&T website (www.imaging.org) for a period of no less than two years from the date of publication.
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according to their spectral reflectance curves also shown
in the figures. On the other hand, it can be seen that, in
the landscape images, and using methods related to
human color vision, the sky appears bluish. This can be
explained by its spectral emission, which is decreasing
in the visible region but also preserves this tendency
along the NIR range.

To summarize, depending on whether we want to imi-
tate human color vision or to discriminate between
samples, two different methods are possible. Because
of the correlation of the spectral bands in the NIR re-
gion of many samples, due to the constant nature of their
spectral reflectance profiles, many pseudo-colored ob-
jects obtained using the first type of methods are neu-
tral. If decorrelation methods are used instead, it is
easier to discriminate between the samples. However,
with the first kind of method, spectral information of
reflectance of the samples is provided.

Conclusions
We have developed a color visualization system for mul-
tispectral images in the NIR region of the electromag-
netic spectrum (800–1000 nm). The pseudo-coloration
process of the images was divided into two stages: 1) defi-
nition of the color representation space, for which differ-
ent combinations of the NIR images were proposed in
order to obtain the signals RNIR, GNIR and BNIR, that allow
us to obtain a pseudo-colored image; and 2) calibration
of the visualization device, in which the last signals were
conveniently transformed in order to obtain similar chro-
matic sensations with any visualization device. For the
first stage, several pseudo-coloring methods were pro-
posed; some of these attempt to imitate human color vi-
sion and others were based on decorrelation methods
(PCA). For the second stage, a GOG (gamma, offset, gain)
model was used to calibrate a CRT monitor in which the
color images were displayed. Finally, we performed simu-
lations and experimental acquisitions, making use of a
multispectral system that we developed, of several
samples with different reflectance spectra in order to
analyze the methodologies proposed. The pseudo-colored
images were analyzed numerically, using several param-
eters such us contrast levels and color differences. As
expected, the parameters that achieved the best results
in terms of correlation with the visual judgments were
the CIELAB color differences. The methods based on PCA
analysis provided the best results regarding discrimina-
tion between the samples (with the greatest CIELAB color
differences). On the other hand, the methods related to
human color vision carry information on the spectral
reflectances of the samples, and this can be useful for
specific applications. The techniques presented would
allow users to distinguish between samples with the same
appearance in the visible region but different spectral
reflectance in the NIR region.    
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