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a b s t r a c t

The current study aims at analysing the suitability of the double-pass technique in measuring the accom-
modative response. A custom-built setup which allowed simultaneous double-pass and Hartmann-Shack
measurements was used. Several metrics to assess the accommodative response were tested and com-
pared. In order to validate double-pass based measurements, the accommodative response was measured
in 10 young adults under monocular viewing conditions with an open field fixation test. Accommodation
was stimulated with the push up method in the 0–5 diopters (D) range with a 1-D step. We found no sig-
nificant differences among accommodative response measurements obtained with the several metrics
compared in the double-pass and the Hartmann-Shack technique. In addition, differences between the
double-pass and Hartmann-Shack techniques were not statistically significant. However, we obtained
slightly higher values in the measured accommodative response with the double-pass system than those
usually reported by other authors. The double-pass technique takes into account all factors influencing
retinal image quality. Consequently, we consider this technique as a potential powerful candidate for
the analysis of accommodation.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Accommodation, defined as the dioptric adjustment of the crys-
talline lens of the eye (Keeney, Hagman, & Fratello, 1995), is the
mechanism that allows people to see clearly at different distances.
Measurement of accommodation is crucial for several reasons;
presbyopia, the progressive loss of amplitude of accommodation
(Atchison, 1995), is a physiological process affecting all the popu-
lation; some diseases, such as accommodative insufficiency, affect
the accommodative system (Cacho et al., 2002); in other disorders,
such as convergence insufficiency, accommodation can be a
diagnostic criterion (Arnoldi & Reynolds, 2007). It has been also
suggested that the retinal blur due to accommodative error might
be a factor influencing myopia development (Gwiazda et al., 1995).
Moreover, there has been an increasing interest lately on
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techniques that restore accommodative ability in people with pres-
byopia (Glasser, 2006).

Accommodation is usually measured with simple subjective
techniques based on increasing the accommodative demand of a
fixation test until it begins to blur (Rabbetts, 2007). These tech-
niques have generally provided an overestimated measured
accommodation in comparison with objective techniques (Wold
et al., 2003) due to the depth of focus. The depth of focus that peo-
ple experience may be influenced by many factors, namely pupil
size, magnification, character size and instructions given (Atchison,
Campbell, & McCabe, 1994; Atchison, Charman, & Woods, 1997;
Rosenfield & Cohen, 1995; Wang & Ciuffreda, 2006).

Of all objective techniques used to measure accommodation,
dynamic retinoscopy (Campbell, Benjamin, & Howland, 1998) is
the most widely used in daily clinical practice. However, its inter-
pretation depends on the point of view of the examiner and it is
difficult to carry out.

Autorefractors have also been used to measure accommodation
and higher accommodative response measurements are often
found when compared with dynamic retinoscopy (Rosenfield
et al., 1996). Specifically, the Canon Autoref R-1 autorefractor
(McBrien & Millodot, 1985), with an open field allowing a more
natural stimulation and accurate response due to the proximity
cue (Rosenfield & Gilmartin, 1990), has been used in several stud-
ies (Abbott, Schmid, & Strang, 1998; Heron, Charman, & Gray,
1999; Kalsi, Heron, & Charman, 2001; McBrien & Millodot, 1986).
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However, some authors have pointed out that this autorefractor is
affected by spherical aberration (Collins, 2001), which is particu-
larly important since spherical aberration changes during accom-
modation (Li et al., 2011). The Canon Autoref R-1 autorefractor is
no longer available, and some other alternatives which also make
use of an open field configuration are currently being used to
assess accommodative response (Davies et al., 2003; Mallen
et al., 2001; Sheppard & Davies, 2010; Win-Hall & Glasser, 2008;
Wolffsohn et al., 2006). Furthermore, Seidemann and co-workers
highlighted the great variability of results when measuring lag of
accommodation using autorefractors (Seidemann & Schaeffel,
2003), and their measurements using photorefraction were in the
lower range of those previously published.

Wavefront sensors have also been used for assessing accommo-
dation by means of the defocus measured from aberrations (Win-
Hall & Glasser, 2008) or the retinal image quality calculated from
the wavefront (Tarrant, Roorda, & Wildsoet, 2010). The aberromet-
ric measurements have shown that the spherical aberration could
be responsible for a false lag of accommodation, since a certain
amount of defocus could be necessary to enhance retinal image
quality (Buehren & Collins, 2006; Plainis, Ginis, & Pallikaris, 2005).

Finally, the double-pass technique, based on recording images
of a point-source object after reflection on the retina and a double
pass through the ocular media (Santamaría, Artal, & Bescos, 1987),
has been widely used in daily clinical practice to assess retinal
image quality in patients with uveitis (Nanavaty et al., 2011) and
keratitis (Jiménez et al., 2009), patients having refractive surgery
such as LASIK (Saad, Saab, & Gatinel, 2010; Vilaseca et al., 2009,
2010) and PRK (Ondategui et al., 2011), and patients with intraoc-
ular lenses (IOLs) (Vilaseca et al., 2009). It has been also applied to
the study of accommodation (López-Gil, Iglesias, & Artal, 1998);
nevertheless, this study focused mainly on the comparison of the
retinal image quality of the accommodated and unaccommodated
eye rather than on the assessment of the accommodative response.

The main goal of this study is to measure the accommodative
response with the double-pass technique comparing the results
with those obtained by means of the Hartmann-Shack technique.
To our knowledge this has not been done to date. This technique
takes into account every factor influencing retinal image quality
(Díaz-Doutón et al., 2006). Its use in accommodative response
measurement might contribute to the analysis of accommodation,
providing a novel assessment method and a deeper insight into
this visual property. With this aim, the accommodative response
was measured by means of a device consisting simultaneously of
a double-pass and a Hartmann-Shack system. Firstly, we analyzed
independently for each technique if the quality metrics used for
assessing the accommodative response had some influence on
the results achieved; secondly, we compared the two datasets ob-
tained to check if the results provided by the double-pass system
were in agreement with the results of the Hartmann-Shack sensor.
Finally, we show the whole range of accommodative response
measurements assessed with the double-pass images to prove
the validity of this technique as a means of assessing the accom-
modative response of the eye.
2. Materials and methods

2.1. Subjects

This prospective study was conducted on healthy young adults
recruited from the staff and students of the Centre for Sensors,
Instruments and Systems Development (CD6) of the Universitat
Politècnica de Catalunya (UPC). All subjects gave their written in-
formed consent after receiving a written and verbal explanation
of the nature and the aims of the study. The research followed
the tenets of the Declaration of Helsinki and was approved by
the Ethics Committee.

The criteria for inclusion were as follows: best spectacle-cor-
rected visual acuity of 20/20 or better, and no history of any ocular
condition, surgery and/or pharmacological treatment. Further-
more, only subjects with a spherical refractive error from �3.00
to +3.00 D, a cylinder below 1.00 D, and a pupil diameter of
4 mm or more, as this was the value used in the measurements
performed with the double-pass and Hartmann-Shack systems,
were included in the study.

Ten subjects, seven male and three female, were eventually en-
rolled in the study. Measurements were only carried out in one
eye: due to the configuration setup, the left eye was chosen in all
cases. The mean age (±standard deviation [SD]) of the population
was 27.90 ± 2.33 years (range: 23–31 years). The mean decimal
uncorrected visual acuity was 0.89 ± 0.48 (range: 0.05–1.20), and
the mean best spectacle-corrected visual acuity was 1.16 ± 0.08
(range: 1.00–1.20). The mean spherical refractive error was
�0.50 ± 1.45 diopters (D) (range: +0.75 to �3.00 D), and the mean
cylindrical refraction was �0.30 ± 0.20 D (range: 0.00 to �0.50 D).

2.2. Instrumentation

Accommodative response measurements were performed using
an experimental setup developed in our laboratory combining the
double-pass (Santamaría, Artal, & Bescos, 1987) and Hartmann-
Shack (Liang et al., 1994; Prieto et al., 2000) techniques, as shown
in Fig. 1.

In the first pass, a point source is projected on the retina of the
subject. An infrared laser diode (LD, k = 780 nm) coupled to an
optical fiber is collimated and passes through a 2 mm diameter
diaphragm, which acts as the entrance pupil (EP) of the system
and is conjugated to the subject’s pupil plane. After retinal reflec-
tion and a double pass through the ocular media, double-pass
and Hartmann-Shack images are recorded with digital CCD
(charge-coupled device) cameras (CCD DP and CCD HS). The second
pass is divided in two paths by means of two beam splitters (BS1,
BS2), which allow the simultaneous acquisition of double-pass and
Hartmann-Shack images. In the case of the double-pass path, a
4-mm diameter diaphragm conjugated to the subject’s pupil plane
acts as the exit pupil of the system (ExP). The use of different
entrance and exit pupils is known as asymmetric double-pass con-
figuration (Artal, Iglesias, et al., 1995) and allows odd aberrations
to be measured (Artal, Marcos, et al., 1995). In the case of the Hart-
mann-Shack path, a 0.5� magnification is achieved by means of a
telescope (L4, L5) and an array of microlenses (AMs) conjugated
with the pupil of the eye and with the CCD sensor at its focal plane
is used. Thus, light coming from the subject’s retina forms a mosaic
of spots, each of them corresponding to a microlens. An unaberrat-
ed wavefront would yield a regular mosaic of spots on the CCD.
When the wavefront is aberrated, the spot distribution on the
CCD is irregular. The displacement of each spot is proportional to
the derivative of the wavefront over each microlens area. From
the images of the spots, the wavefront aberration can be computed
and expressed as a Zernike polynomial expansion. In our system,
each microlens had an effective aperture size of 0.2 mm at the pu-
pil plane and a focal length of 6.3 mm.

A Badal system consisting of two 100 mm focal length lenses
(L2, L3) and two mirrors (M2, M3) is used to change the vergence
of the laser beam in both first and second passes. Moreover, a
fixation test (FT) with a black and white Maltese cross presented
on a monitor screen under low light illumination conditions, which
is often used in accommodation measurements (Bharadwaj &
Schor, 2005; Gambra et al., 2009; Mordi & Ciuffreda, 1998), is
shown to the subject through open field. The FT size was 135 �
135 mm for far distance and 35 � 35 mm for near accommodative



Fig. 1. Diagram of the setup used for the double-pass and Hartmann-Shack measurements. LD: Laser diode; L1, L2, L3, L4, L5: lenses; M1, M2, M3, M4: mirrors, BS1, BS2:
beam splitters; DF: dichroic filter; HM: hot mirror; EP: entrance pupil; ExP: exit pupil; P1, P2: polarizers; FT: fixation test; AM: array of microlenses; CCD-DP, CCD-HS, CCD-
Pupil: CCD cameras used for the double-pass and Hartmann-Shack measurements and pupil monitoring, respectively.
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stimulation. The luminance of the FT was of 20 cd/m2. A hot mirror
(HM) that reflects infrared and transmits visible light is the only
optical element placed in front of the subject, thus simulating real
visual conditions.

A third CCD camera (CCD Pupil) is used for pupil monitoring and
centring. The subject’s eye is illuminated with a set of light-emit-
ting diodes which emit at 1050 nm. A dichroic filter (DF) is used
to separate light coming from the retina (k = 780 nm) from that
coming from the pupil plane (k = 1050 nm).

The system includes crossed polarizers (P1, P2) to remove the
corneal reflection from the Hartmann-Shack images acquired. Light
arriving at the eye surface is linearly polarized. Afterwards, light
reflected on the cornea is kept polarized while that coming into
the eye suffers a certain amount of depolarization (van Blokland,
1985). Consequently, corneal reflection is rejected by means of
P2, while light coming from the retina forms the Hartmann-Shack
image. It has been already shown (Marcos et al., 2002) that polar-
ization does not affect aberration measurements when using the
Hartmann-Shack technique. In the case of the double-pass tech-
nique, the image quality is only slightly affected if polarized light
is used in the first path but not in the second one (Bueno & Artal,
1999, 2001).

The system was calibrated calculating the difference between
controlled and measured defocus and astigmatism. When measur-
ing defocus the mean error in the double-pass system was of
0.01 ± 0.06 D, meanwhile it was of �0.02 ± 0.02 D in the Hart-
mann-Shack system. In the case of astigmatism, the mean error
calculated in the Hartmann-Shack system was of 0.04 ± 0.02 D. It
must be taken into account that the double-pass system does not
assess the astigmatism.

2.3. Measurement procedures

All subjects underwent an optometric examination performed
by the same qualified examiner to analyse their left eye. Refractive
state was measured by means of the Grand Seiko Auto Ref/Kera-
tometer WAM-5500 (Sheppard & Davies, 2010), streak retinoscopy
and subjective refraction. Uncorrected visual acuity, stenopeic
visual acuity, and best-spectacle-corrected visual acuity were also
evaluated.
Subjects were placed in front of the setup with their head on a
chinrest, wearing their subjective refraction on the left eye and
with the right eye occluded. They were instructed to fix and try
to see clearly on the fixation test. Accommodation was stimulated
by means of the push up method in the range from 0 to 5 D with a
1-D step.

For every accommodative stimulation step, i.e. for 0, 1, 2, 3, 4
and 5 D, the Badal system was moved looking for the best dou-
ble-pass image. This was determined subjectively by the examiner
while seeing live video images, choosing at the end of the process a
specific image called the preliminary best double-pass image.
Subsequently, a through focus scanning was performed with the
Badal system in the range from +0.5 to �0.5 D, in 0.125 D steps,
in relation to the preliminary best double-pass image previously
determined. In every step of the scanning a double-pass image
was recorded. Moreover, a Hartmann-Shack image was also re-
corded at the central point, where the best preliminary double-
pass image was found. The scanning was repeated four consecutive
times in order to reduce the effect of accommodative microfluctu-
ations, and the accommodative response was calculated as the
mean of the performed series. The total duration of the measure-
ment for an accommodative stimulation step was less than 20 s.

2.4. Accommodative response measurements

In the case of the double-pass technique, the accommodative
response was calculated from the images recorded with the
through focus scanning described above. The accommodative re-
sponse was calculated aiming at the best double-pass image,
whose vergence was then associated with the accommodative
response value. To determine the best double-pass image, three
different metrics were used: the peak of maximum intensity of
the double-pass image (IMAXDP), the full width at half maximum
of the double-pass image (FWHMDP), and finally the volume under
the modulation transfer function (MTFDP). The modulation transfer
function (MTF) can be easily computed from the double-pass im-
age by Fourier transformation, taking into account that the first
pass of the double-pass system can be considered limited by dif-
fraction, since a 2 mm entrance pupil is used (Navarro & Losada,
1995). The vergence corresponding to the best double-pass image
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selected by means of any of the used metrics has been taken as the
accommodative response of the subject.

In Hartmann-Shack measurements, the accommodative re-
sponse was measured taking into account two different criteria:
firstly, it was selected as the defocus maximizing the volume under
the MTF (MTFHS), which can be also computed from the Hartmann-
Shack image as already described by other authors (Prieto et al.,
2000). For this purpose, an artificial through focus scanning similar
to that performed with the double-pass images was simulated by
computationally adding or subtracting the defocus term (c0

2) to
the wavefront aberration pattern calculated from the unique
recorded Hartmann-Shack image; secondly, it was calculated from
the Zernike polynomials corresponding to the Hartmann-Shack
image recorded at the central point as that corresponding to defo-
cus and spherical aberrations (DEFHS), calculated up to the 6th
order (Thibos et al., 2004):

DEFHS ¼
�c0

24
ffiffiffi
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p
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412
ffiffiffi
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p
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624
ffiffiffi
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r2 ð1Þ

where c0
2, c0

4 and c0
6 are the Zernike terms expressed in the nomen-

clature recommended by the Optical Society of America (Thibos
et al., 2002), and r is the pupil radius in millimeters.

In Fig. 2, the through focus scanning process in which double-
pass images at different vergences are recorded is shown. The
wavefront aberration pattern corresponding to the unique Hart-
mann-Shack image recorded at the central point is also plotted,
as well as the rest of simulated patterns calculated by adding or
subtracting a certain amount of defocus.

Finally, when measuring accommodative response it must be
taken into account that one of the values of the different accommo-
dative stimulations will offset the system, as other authors have
done (Gambra et al., 2009). Due to the lead of accommodation it
cannot be stated that AR is 0 D at AS 0 D. Since some authors
assume that the cross over point is close to the tonic accommoda-
tion (Charman, 1999) and this is considered to be near 1 D (Mad-
dock et al., 1981; McBrien & Millodot, 1987), we have considered
that there is no accommodative error at this value. Thus, the
accommodative response measurements are shifted in order to
fulfil this assumption. This shift of the raw data also entails a chro-
matic aberration correction, as we assume no accommodative er-
ror using visible light at 1 D of stimulation.

As subjects were corrected with spectacles during measure-
ments, lens effectivity formulae were also applied both for accom-
modation stimulations and response calculations, as shown in Eqs.
(2) and (3). Specifically, we applied the Mutti’s effectivity formulae
(Buehren & Collins, 2006; Mutti et al., 2000),

AS ¼ 1
1

1
Dvertex �DTest

þ Plens
� Dvertex

� Rx ð2Þ
Fig. 2. Top: Example of double-pass images acquired along the through focus scanning (D
the central point (framed in a red box), as well as the simulated patterns computationall
(For interpretation of the references to color in this figure legend, the reader is referred
AR ¼ 1
1

1
1

RawAR
þDvertex

þ Plens
� Dvertex

� Rx ð3Þ

where AS is the accommodative stimulation, AR is the accommoda-
tive response, Rx is the subjective refraction of the subject, Plens is
the power of the trial lens and RawAR is the raw measured accom-
modative response (in diopters). Dvertex is the vertex distance and
DTest is the test distance (in meters).

2.5. Statistics

Statistical analysis was performed using commercial SPSS soft-
ware for Windows (version 17.0, SPSS, Chicago, IL). A p value of
0.05 was considered significant.

The Kolmogorov–Smirnov (K–S) test was used to evaluate the
normal distribution of all variables analysed, i.e. the accommoda-
tive response measurements obtained by means of the double-pass
and Hartmann-Shack techniques using different metrics. The mean
(±SD) is given for each of them.

The validity of our method as the ability to measure correctly
the accommodative response of the eye was tested from different
points of view. Firstly, correlation coefficients were used to com-
pare accommodative response measurements provided by the
different techniques. Pearson’s correlation coefficient and its sig-
nificance is given for each case.

A Bland and Altman analysis (Altman & Bland, 1983; Bland &
Altman, 1986) was subsequently performed to study the agree-
ment between techniques. This method plots the mean difference
against the mean value and the corresponding 95% confidence lim-
its, defined as 1.96 times the standard deviation (SD) of the mean
difference, within which 95% of the differences between measure-
ments are expected to lie. According to this method, the charts can
be used to evaluate any relationship in the differences between the
accommodative response measurements assessed with the differ-
ent techniques. To evaluate if there was any tendency in the differ-
ences to vary in any systematic manner over the range of
measurements, the Pearson correlation coefficient and its signifi-
cance were also used in the Bland and Altman plots.

Finally, a paired sample t test was carried out to analyse if there
were significant differences between the accommodative response
measurements reported by the techniques evaluated.
3. Results

3.1. Analysis of the accommodative response measurements in relation
to the metrics used

The accommodative response measurements assessed by
means of different metrics must be compared since they may have
L = digital level). Bottom: Hartmann-Shack wavefront aberration pattern recorded at
y obtained by changing the defocus term (c0

2). Labels of vergence are in diopters (D).
to the web version of this article.)



Table 1
Comparison of accommodative response (AR) measurements using different metrics
and the double-pass and Hartmann-Shack techniques. The mean difference (±SD)
between pairs of metrics, the Pearson correlation coefficient and its significance
between AR measurements, the Pearson correlation coefficient and its significance in
the Bland and Altman plots and the paired sample t test results are shown.

Mean
difference
± SD (D)

Pearson
correlation
coefficient,
r (p)

Bland and
Altman Pearson
correlation
coefficient, r (p)

Paired
sample
t test
(p)

DP
ARIMAXDP � ARFWHMDP 0.04 ± 0.29 0.976

(<0.001)
�0.121 (0.317a) 0.315a

ARIMAXDP � ARMTFDP �0.05 ± 0.18 0.981
(<0.001)

0.034 (0.775a) 0.672a

ARFWHMDP � ARMTFDP �0.09 ± 0.29 0.976
(<0.001)

0.150 (0.213a) 0.174a

HS
ARMTFHS � ARDEFHS �0.06 ± 0.40 0.969

(<0.001)
�0.035 (0.760a) 0.264a

a No significant differences.

Fig. 3. Correlation of the accommodative response (AR) measurements obtained
with the double-pass technique and the several metrics tested; (a) comparison
between IMAXDP and FWHMDP, (b) IMAXDP and MTFDP and (c) FWHMDP and MTFDP

(n = 60; D: diopters).
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an impact on the final results achieved with the double-pass and
the Hartmann-Shack techniques.

In the case of the double-pass technique, the quality metrics
tested, IMAXDP, FWHMDP and MTFDP, were compared by pairs. The
mean difference among metrics, close to zero in all cases, is shown
in Table 1. There was a strong correlation between accommodative
response measurements provided by all methods, with significant
Pearson correlation coefficients (Fig. 3, Table 1). In the Bland and
Altman analysis (Fig. 4), most differences lied within the
±1.96 � SD range, and therefore a good agreement between metrics
was inferred. Moreover, almost every outlier value corresponded to
the same subject. In order to study if there was any dependence of
the differences on the mean, we also calculated the existing corre-
lations between the differences found against the average value.
No significant correlations were found in this case and therefore
we considered that there was no dependency of the difference be-
tween metrics with the accommodative response value (Table 1).
Finally, after confirming the normal distribution of the accommoda-
tive response measurements in all cases with the K–S test (p > 0.05),
we compared the measurements obtained by each technique with
the paired sample t test, and no significant differences were found
between metrics (p > 0.05) (Table 1).

In the case of the Hartmann-Shack technique, the two used
metrics were MTFHS and DEFHS. A significant Pearson correlation
coefficient was also found in this case (Table 1 and Fig. 5). Fig. 6
shows the Bland and Altman analysis, where again almost every
difference is found within the plotted confidence limits. As with
the double-pass technique, no significant correlations were found
in the Bland and Altman plots (Table 1). The K–S test confirmed
a normal distribution of the measurements (p > 0.05), and no sig-
nificant differences were found when comparing methods with
the paired sample t test (Table 1).

Since no significant differences were found between tested
metrics, the double-pass and Hartmann-Shack results compared
hereafter are those obtained by means of the volume under the
MTF, i.e. the MTFDP and MTFHS, respectively. This metrics has been
shown to be a good predictor of the refractive error by some
authors (Guirao & Williams, 2003), and is computable using both
techniques. It is therefore considered the most suitable for compar-
ison purposes.

3.2. Comparison of the double-pass and Hartmann-Shack
accommodative response measurements

In this study, the performance of the double-pass and Hart-
mann-Shack techniques to measure the accommodation response
of the eye were compared. Accommodative response measure-
ments provided by both techniques using the volume under the
MTF reported a mean absolute difference of 0.05 ± 0.24 D. In this
case, the existing correlation between the results corresponding
to the double-pass and Hartmann-Shack techniques was also
investigated, as it had been previously done separately by each
technique and the several metrics analysed. As shown in Fig. 7,
there was a significant correlation between data (r = 0.966,
p < 0.001).

Fig. 8 illustrates the Bland and Altman analysis when the
accommodative response measurements provided by the double-
pass and Hartmann-Shack techniques are compared. Most



Fig. 4. Bland and Altman plots showing the mean of the differences of the
accommodative response (AR) measurements and the 95% confidence limits
(dashed line) when the several quality metrics tested are compared; (a) comparison
between IMAXDP and FWHMDP, (b) IMAXDP and MTFDP and (c) FWHMDP and MTFDP

(n = 60; D: diopters).

Fig. 5. Correlation of the accommodative response (AR) measurements obtained by
means of Hartmann-Shack technique and the MTFHS and DEFHS quality metrics
tested (n = 60; D: diopters).

Fig. 6. Bland and Altman plots showing the mean of the differences of the
accommodative response (AR) measurements and the 95% confidence limits
(dashed line) when the MTFHS and DEFHS quality metrics tested are compared
(n = 60; D: diopters).

Fig. 7. Correlation of the accommodative response (AR) measurements obtained by
means of double-pass and Hartmann-Shack techniques when using the MTFDP and
MTFHS metrics (n = 60; D: diopters).
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differences are within the confidence limits. A weak and non-sig-
nificant correlation was again obtained (r = 0.002, p = 0.988).

Finally, no significant differences in relation to the accommoda-
tive response between the double-pass and Hartmann-Shack
methods by means of the paired sample t test were found
(p = 0.822).
3.3. Accommodative response measurements

This section describes the accommodative response provided by
means of the double-pass technique computed with the MTFDP

metrics, since no significant differences were found with the
different metrics analyzed.
Fig. 9 shows the accommodative response curve with stimula-
tion from 0 to 5 D: in the first accommodative stimulation steps
there is a lead of accommodation, while after the cross over point
the lag of accommodation increases in correlation to the
stimulation.



Fig. 8. illustrates the Bland and Altman analysis when the accommodative response
measurements provided by the double-pass and Hartmann-Shack techniques are
compared. Most differences are within the confidence limits. A weak and non-
significant correlation was again obtained (r = 0.002, p = 0.988).

Fig. 9. Mean accommodative response (AR) for accommodative stimulation (AS)
from 0 to 5 D measured with the double-pass technique when using the MTFDP

quality metrics (D: diopters). Dashed line indicates the line of equality.
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An accurate accommodative response is obtained, with an aver-
age accommodative error of 0.24 D in the worst case, which corre-
sponds to an accommodative stimulation of 4 D. Specifically, the
mean accommodative responses (±SD) for the accommodative
stimulations (from 0 to 5 D with a 1-D step) were 0.18 ± 0.31,
1.00 ± 0.00, 1.94 ± 0.31, 2.97 ± 0.29, 3.76 ± 0.45 and 4.80 ± 0.42 D.
As it can be seen the lag of accommodation is slightly higher at 4
D stimulation than at 5 D, specifically 0.24 D and 0.20 D, but this
differences are not statistically significant (p > 0.05). Moreover,
other authors have found similar results when measuring the lag
of accommodation using photorefraction (Seidemann & Schaeffel,
2003).

In far vision, i.e. with an AS of 0 D, the results obtained with the
method proposed correlate very well with subjective refraction. A
Pearson coefficient of 0.973 (p < 0.001) was obtained and no statis-
tically significant differences between subjective and double-pass
measurements were found when applying the t test (p = 0.814).
4. Discussion

The current study investigated the accommodative response
measurement based on the retinal image quality obtained by
means of a double-pass system. The results were compared with
those obtained with the Hartmann-Shack technique, more widely
in use, and also available in the built experimental setup. More-
over, several metrics based on different principles were used to
compute the accommodative response from the images obtained,
which in the case of the double-pass technique and to our knowl-
edge had never been done previously, even for measuring the
objective refraction of patients.

We did not find significant differences among metrics used in
the case of the double-pass technique. The highest mean difference
in terms of accommodative response was 0.09 D when comparing
the FWHMDP and MTFDP metrics.

When comparing the results for Hartmann-Shack measure-
ments by means of the two metrics, we obtained a mean absolute
difference of 0.06 D. However, the differences were not significant.
In agreement with our results, other authors could not report sig-
nificant differences at some accommodative stimulations (2 and
3 D). Nevertheless, they found statistically significant differences
at other values of accommodative stimulation (4 and 5 D) (Tarrant,
Roorda, & Wildsoet, 2010).

No significant differences between the double-pass and Hart-
man Shack techniques were found in terms of accommodative re-
sponse, with a mean absolute difference of 0.05 D. Both techniques
provide similar information, although each one has its own partic-
ularities. Double-pass images contain all the information on the
optical quality of the eye up to the spatial frequency limited by
the size of the entrance pupil, while in aberrometric measurements
there is a lack of information on scattering and the number of com-
putable higher-order aberrations is limited by the number of lens-
lets sampling in the pupil. Although the actual limitation of spatial
frequency present in double-pass systems, similar configurations
in terms of pupil sizes and wavelength have been widely used in
former laboratory studies to analyse accommodation (López-
Gil et al., 1998), optical and visual quality in eyes with decentered
pupils (Artal, Marcos, Iglesias, & Green, 1996), peripheral refractive
errors in young subjects (Seidemann et al., 2002) and off-axis
monochromatic aberrations (Guirao & Artal, 1999). Moreover,
many clinical studies which studied the optical quality in eyes with
different ocular conditions and diseases were carried out with a
commercially available double-pass system which uses the same
pupil sizes and wavelength than those of this study (Jiménez
et al., 2009; Nanavaty et al., 2011; Ondategui et al., 2011; Saad,
Saab, & Gatinel, 2010; Vilaseca et al., 2009, 2010). Furthermore,
Plainis when measuring accommodation with a Hartmann-Shack
aberrometer used a weighting function peaking at a spatial fre-
quency of 18 cycles per degree (cpd) (Plainis, Ginis, & Pallikaris,
2005).On the other hand, many studies that have studied the effect
on accommodation of the stimulus spatial frequency took into ac-
count maximum values of 16 cpd (Charman & Heron, 1979; Taylor
et al., 2009; Ward, 1987). This value is much lower than the cutoff
frequency measured by our double-pass setup (45 cpd), thus prov-
ing the usefulness of the configuration used to account for accom-
modative responses again. Another difference between the double-
pass and HS techniques is that double-pass through focus scanning
needs from several image recording while in HS is enough with one
image acquisition. However, it must be taken into account that this
scanning is fast and can be performed in less than a second.

Finally, it should be emphasized that the accommodative error
found, which was measured using a 4-mm pupil diameter, was
lower than the values generally reported by other authors. Cacho
and colleagues measured an accommodative error of 0.41, or
0.73 D for 2.5 D of stimulation using streak retinoscopy and the
Nott or MEM technique, respectively (Cacho et al., 1999). He and
colleagues measured an accommodative error of 0.31 D for a 3-D
stimulation by means of an autorefractor (He et al., 2005), whereas
we found a value of 0.03 D using the double-pass technique. For
4 D of accommodative stimulation we measured an error of
0.24 D. Seidemann and Schaeffel reported slightly higher errors
(0.35 D) using photorefraction (Seidemann & Schaeffel, 2003). In
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addition, the accommodative error measured by other authors in
emmetropic subjects by means of the Hartmann-Shack technique
for the same accommodative stimulation was also higher, specifi-
cally of 1.2 D (Hazel, Cox, & Strang, 2003). Similarly to the current
study, in this case the authors took into account the higher-order
aberrations. A plausible hypothesis for the differences between
theirs and our results can be attributed to their use of an internal
fixation test in contrast to our open field configuration that simu-
lates real viewing conditions. On the other hand, López-Gil and col-
leagues studied the retinal image quality of the accommodated eye
and found very low accommodative errors when using a double-
pass system: 0.11 D for 4 D of stimulation (López-Gil et al.,
1998). Although using the same technique and a similar range of
ages, the differences with our results could be explained by the fact
that they worked with trained subjects, while we did not.
Moreover, they only measured far (0 D) and near (4 D) conditions,
while we measured intermediate distances. This could have made
the measurements more tiring and caused less concentration in the
individuals at the last accommodative stimulations.

In conclusion, the accommodative response measured with the
double-pass technique is generally higher than previously reported.
The reason for our lower accommodative error could be explained
by all factors affecting the retinal image quality in a double-pass
system. It has been suggested that one to one ideal response, with
no accommodative error, does not always correspond to the best
retinal image quality, and that a certain amount of accommodative
error (measured defocus) is used to enhance the retinal image qual-
ity (Buehren & Collins, 2006; Plainis, Ginis, & Pallikaris, 2005). Using
a Hartmann-Shack instrument, Tarrant, Roorda, and Wildsoet
(2010) found higher accommodative responses when measure-
ments were based on optical quality metrics rather than just on
defocus. In this work the accommodative response based on the
volume under the MTF was up to 0.4 D higher than that based on
defocus, taking into account 5 D of stimulation and myopic sub-
jects. Since double-pass based accommodative response measure-
ments are based on retinal image quality and not defocus, this
cannot be a source of error in our results. The results obtained in
this study suggest the suitability of the double-pass system to mea-
sure accommodative response. Future studies should address the
suitability of these measurements in older subjects.
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