

Centre for Sensors, Instruments and Systems Development UNIVERSITAT POLITECNICA DE CATALUNYA

Shaping light to your needs

LiDAR de estado sólido multimodal para aplicaciones de percepción avanzada Multimodal solid-state LiDAR for advanced perception applications

AUTORES:

Pablo GARCÍA-GÓMEZ¹*, Noel RODRIGO¹, Jordi RIU², Josep R. CASAS³, Santiago ROYO¹.

¹ Centre de Desenvolupament de Sensors, Instrumentació i Sistemes, Universitat Politècnica de Catalunya (UPC-CD6), Rambla Sant Nebridi 10, E08222, Terrassa, Spain. ² Beamagine S.L., Carrer de Bellesguard 16, 08755 Castellbisbal, Spain

³ Grup de Processat d'Imatge, Departament TSC, Universitat Politècnica de Catalunya (UPC), Carrer de Jordi Girona 1-3, 08034 Barcelona, Spain.

SISTEMA CONSTRUIDO

INTRODUCCIÓN

El auge del vehículo autónomo y la necesidad de percibir el entorno de una manera fiable han provocado un gran desarrollo en sensores y sistemas [1]. La combinación o fusión de sensores con distintos principios de funcionamiento y modos de fallo es la respuesta a este interesante desafío [2]. Su objetivo es combinar la mayor información posible del entorno, incluso redundante, para interpretar mejor el entorno y tomar decisiones con mayor fiabilidad [3]. En este marco, la transformación actual de los sensores LiDAR es el claro ejemplo de este intenso market-pull [4]. Gracias a ellos, se obtiene información geométrica 3D del entorno con gran resolución espacial.

INTERPRETABILIDAD

Fig. 1: Mejora de la percepción de una escena gracias a la fusión de sensores. En este caso, se muestra una nube de puntos de un LiDAR fusionado con el color de una cámara convencional.

PRINCIPIO DE FUNCIONAMIENTO

Para combinar la información de cada sensor, debemos entender como funciona cada uno individualmente (Intrínsecos) y conocer sus posiciones y orientaciones relativas (Extrínsecos).

Extrínsecos

LiDAR - Cámara (1)

Sistema de **fusión multimodal** basado en LiDAR que contiene los siguientes sensores:

	Sensor	Medida	Rango	Tamaño (ancho x alto)		
LiDAR(L)	L3CAM	Geometría 3D	1064 nm	300 x 150		
RGB (R)	PHX050S-CC	Color	Visible	1224 x 1024		
POL (P)	PHX050S-PC	Polarización lineal	Visible	1224 x 1024		
LWIR (T)	OPTRIS Xi 400	Temperatura	LWIR (7-14µm)	382 x 288		

Tabla 1: Listado de los sensores del sistema de fusión.

Ventajas:

- Nubes de puntos de alta densidad espacial (45 mil puntos por captura a 10 *fps*)
- Sistema activo (LiDAR) y robusto para nula iluminación externa (LWIR)
- Campos de visión parecidos y comunes
- Ensamblaje reducido y compacto

Conlleva a un error de paralaje bajo para la fusión

	Pareja		L–R	L–P	L-T	R–P	R–T	P–T
	Erro	r [cm]	3,0	3,6	6,4	0,9	3,9	3,7
-								

Fig. 5: Sistema de fusión LiDAR multimodal propiedad de Beamagine

Tabla 2: Error de paralaje en la fusión en cm para cada pareja de sensore

3D+RGB

- ✓ Mayor interpretabilidad de la escena gracias al color ✓ Detección de objetos
- pequeños gracias al LiDAR
- ✓ Color da información adicional

(a) (C) (b) Fig. 6: Fusión en color. (a) Color e intensidad a 1064 nm. (b) Color a 30 m. (c) Color a 120 m.

✓ Contraste de objetos mejorado ✓ Fácil detección de objetos salientes en entornos marítimos ✓ Complementariedad para condiciones adversas

Fig. 8: Fusión en 3D, color y térmica para

detección de personas y objetos calientes.

3D+RGB+LWIR

3D+POL

Fig. 7: Fusión polarimétrica. (a) Un espigón portuario para detección sobre agua. (b) Conducción urbana sobre pavimento mojado.

- ✓ Fácil detección de objetos con contraste térmico
- ✓ Registro entre imágenes en color y térmicas preciso gracias al LiDAR
- ✓ Funcionamiento nocturno y bajo condiciones
- adversas robusto gracias a la LWIR

BIBLIOGRAFÍA

[1] Zhangjing WANG, Yu WU, Qingqing UN, "Multi-Sensor Fusion in Automated Driving: A Survey", IEEE Access, 8, 2847-2868, 2019.

CONCLUSIONES

Se ha presentado un sistema de fusión multimodal basado en 3D que contiene información visible, polarimétrica, NIR (1064 nm) y LWIR (térmica) que se puede combinar de manera precisa y exacta entre cualquier pareja de sensores.

[2] De Jong YEONG, Gustavo VELASCO-HERNANDEZ, John BARRY, Joseph WALSH, "Sensor and Sensor Fusion Technology in Autonomous Vehicles: A Review", Sensors, 21, 6, 2140, 2021.

[3] Pablo GARCÍA-GÓMEZ, Jordi RIU, Santiago ROYO, "Lidar and Data Fusion Increase AI Performance", Photonics.com, https://www.photonics.com/Articles/Lidar_and_Data_Fusion_Increase_AI_Performance/a66490. (2021)

[4] Santiago ROYO, Maria BALLESTA-GARCIA, "An Overview of Lidar Imaging Systems for Autonomous Vehicles", Applied Sciences, 9, 19, 4093, 2019.

[5] Pablo GARCÍA-GÓMEZ, Santiago ROYO, Noel RODRIGO, Josep R. CASAS, "Geometric Model and Calibration Method for a Solid-State LiDAR", Sensors, 20, 10, 2898, 2020.

Este sistema presenta un error de paralaje reducido, del orden de la incertidumbre de medida, gracias al método y a su ensamblaje compacto. Además, las oclusiones entre sensores también se ven reducidas al situarse tan cerca.

Los modos complementarios de imagen junto con la nube de puntos 3D se pueden fusionar a priori (early fusion) o a posteriori (late fusion) para realzar la detección, el reconocimiento y la identificación de los objetos del entorno.

Las virtudes y los modos de fallo de los sensores del sistema lo hacen robusto bajo condiciones de poca o nula iluminación y condiciones adversas como la lluvia, la niebla o el humo.

Agradecimientos: Este trabajo ha sido realizado con el soporte del Ministerio de Ciencia, Innovación y Universidades (MICINN) del Gobierno de España con la beca con núm. DI-17-09181, y el proyecto FIS2017-89850-R.

www.cd6.upc.edu +34937398901

