
 

 1 

 
 

MULTIMODAL IMAGING SYSTEM BASED ON SOLID-STATE LIDAR FOR ADVANCED 
PERCEPTION APPLICATIONS 

PALAIS DES CONGRES, VERSAILLES, FRANCE | 01 – 03 FEBRUARY 2022 

Pablo GARCÍA-GÓMEZ (1), Noel RODRIGO (1), Jordi RIU (2), Josep R. CASAS (3), Santiago ROYO (1) 
 

(1) Centre de Desenvolupament de Sensors, Instrumentació i Sistemes, Universitat Politècnica de Catalunya 
(UPC-CD6), Rambla Sant Nebridi 10, 08222, Terrassa, Spain. 

(2) Beamagine S.L., Carrer de Bellesguard 16, 08755 Castellbisbal, Spain. 
(3) Grup de Processat d’Imatge, Departament TSC, Universitat Politècnica de Catalunya (UPC), Carrer de 

Jordi Girona 1-3, 08034 Barcelona, Spain. 
Correspondence: pablo.garcia.gomez@upc.edu 

 
KEYWORDS: sensor fusion, enhanced perception, 
solid-state LiDAR, autonomous navigation, robotics 
 
ABSTRACT: 

Perception of the environment is a crucial 
requirement for cutting-edge advanced 
applications. Light Detection And Ranging (LiDAR) 
systems are a clear example of this market-pull 
disruptive innovation. LiDAR has evolved towards 
imaging systems of great interest due to their 3D 
sensing capability with higher spatial resolution than 
radars.  
 
Nonetheless, these applications claim large 
amounts of complementary data from the 
environment, even redundant, for making reliable 
decisions about the most adequate response 
according to the environment’s perception. 
Consequently, multiple sensors of different natures, 
working principles and failure modes must be wisely 
combined. This is known as sensor fusion.  
 
Hence, we present a multimodal imaging system, 
consisting of a pulsed solid-state LiDAR combined 
with three other additional imaging sensors, that 
provides multimodal information with low parallax 
fusion error thanks to the accurate high-density 
measurements from the LiDAR system. 
 
Thus, multimodal information can feed perception 
algorithms for enhancing their performances as well 
as accurately combining their outputs. 
 
1. INTRODUCTION 

The development of both Artificial Intelligence (AI) 
and Computer Vision (CV) plus the wide variety of 
available sensors have bestowed artificial systems 
like vehicles and robots on advanced perception 
about the environment, mimicking human 
perception and pursuing their autonomy [1]. 
 
The larger the information about its environment, 
the more robust and reliable decisions an 
Autonomous Vehicle (AV) may make.  
 

In response, data fusion has the aim of increasing 
the amount of data through adequately and 
efficiently combining the information from different 
sensors. The variety of sensors must include 
different working principles and failure modes [2].  
 
Concerning imaging sensors, perception algorithms 
have evolved towards combining images (2D) and 
depth information (3D) for enhancing their 
performance [3-5]. Consequently, Light Detection 
And Ranging (LiDAR) systems have arisen great 
interest due to their precise depth information [6].  
 
LiDAR devices calculate the elapsed time between 
two events on light, known as Time of Flight (TOF), 
and directly relates to the distance to a target. 
Although based on the same principle as radars, 
using shorter wavelengths than radio ones provides 
LiDAR systems with higher spatial resolutions. 
Consequently, imaging LiDARs offer 3D 
representations of the environment known as Point 
Clouds which are sets of points given by 3D 
coordinates. 
 
Fig. 1 shows a Point Cloud of a scenario whose 
perception is enhanced using different colourmaps 
and finally data fusion. From left to right, firstly all 
points present the same arbitrary colour. Secondly, 
each point is coloured according to its depth value. 
Thirdly, the colour corresponds to the measured 
light intensity at the laser’s wavelength. Finally, the 
colour from a conventional colour camera is 
combined on the Point Cloud. Thanks to the last 
case, we can easily interpret the environment, 
which is the main aim of data fusion. 
 
In this paper, we are presenting and describing a 
multimodal fusion system. Moreover, we will 
compare its fusion accuracy to other state-of-the-art 
fusion systems like [7]. 
 
This paper is organized into different sections, 
starting with a theoretical background in Section 2. 
Then, we explain the materials and methods in 
Section 3 and the main results in Section 4. Finally, 
a discussion follows in Section 5. 
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Figure 1. Perception enhancement of a Point Cloud thanks to data fusion. From left to right, the colour assigned to the 

Point Cloud is based on an arbitrary colour, depth, laser’s intensity and a colour camera. 

2. THEORETICAL BACKGROUND 

Data fusion properly combines several sensors with 
different working principles for describing the whole 
environment from each particular view. Hence, each 
sensor’s information must be adequately managed 
to compose the global framework which is the 3D 
space. 
 
This data management is divided into two steps. 
Firstly, the sensor’s information must be translated 
into their particular view of the 3D space. This step 
is described by the Intrinsics of the sensor. 
Afterwards, the Extrinsics of the sensor, which 
describe its position and orientation from the 
environment, place the subset of the sensor within 
the global space. Consequently, we can build a 
more complex and complete vision of the 
environment. Notice that the analogue procedure 
enables estimating a sensor’s output.  
 
Let us first describe the Extrinsics of a sensor and 
later on the different Intrinsics present in the system. 
 
2.1.  Extrinsics of a sensor 

Algebraically, the previous data management in 3D 
coordinates is described using rigid transformations 
that are geometric transformations, isometries, of a 
Euclidean space that preserve the Euclidean 
distance between points. Moreover, proper rigid 
transformations not only keep distance but also the 
handedness (left- or right-hand system), size and 
shape. Generally, they are described as a rotation 
followed by a translation. For example, the special 
Euclidean group in the 3D Euclidean space denoted 
as 𝑆𝐸(3) describe rigid body displacements in 
kinematics. 
 
Let us consider a single sensor from a system of 𝑁 
sensors observing the environment 𝐸 which is the 
3D Euclidean space. Hence, the sensor perceives 
information from a subset 𝑆𝑛 defined by its Field-of-
View (FOV) and of equal dimensions of 𝐸 such that 

𝑆𝑛 ⊂ 𝐸, where the superscript 𝑛 = 1,… ,𝑁 
represents the particular sensor. Thus, the sensor 
is represented as the basis for the subspace and 
describes its particular coordinate system. 
 

From now on, we use the ISO convention describing 
scalars with lowercase roman letters 𝑎 and vectors 

with bold ones 𝒂, subset spaces with uppercase 
roman letters 𝐴 and matrices with bold ones 𝑨, and 
angular magnitudes with Greek letters. In addition, 
we use row vectors. 
 
Eq.1 𝑆𝑛 ≝ { 𝑠1̂

𝑛 , 𝑠2̂
𝑛 , 𝑠3̂

𝑛 } 
 
Where 𝑠𝑘̂

𝑛  is a unitary vector that represents the 

kth-axis. 
 
Consequently, a sensor is a 6 Degrees-of-Freedom 
(DOF) coordinate system, defined by its position or 
location (with coordinates x, y and z – 3 DOF) plus 
its orientation (with rotation angles for each axis – 3 

DOF). Hence, any 3D point 𝒑 in 𝐸 ( 𝒑𝐸 ≔ [𝑎, 𝑏, 𝑐]𝑬 ∈
𝐸) can be described in 𝑆𝑛 using the above-
mentioned rigid transformations as follows: 
 
Eq.2 𝒑𝑆𝑛

= 𝒑𝐸 · 𝑹𝐸𝑆𝑛 + 𝒕𝐸𝑆𝑛 = [𝑢, 𝑣, 𝑤]𝑆𝒏
∈ 𝑆𝑛 

 
From the above formula, 𝑹𝐸𝑆𝑛 and 𝒕𝐸𝑆𝑛 are the 
rotation matrix and the translation vector from 𝐸 to 

𝑆𝑛 respectively.  
 
On the one hand, each row of 𝑹𝐸𝑆𝑛 is each axis of 

𝐸 expressed in 𝑆𝑛 so this matrix defines the 

orientation of 𝐸 from 𝑆𝑛. This is the reason why they 
are also known as orientation matrices. 
 

Eq.3 𝑶𝐸|𝑆𝑛 ≡ 𝑹𝐸𝑆𝑛 =

[
 
 
 
 ( 𝑠1̂

𝐸 )
𝑺𝒏

( 𝑠2̂
𝐸 )

𝑺𝒏

( 𝑠3̂
𝐸 )

𝑺𝒏

]
 
 
 
 

 

 
On the other hand, and analogous to the 
orientation’s definition, the translation vector 𝒕𝐸𝑆𝑛 

defines the location of 𝐸 in 𝑆𝑛 because it relates 
both systems’ origins 𝒐𝐸 and 𝒐𝑆𝑛 in 𝑆𝑛. 
 

Eq.4 𝐥𝐨𝐜𝐸|𝑆𝑛 ≡ 𝒕𝐸𝑆𝑛 = 𝒐𝑆𝑛

𝐸 − 𝒐𝑆𝑛

𝑆𝑛 = 𝒐𝑆𝑛

𝐸 

 

Notice that 𝒐𝑆𝑛

𝑆𝑛 is the null vector because it is the 

origin of 𝑆𝑛 expressed in the same 𝑆𝑛. 
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The above Eq. 2 can be reduced to a simple matrix 
operation after extending 𝒑 to a 4-dimensional 
vector using homogeneous coordinates, yielding 
the definition of the matrix 𝑯𝐸𝑆𝑛. 
 

Eq.5 𝒑𝑆𝑛
= [ 𝒑𝐸 , 1] [

𝑶𝐸|𝑆𝑛

𝐥𝐨𝐜𝐸|𝑆𝑛
] ≔  [ 𝒑𝐸 , 1] · 𝑯𝐸𝑆𝑛 

 
This matrix is usually expanded and called the 

homogeneous matrix of the transformation 𝑯̂𝐸𝑆𝑛: 
 

Eq.6 𝑯̂𝐸𝑆𝑛 ≝ [𝑯𝐸𝑆𝑛

0
0
0
1

] = [
𝑶𝐸|𝑆𝑛

𝐥𝐨𝐜𝐸|𝑆𝑛

0
0
0
1

] 

 
Provided that rotation matrices are orthonormal, 

thus 𝑹𝑇𝑹 = 𝑹−1𝑹 = 𝑰, the inverse transformation 

𝑯̂𝑆𝑛𝐸 is easily obtained transposing the orientation 
matrix and applying Eq. 2 on Eq. 4: 
 

Eq.7 
𝑶𝑆𝑛|𝐸 = (𝑶𝐸|𝑆𝑛)

𝑻
 

𝐥𝐨𝐜𝑆𝑛|𝐸 = −𝐥𝐨𝐜𝐸|𝑆𝑛(𝑶𝐸|𝑆𝑛)
𝑻
 

 
To summarize, the Extrinsics of a sensor relate the 
location and orientation of the sensor with respect 
to the environment through its location vector 
𝐥𝐨𝐜𝑆𝑛|𝐸 and its orientation matrix 𝑶𝑆𝑛|𝐸. 

Nevertheless, these expressions and definitions are 
also valid for any pair of sensors, enabling the data 
transformation between them as well.  
 

Hence, let a pair of sensors 𝑆𝑛 and 𝑆𝑗 be a data 
fusion system observing a common environment. 
Then, Fig. 2 schematizes their data fusion 
procedure explained in the introduction of this 
section using the above definitions of the Extrinsics. 
 

 
Figure 2. Scheme of data fusion between two sensors. 

 
2.2.  Intrinsics of the sensors 

Once we have defined the Extrinsics that relate 
sensors with the environment they sense and 
between them, let us understand how they measure 
in order to define their Intrinsic parameters. 

Given that our data fusion system consists of a 
LiDAR for providing reliable 3D information of high 
spatial resolution combined with different cameras, 
we are going to first derive the Intrinsics for the 
LiDAR system and, secondly, for a general camera. 
 
2.2.1. LiDAR 

As previously commented during the introduction, 
imaging LiDARs are based on measuring the TOF 
for a number of points within their FOV, yielding 
Point Cloud as their output. Generally, any point in 

the LiDAR’s Point Cloud 𝒑𝐿  can be expressed as 

the combination of the depth measurement resolved 

from the TOF, 𝑡𝑇𝑂𝐹, and a direction in the space, 𝒔̂𝐿 . 

 

Eq.8 𝒑𝑘
𝐿 = [𝑥, 𝑦, 𝑧] =

𝑐

2
𝑡𝑇𝑂𝐹𝑘 · 𝒔̂𝑘

𝐿
𝑘
𝐿  

 
Where 𝑐 is the speed of light in air and the subscript 

𝑘 applies for the kth-point in the Point Cloud. 

Regarding that 𝑡𝑇𝑂𝐹 is a radial measurement, 
spherical coordinates are useful for describing the 

direction vector 𝒔̂𝐿 . 

 
This subdivision of the 3D measurement brings 
researchers to split imaging LiDARs into the 
receiving subsystem, responsible for measuring 

𝑡𝑇𝑂𝐹𝑘  for each point, and the imaging system that 

scans the FOV sectioning it in different directions 𝒔̂𝑘
𝐿  

and forms the Point Cloud [6]. 
 
Notice that the precision and accuracy of the points 
depend on properly determining both 
measurements. In this work, we are going to focus 
on the imaging subsystem which determines the 
spatial resolution of the system. 
 
Ideally, consecutive points must be evenly spaced 

meaning that directions 𝒔̂𝑘
𝐿  and 𝒔̂𝑘+1

𝐿  should present 
a constant spacing across the FOV of the system. 
Nonetheless, the spatial resolution may vary 
yielding distortion in the Point Cloud similar to the 
camera’s distortion [8,9] regardless of the imaging 
technique.  
 
Up to now, researchers have mainly used 
mechanical scanning LiDARs so the available 
models and calibrations can only describe them 
[10,11], lacking generality with respect to other 
imaging techniques such as solid-state ones. 
Moreover, the novelty of LiDARs compels many 
manufacturers to protect their Intellectual Property 
(IP) and do not offer raw measurements so 
calibrations usually correct the Point Cloud through 
post-processing.  
 
Consequently, we formulated and published an 
imaging model and a calibration procedure in [12] 
valid for Micro-Electro-Mechanical Systems 
(MEMS) mirror scanning techniques, which is the 
imaging technique of our LiDAR devices, but also 
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feasible for other imaging techniques capable of 
precisely and accurately predicting the variable 
angular resolution across the FOV from raw 
measurements. Hence, using this model yields 
accurate and reliable Point Clouds free of distortion. 
 
The model consists of using non-linear 2D maps as 
proposed in [13-15]. Provided that the MEMS scan 
offers an ordered arrangement of the 
measurements, the mapping functions 𝒇 relate each 

acquisition coordinate or position in a matrix (𝑢, 𝑣)𝑘  

with its corresponding scanning direction 𝒔̂𝑘
𝐿  defined 

by two spherical angles (𝜃𝐻 , 𝜃𝑉)𝑘 .  
 

Eq.9 𝒇: (𝑢, 𝑣)
𝜑⃗⃗ 
→ (𝜃𝐻 , 𝜃𝑉) 

 
The set of parameters 𝜑⃗  of the mapping function 
defines the Intrinsics of the LiDAR. Using spherical 
coordinates together with the defined scanning 
angles, Eq. 2 can be expressed as follows: 
 

Eq.10 𝒑𝑘
𝐿 =

𝑐

2
𝑡𝑇𝑂𝐹𝑘 [

sin( 𝜃𝑘 ) cos( 𝜙𝑘 )

sin( 𝜃𝑘 ) sin( 𝜙𝑘 )

cos( 𝜃𝑘 )

]

𝑇

 

 

Where the spherical angles 𝜃𝑘  and 𝜙𝑘  relate to the 

scanning angles 𝜃𝐻𝑘  and 𝜃𝑉𝑘  as follows: 
 

Eq.11 

𝜃𝑘 = arctan (√tan( 𝜃𝐻𝑘 )
2
+ tan( 𝜃𝑉𝑘 )

2
) 

𝜙𝑘 = arctan (
tan( 𝜃𝑉𝑘 )

tan( 𝜃𝐻𝑘 )
) 

 
Thanks to these expressions and the calibration 
procedure of [12], the variation of the angular 
resolution can be corrected yielding lateral errors in 
the Point Cloud of less than 5cm at a range of 100m, 
so errors below 15 millidegrees.  
 
2.2.2. Cameras 

Contrary to LiDAR systems, cameras have been 
studied since the beginnings of CV [16]. They 
project the 3D space onto a 2D image plane. This 
projection is described using the pinhole camera 
model [17] and generalized with the thin lens 
approximation. It must be noticed that CV’s 
convention places the image plane in front of the 
focal point, as shown in Fig. 3 contrarily to the 
optic’s convention. 
 
In such a way, a 3D point in the FOV of the camera 

𝒑𝐶  projects onto a pixel position on the sensor [𝑢, 𝑣] 
through a matrix 𝑲𝐶 known as the Intrinsic matrix. 
 

Eq.12 𝜆 [
𝑢
𝑣
1
]

𝑇

= 𝒑𝐶 · [

𝑓𝑥 0 0
𝑠 𝑓𝑦 0

𝑐𝑥 𝑐𝑦 1
] = 𝒑𝐶 · 𝑲𝑪 

 

 

 
Figure 3. Diagram of the pinhole camera model [5]. 

 
Where 𝜆 is an arbitrary constant that expresses the 
depth information loss due to the projection. Then, 
𝑲𝐶 contains the optical information of the camera. 

In particular, 𝑓𝑥 and 𝑓𝑦 are the focal length in pixel 

units in both horizontal and vertical directions of the 
sensor respectively, 𝑠 is the skew parameter related 
to the perpendicular condition of the two dimensions 
and 𝑐𝑥 and 𝑐𝑦 correspond to the projection of the 

optical axis on the image, known as the principal 
point. 
 
As one may notice, Eq. 12 is a linear operation that 
assumes no-distortion effects. Optical distortions 
are included afterwards as the combination of radial 
and tangential non-linear terms [8,18] that are 
defined with up to 5 parameters. 
 
These parameters represent the Intrinsics of a 
camera and are generally determined using the 
calibration method known after Bouguet [19], who 
implemented and published the theoretical 
developments of [20] and [21]. 
 
3. MATERIALS AND METHODS 

After presenting the two working models for the 
sensors in our data fusion system, let us now 
present the sensors used in this work. 
 
As previously mentioned, we base our data fusion 
system on a pulsed MEMS solid-state LiDAR (L). 
We used a pre-commercial unit courtesy of 
Beamagine SL with a high-density of points (>45k 
points) per frame within a 30ºx20º FOV, similar to 
one from a camera, achieving designed angular 
resolutions of 0.1ºx0.13º. Its operating range is up 
to 150 m at 10 frames per second (FPS). 
 
Complementarily, we used three different camera 
sensors for acquiring information from either 
different parts of the spectrum (visible and long-
wave infrared – LWIR) or properties of light 
(intensity or polarization state).  
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Thus, we use a conventional colour camera (R, 400 
– 700 nm), a linear polarization one (P, 320 – 1000 
nm) and an LWIR thermal one (T, 8 – 14 µm). 
 
Below, Tab. 1 and Fig. 4 present the multimodal 
data fusion system, specifying the different sensors 
combined and which type of information provides to 
the global system. Notice that the largest dimension 
of the system is 20 cm (a hand span). 
 

Table 1. List of sensors in the multimodal fusion 
system. 

Sensor 
FOV (º) and 
Size (pix) 

Measure 

L L3CAM 
30º x 20º 
300 x 150 

3D (1064 nm) 

R 
PHX050S-

CC 
30.9º x 23.2º 
1224 x 1024 

Colour 

P 
PHX050S-

PC 
30.9º x 23.2º 
1224 x 1024 

Linear 
Polarization 

T 
OPTRIS 
Xi 400 

29º x 22º 
382 x 288 

Temperature 

 

 
Figure 4. Multimodal fusion system based on LiDAR 

courtesy of Beamagine SL. 
 
Notice that all sensors present similar FOVs of 
around 30ºx20º for sharing as much as possible the 
information from a common FOV. Moreover, their 
apertures, thus their physical locations, are situated 
close to each other, which helps reduce the 
dimensions of the enclosure and the parallax error, 
since occlusions are produced by the same source 
objects. 
 
Following [7], we decide to connect all sensors 
between them according to the Fully Connected 
Pose Estimation (FCPE) because this configuration 
adds the loop-closure constraint. However, we 
always consider the LiDAR as the principal sensor 
for improving the data fusion between any pair of 
sensors because it provides reliable and precise 3D 
geometry information: accurate depth information 
and lateral measurements thanks to the above-
discussed Intrinsics model. 
 
We correlated the sensors of the system, thus 
calibrated their Extrinsics, using [18] with a 
multimodal planar checkerboard pattern and 14 
captures from different locations and orientations. 

4. RESULTS 

In this section, we are presenting some multimodal 
fusion examples obtained with the presented data 
fusion system.  
 
As briefly discussed in the previous section, the 
parallax error of the data fusion, defined as the 
mismatch between known 3D data points after 
applying Eq. 2 between pairs of sensors, is 
effectively improved compared to the literature 
thanks to the reduced dimensions of the system and 
the precise and accurate 3D information provided 
by the LiDAR sensor. 
 
Tab. 2 below presents the parallax error in cm for all 
possible pairs of sensors in the multimodal data 
fusion system after calibrating their Extrinsics. The 
parallax error is calculated as the average error for 
all the known 3D points back-projected onto the 
calibration’s pattern plane (which is precisely and 
accurately provided by the LiDAR system) for all the 
14 calibration captures. Hence, we are directly 
measuring the lateral error of the fusion in the 3D 
space. Additionally, we compute the average 
parallax error of the system considering all the 
sensor pairs. 
 

Table 2. Parallax error for all possible pairs of sensors 
in the multimodal data fusion system in mm. 

L-R L-P L-T R-P R-T P-T 

3.6 4.3 5.8 1.5 4.5 4.8 

Average error 4.1 

 
For instance, comparing our results with the ones 
reported in [7], we achieve an average parallax error 
of 4.1 mm with only 14 captures, which is one order 
of magnitude below the cm range reported in the 
literature. We must emphasize that this is mainly 
thanks to the precise and accurate 3D information 
that LiDAR provides to the system, that can be used 
for reliably estimating the pose of the calibration 
target and, as a consequence, the back-projection 
of cameras onto it. 
 
Let us now present some fused outputs, Point 
Clouds and images, from our proposed multimodal 
data fusion system.  
 
4.1.  Colour fusion 

The following examples of data fusion between the 
LiDAR and the colour camera are coloured Point 
Clouds from urban scenarios ranging from few 
tenths of meters up to hundred meters. 
 
Thanks to the fused colour information, Point 
Clouds are more interpretable, improving human 
perception for instance. This can be easily observed 
in Fig. 5, where the FOV is divided into colour (left) 
and intensity at the LiDAR’s laser wavelength 
(right).  
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Figure 5. Fused Point Cloud up to 30 m range where 

the left-hand side contains colour information from the 
colour camera and the right-hand side, the intensity at 

the LiDAR’s laser wavelength (1064 nm). 
 
Clearly, colour information helps to understand the 
car park scenario and even assists in identifying the 
different cars per their colour. 
 
The following Fig. 6 and Fig. 7 demonstrate the low 
parallax fusion error because it can be observed the 
accuracy of the fusion up to a hundred meters and 
with multiple objects within the FOV. 
 

 
Figure 6. Fused Point Cloud with colour information 

up to 40 m range and its corresponding image. 
 

 
Figure 7. Fused Point Cloud with colour information 

up to 120 m range and its corresponding image. 
 
4.2.  Polarimetric fusion 

Secondly, we present some Point Clouds fused with 
the polarimetric information which does not 
measure light’s intensity but its polarization state, 
which is the vector property of light. The polarimetric 
images here presented show the Degree of Linear 
Polarization (DoLP) that indicates how much 
linearly polarized is the incoming light from objects. 
Hence, DoLP images differentiate between those 
objects that keep or polarize light into linear 
polarization states (metals with flat surfaces) and 
those that depolarize (diffusive rough objects). 

 
Figure 8. Fused Point Cloud with polarimetric 

information of an urban scene in rainy conditions. 
 

 
Figure 9. Fused Point Cloud with polarimetric 

information of a harbour scene. 
 
For instance, Fig. 8 represents a Point Cloud from 
an urban scene in rainy conditions and Fig. 9, one 
from a maritime scene inside a harbour. Thanks to 
Brewster’s angle (angle of incidence at which 
incident unpolarized light is perfectly polarized after 
reflecting from a surface), both wet painted 
pedestrian crossings and seawater polarize light 
into a linear polarization state.  
 
Consequently, they present reddish colours in the 
polarimetric image representing high DoLP values 
whereas the pavement and salient objects from the 
sea like breakwater’s rocks depolarize light. Thus, 
DoLP offers additional contrast that can be used for 
improving perception in maritime and under adverse 
weather conditions. 
 
Not only that, we must consider a key advantage of 
using LiDAR devices in this kind of scenarios. Since 
colour and polarimetric cameras are passive 
sensors, they need illuminators or ambient light for 
acquiring images. However, LiDAR performs active 
measurements so, it performs better with no 
background illumination in fact. Hence, under poor 
illumination conditions, both colour and polarimetric 
cameras might improperly work whereas LiDAR will 
still offer reliable 3D information of the environment. 
This enhances the importance of having multiple 
sensors of different natures for avoiding unique 
common failure modes. 
 
4.3.  Thermal fusion 

Lastly, we present some results of combining the 
LWIR thermal camera with the LiDAR and the other 
sensors.  
 
Both Fig. 10 and Fig. 11 present Point Clouds from 
both indoor and outdoor scenes, demonstrating the 
accuracy of the fusion for all sensors. 
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Figure 10. Multimodal fusion between a LiDAR and different cameras of an outdoor scene. (a) Original Point Cloud 

coloured with depth. (b) Colour and (c) thermal image with their corresponding fused Point Clouds.  
 

 
Figure 11. Multimodal fusion Point Clouds of an indoor scene with a person. The displayed colour-maps are (a) depth, 

(b) intensity at the LiDAR’s laser wavelength, (c) colour, (d) mono-polarimetric and (e) temperature.  
 
 
Including thermal cameras in our multimodal data 
fusion system enables us to distinguish objects from 
the environment depending on their temperature. 
Moreover, notice that thermal cameras, even 
though being passive sensors, offer more 
robustness to background illumination since 
temperature changes are slow and LWIR 
wavelengths radiate from hot objects such as 
people. Consequently, LWIR cameras can properly 
work under adverse weather conditions and even at 
night like LiDARs, as we previously discussed. 
 
Moreover, thanks to the complementarity of the 
information, we can fuse multiple images in a single 
Point Cloud and even directly register (fuse 2D 
images) two images based on the 3D information 
provided by the LiDAR as Fig. 12 presents.  
 

 
Figure 12. Fused Point Cloud with colour and thermal 

information and the corresponding colour image 
registered with the thermal image for detecting hot 

objects like a pedestrian and a tea cup. 
 
Image registration based on the 3D information from 
the LiDAR is useful for reducing perception’s 
computational cost since 2D processing in CV is 
more robust and efficient than 3D processing 
currently. This suggests we can combine 2D 
perceptions from an image onto another one. 
Moreover, this also permits registering images from 
unshared FOVs for creating panoramic views with 
high accuracy as long as the LiDAR information is 
used as a nexus. 
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5. DISCUSSION AND CONCLUSIONS 

Our findings suggest that combining data from 
different sensors, either 2D or 3D, based on the 
depth information from a high-density LiDAR 
system improves the accuracy of the data fusion.  
 
We find that having a high-density Point Cloud 
together with a reduced mechanical embodiment 
yields shorter parallax fusion errors than the 
reported ones in the existing literature. Moreover, 
this work also suggests that multimodal fusion 
devices enhance the perception of the environment 
by means of providing complementary data from 
different modes, either prior to processing or at later 
stages, that avoid unique failure modes.  
 
The main limitation of this work is the lack of a well-
established corpus about 3D perception techniques, 
which is currently not as mature as the 2D one. 
Consequently, 3D data is just used for properly 
doing data fusion although future developments in 
the field of 3D perception might provide more 
robustness and features extraction to the global 
perception. This is a current challenge in Deep 
Learning. 
 
To conclude, we have presented a multimodal 
fusion system with 3D information combined with 
colour, polarimetric, Near-Infrared and thermal 
LWIR information. Furthermore, this work has 
demonstrated that the obtained accuracy of the data 
fusion is greater than most of the reported in the 
literature nowadays thanks to the high-density Point 
Clouds and the reduced enclosure of the system. 
 
Additionally, we have presented several examples 
of multimodal data fusion of different imaging 
modes with unshared failure modes together with 
some potential applications like AV and security. 
Moreover, we have demonstrated that the LiDAR 
3D information is essential for combining 3D+2D 
and even 2D+2D data with accuracy and 
robustness. 
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