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ABSTRACT   

Imaging Confocal Microscopes (ICM) are highly used for the assessment of three-dimensional measurement of technical 
surfaces. The benefit of an ICM in comparison to an interferometer is the use of high numerical aperture microscope 
objectives, which allows retrieving signal from high slope regions of a surface. When measuring a flat sample, such as a 
high-quality mirror, all ICM’s show a complex shape of low frequencies instead of a uniform flat result. Such shape, 
obtained from a λ/10, Sa < 0.5 nm calibration mirror is used as a reference for being subtracted from all the 
measurements, according to ISO 25178-607. This is true and valid only for those surfaces that have small slopes. When 
measuring surfaces with varying local slopes or tilted with respect to the calibration, the flatness error calibration is no 
longer valid, leaving what is called the residual flatness error. 

In this paper we show that the residual flatness error on a reference sphere measured with a 10X can make the 
measurement of the radius to have up to 10% error. We analyzed the sources that generate this effect and proposed a 
method to correct it: we measured a tilted mirror with several angles and characterized the flatness error as a function of 
the distance to the optical axis, and the tilt angle. New measurements take into account such characterization by 
assessing the local slopes. We tested the method on calibrated reference spheres and proved to provide correct 
measurements. We also analyzed this behavior in Laser Scan as well on Microdisplay Scan confocal microscopes. 

Keywords: Imaging systems, Confocal Microscopy, Metrology, Surface measurements, Calibration 
 

1. INTRODUCTION 
Imaging confocal microscopes (ICM) are widely used for areal measurements thanks to its good height resolution and 
the capability to measure high local slopes. Other technologies such as Coherence Scanning Interferometry (CSI) and 
Focus Variation (FV) are also widely used for the measurement of technical surfaces [1]. Interferometry provides the 
highest vertical resolution independently of the numerical aperture of the objective, but it has the drawback of being 
highly sensitive to vibrations and requires a dense Z scan to extract the areal information. When measuring a flat sample, 
such as a high-quality mirror, all ICM’s show a complex shape of low frequencies instead of a uniform flat result. ISO 
25178-607 [2] states that a λ/10 calibration mirror with less than 0.5 nm Sa roughness should be measured, and the result 
topography used as a reference of the flatness error calibration to be subsequently subtracted from the following 
measures [3]. This is true and valid only for those surfaces that have small slopes. Nevertheless, when the object imaged 
through the microscope is tilted, the effective numerical aperture changes along the pupil of the confocal microscope 
objective, and the field curvature changes. This makes the flatness error to be no longer valid, leaving an additional error 
called residual flatness error. The amplitude of this error is proportional to the local slope of the surface. 

When measuring cylindrical surfaces, an optical profiler cannot get the full topography along a full revolution [4]. The 
sample has to be fixed on a rotational stage, and several topographies have to be acquired and stitched at different 
rotation angles. With this method, the residual flatness error is particularly harmful, as stitching will not be accurate due 
to curvatures mismatch. 

Flatness error is a well-known limitation of optical 3D profilers. Although previous study on ICM [5] and CSI [6] has 
been made, we propose, for the first time, a characterization and correction method that applies to confocal 3D profilers. 
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In order to prove that this behavior is related to optical parameters, we have studied two different Imaging Confocal 
Microscope approaches: a Laser Scan and Microdisplay Scan [2]. We have measured a flat mirror with increasing tilt 
from 0º to 10º with a 10X 0.3NA objective. At 0º, the flatness error matches the field curvature of an optical system with 
an object perpendicular to the optical axis whereas with a tilt the form loses its symmetry of revolution (Table 1). 

Table 1. Flatness error of a mirror with different tilt angles for each type of ICM, surface is leveled according to the angle. 

Tilt Laser Scan Microdisplay Scan Scale 

0º 

  

 

5º 

  

10º 

  

Apart from losing the symmetry of revolution with increasing angles, peak to valley value is completely different 
between the two analyzed confocal approaches, as can be observed in Figure 1. 
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Figure 5. Residual flatness error surface build from the profiles of all angles measured. X axis is the distance to the optical 
center (µm), Y axis corresponds to the tilt angle (degrees) and Z axis is the residual flatness error (µm). 

Using a mathematical fitting program, Systat Software Inc. TableCurve 3D, two different functions are proposed to fit 
the flatness error surface. We have chosen a 3rd order polynomial because of its computationally simplicity and an 8th 
order Chebyshev polynomial because of its higher regression coefficient. Figure 6 shows the residuals of each 
polynomial with respect to the original surface in Figure 5 and as stated, the Chebyshev has lower error amplitudes. 

The Chebyshev polynomial presents a drawback: it is not able to correct those points on the topography that has larger 
distances to the optical axis than the distances that are characterized. These are those points at the corners and the reason 
why this is happening is because of mathematical limitations of the Chebyshev function: 

 ∑∑=
n m

mnmn TxTcxf )()(),( , αα  (1) 

with ,  as the coefficient for each term, and 

 ))·arccos(cos()( xnxTn =  (2) 

where the  values are normalized to the interval −1,1  from the original data. Because of the presence of the arccosine 
function, the error calculation is limited to the region where the radial distance is equal or smaller than the characterized 
profile maximum distance. This causes those points of the topography with larger distances not to have correction 
values. 

  
a b 

Figure 6. Differences between the measured profile and: (a) the 3rd order polynomial and (b) the 8th order Chebyshev 
polynomial. 
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3. RESULTS AND DISCUSSION 
In this section, we will compare the residual flatness error of the original measurement, the calibration method described 
in the ISO 25178-607, our proposed method and the optimized method for different surfaces. We will analyze a flat 
mirror tilted with different slopes, a sphere and finally a cylinder. All measurements are made using a 10X magnification 
objective on a Microdisplay Scan Confocal Microscope using a green LED with λ = 0.550 µm. 

3.1 Mirror 

A flat mirror is measured with different tilts, and then the dominant plane is removed from the surface to obtain the 
residual flatness error, and it is compared to the different calibration methods. Table 2 shows how the original residual 
flatness error is deformed when a tilt is applied, but it does not add amplitude to the maximum error. As expected, ISO 
25178-607 produces a Gaussian noise as error when the surface is totally flat and leveled, but a form appears when the 
tilt angle increases. Our proposed methods produce a low amplitude error with flat and leveled surfaces and, although 
they increase in amplitude with the tilt, they do it less than the ISO 25178-607 method does, specially the optimized one. 

Table 2. Residual flatness error of a flat mirror with different tilt slopes and each method for the aberration correction. 

 Leveled original 
measurement 

Residual flatness error 
(ISO 25178-607) 

Residual flatness error 
(New method) 

Residual flatness error 
(Optimized method) Scale 

0º 

 

5º 

 

10º 

 

We have also studied the surface parameter Sz for the tilted flat mirror every 1º. The results are plotted in Figure 9, 
where we can check that the proposed method is better for correcting the residual flatness error of flat surfaces if they 
have a tilt of more than 2º, and the optimized method does not present significant improvements respect to the new 
method. In any case all methods correct substantially the flatness error. 
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3.3 Cylinder 

A calibrated reference rod (Mahr ref. 4828118, Ø10.000 ± 0.001 mm) has been measured with a 10X objective with the 
cylinder axis parallel to the X direction and the correction method applied. Figure 11 shows the residual flatness error for 
both, the 3rd order and the Chebysev polynomials. Both methods provide similar results. For a cylinder sample, it has to 
be noted that the profile parallel to the X direction on top of the cylinder has no local slope, while the Y profiles are 
equal circles, but with local slopes towards the optical center different from the local slope of the circle itself. 

 
Figure 11. Residuals of removing a theoretical cylinder with a radius of 5.000 mm using the optimized new method with (a) 
a 3rd order polynomial, or (b) an 8th order Chebyshev. 

4. CONCLUSIONS 
In this paper, we have shown that confocal microscope profilers (Laser Scan and Microdisplay Scan) have a flatness 
deviation error that changes in shape with the tilt of the surface. The accepted method to calibrate the flatness error 
described in the ISO 25178-607 is valid for flat surfaces placed perpendicular to the optical axis of the system, but fails 
for tilted surfaces with increasing errors up to few micron PV for a 10X objective. We have proposed a calibration 
methodology that characterizes the flatness error dependence on the distance to the optical axis and on the slope of the 
surface by measuring a set of topographies of a mirror at varying tilt angles. Two different error corrections based on 3rd 
order polynomial and Chebyshev polynomials have been studied, the latter providing better results but with limited field 
of view. The method, applied to a flat surface tilted up to 10 degrees showed an improvement from 6 to 2 µm PV, to a 
calibrated sphere provided a radius of curvature measurement with less than 0.05% error. 

Future work will be needed to extend the proposed calibration method for different magnification objectives, and larger 
tilt values. It will be also needed to investigate a method to characterize the error at distances longer than the field of 
view of the camera, allowing the Chebyshev polynomials to be applied to all points of the topography. We also foresee 
further investigation of the Petzval aberration simulation using a real microscope objective optical design. 

REFERENCES 

[1] Leach R. “Optical Measurement of Surface Topography,” Springer Verlag ISBN 978-3-642-12012-1 
[2] ISO 25178, Geometrical product specifications (GPS) — Surface texture: Areal — Part 607: Nominal 

characteristics of non-contact (confocal microscopy) instruments 
[3] Giusca, C., Leach, R. “Calibration of the scales of areal surface topography-measuring instruments: part 1. 

Measurement noise and residual flatness,” Measurement Science and Technology (2012). 
[4] Matilla, A., Bermudez, C., Mariné, J., Martínez, D., Cadevall, C., and Artigas, R. “Confocal unrolled areal 

measurements of cylindrical surfaces,” Proc. SPIE 10329, Optical Measurement Systems for Industrial 
Inspection X, 1032915, doi: 10.1117/12.2269631 (2017) 

[5] Sensofar Tech App. Note. “Flatness error on Imaging Confocal Microscopes,” 20 February 2009, 
http://www.sensofar.com/references/FlatnessError.pdf (11 April 2017). 

[6] Su, R., Wang, Y., Coupland, J., Leach, R. “On tilt and curvature dependent errors and the calibration of 
coherence scanning interferometry,” Optics Express 25(4), 3297-3310 (2017) 

0.0 0.5 1.0 1.5 mm

°

-1.0

-0.5

0.0

0.0 0.5 1.0 1.5 mm

mm

-1.0

-0.5

0.0

µm

-2

-1

0

1

2

3

4

5

NMa       b 

Proc. of SPIE Vol. 10678  106780M-10

Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 5/28/2018 Terms of Use: https://www.spiedigitallibrary.org/terms-of-use


