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Abstract: Sparkle and graininess are textural effects that appear as intrinsic spatial features of 

coatings containing goniochromatic pigments, whereas others such as mottling are undesired 

outcomes. In this study, we present new methods for the evaluation of sparkle, graininess and 

mottling of automotive coatings through images acquired with a novel gonio-hyperspectral 

imaging system based on light-emitting diodes with extended spectral sensitivity beyond the visible 

range (368–1309 nm). A novel analysis of sparkle that considered the amount of sparkling spots was 

used. Graininess was quantified through a novel statistical descriptor based on the energy 

descriptor computed from the histogram. A new index was proposed for an enhanced detection of 

mottling based on the analysis of striping, which was better observed and quantified in the infrared 

range. Spectral assessments showed a strong relationship with color and spectral reflectance for 

graininess and mottling. In conclusion, the results showed that these new spatial and spectral 

methods are a suitable, alternative and potential approach for the assessment of these textural 

features. 

Keywords: automotive coatings; sparkle; graininess; mottling; goniochromatism; spectral imaging; 
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1. Introduction 

The appearance of objects has become more complex with the emergence of special effect 

pigments. The automotive sector has been responsible for the huge production and evolution of these 

pigments due to the need to constantly launch vehicles with impressive innovations. An example of 

this can be found in the use of vivid car finishes using these special effect pigments, which produce 

a dynamic appearance, far different from the solid finishes obtained with traditional solid coatings.  

Gloss and color are already insufficient to accurately describe the texture of a surface [1,2]. 

According to image processing, texture is defined as the variation of gray tones and the spatial 

distribution of them over an area [3,4]. An example of this can be found in pigments known as 

goniochromatic, gonioapparent or effect pigments that show appearance variations as a function of 

the illumination and observation angles. They are classified into pearlescent pigments, which mainly 

exhibit hue and chroma shifts, and metallic pigments, which show lightness variations. Moreover, 

the goniochromatic particles inside the pigment can generate specific spatial distributions that create 

additional optical effects dependent also upon the angular configuration [5,6]. 
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Sparkle causes a material to seem to emit bright, minuscule spots of light strikingly brighter than 

their immediate surroundings under direct illumination and more evident when at least one of the 

contributors (observer, specimen or light source) is moved (Figure 1a). Sparkle is also conditioned by 

the intensity (sparkle-intensity) and area (sparkle-area) of the bright spots. The illuminated portion 

of an object surface with spots that are strikingly brighter than their immediate surrounding is the 

sparkle-area, while the contrast between the appearance highlights on the particles of a gonio-

apparent pigment and their immediate surroundings is the sparkle-intensity [2,7]. Furthermore, 

sparkle is also determined by the reflectivity, size, orientation and density of goniochromatic particles 

[1,2,8–10]. Although some authors follow other approaches [11,12], one of the first expressions 

commonly used for the assessment of the sparkle grade (SG) was determined as the geometric mean 

of sparkle-intensity (IS) and sparkle-area (AS) for each measurement geometry as follows [2]: 

G S SS I A
 

(1) 

 

Figure 1. Illustrations of sparkle (a), graininess (b) and mottling (c) effects of goniochromatic 

automotive coatings. 

Graininess, also called texture coarseness, is the contrast of the light/dark irregular pattern 

exhibited when the same type of sample is exposed to diffuse illumination, with a pattern scale 

typically <100 μm (Figure 1b) [7]. The conditions at which graininess is revealed are diffuse 

illumination and close observation distance. Graininess is independent of the observation angle, since 

it is only perceived at distances close to the coating’s surface. The physical factors that contribute to 

graininess are the type, size, disorientation and agglomeration of gonioapparent particles [2,8,13]. 

While there is no consensus regarding the analysis of graininess, some authors have proposed the 

use of radiometry and the combination of various parameters such as pigment concentration, 

scattering, absorption and lightness for this purpose [13–15]. 

The mottling effect is scarcely reported in the literature. It is described as cloudiness or local 

perturbations on the surface of a paint coating (Figure 1c). This phenomenon is mainly produced by 

thickness variations of the base coat and conglomeration of particles when the coating is not properly 

applied. Mottling perception also depends on direct illumination, observation angle, measurement 

distance and size of perturbations, and it is especially noticeable in large panels and on light metallic 

finishes. A specific condition of mottling is striping, manifested as a banding impression through the 

coating [2,16]. Some authors have evaluated this effect in other fields, such as the printing industry 

[17], through the quantification of the spatial variations computed from the color coordinates in the 

CIELAB color space [18] from an RGB image and the power spectra weighted by means of the contrast 

sensitivity functions of the human eye. 

The broad range of optical effects supplied by these pigments has attracted the interest of the 

plastics [19,20], cosmetics [21], ceramics [22,23], textiles [24,25], printing inks [26–28], paper and board 

[29,30] and paints and coatings [31–34] industries, the latter showing a constant growth in the 

automotive sector. This increasing demand requires the characterization of these novel pigments by 

means of new instruments, since the accuracy provided by the single measurement geometry of 

traditional spectrometers is considered insufficient. As a result, all large companies involved in color 

measurement (Datacolor, Konica Minolta, GretagMacbeth, X-Rite, BYK Additives & Instruments and 

Hunterlab) have launched desktop or portable gonio-spectrophotometers to perform spectral and 

colorimetric evaluations at different angular configurations. However, only one commercial 
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instrument provides sparkle and graininess information: the BYK-mac® from BYK Additives & 

Instruments. BYK Additives & Instruments also developed the cloud-runner®, an optical scanner to 

quantify mottling. 

Gonio-spectrophotometers perform precise evaluations, but are restricted to areas of just a few 

millimeters, which limits the assessment of materials with a non-uniform spatial distribution and 

angular-dependent appearance that changes all over the sample. In addition, these devices operate 

only in the visible (VIS) range of the electromagnetic spectrum (400 to 700 nm) and use exclusively 

broad-band light sources for the analysis of texture. Expanding the spectral range to the infrared (IR) 

range would result in a more accurate analysis of the goniochromatic particles located at deeper 

layers thanks to the higher penetration of this radiation and would contribute to quantify their 

influence on the total appearance of the pigment. Moreover, the use of narrow-band illumination 

would contribute to evaluating the spectral behavior of textural effects, which has not been widely 

studied. 

In order to overcome the limitations of currently existing instruments, we propose the evaluation 

of sparkle, graininess and mottling by means of novel parameters extracted from a gonio-

hyperspectral imaging system based on light-emitting diodes (LEDs) previously applied to the 

colorimetric and spectral evaluation of goniochromatic coatings [35]. This system can assess texture 

over a large area and from the ultraviolet (UV) to the IR range, thereby providing pixel-wise spectral 

information. Sparkle was assessed under directional light at three geometries and quantified by an 

algorithm based on the Weber's contrast [36]. A single geometry and diffuse illumination were 

employed to evaluate graininess by means of statistical descriptors. Mottling was also analyzed 

under directional light and at three geometries different from those used in sparkle assessments; 

those being studied afterwards through image profile analysis. 

2. Experimental Setup  

While measurements of sparkle, graininess and mottling are as yet not regulated by any 

standards, the proposed setup followed those applied to multi-angle color measurements issued by 

the German Institute for Normalization (Deutsches Institut für Normung, DIN, Berlin, Germany) and 

the American Society for Testing Materials (ASTM, West Conshohocken, United States): DIN 6175-2, 

ASTM E2194-09 and ASTM E2539-08 [37–39]. This decision was made because these effects were 

analyzed through a device previously developed for spectral and colorimetric assessments (Figure 2) 

[35]. 

 

Figure 2. Developed gonio-hyperspectral imaging system based on LEDs represented in (a) a layout 

and in (b) a picture: 1. UV–VIS camera, 2. sample holder, 3. 8MR191-30 rotation stage, 4. 8MR191-30-

28 rotation stage, 5. rotation stages controller, 6. linear actuator, 7. lens, 8. LED clusters, 9. light source 

controller and power supply and 10. IR camera, which is not represented in (a). θ refers to the 

illumination angle controlled by the 8MR151-30 rotation stage and α to the observation angle handled 

by the 8MR191-30-28 rotation stage. Figure adapted with permission from [35]. © The Optical Society. 
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Essentially, this device (GOHYLED system, Centre for Sensors, Instruments and Systems 

Development – Universitat Politècnica de Catalunya, Terrassa, Spain) was composed of a spectrally 

tunable light source based on LEDs and two monochromatic cameras that covered the range from 

368 to 1309 nm; and two rotation stages, one to control the observation and the other the illumination 

directions. Twenty-seven narrow-band LED clusters were employed for the spectral range described 

while one additional cluster including white LEDs was incorporated to analyze texture under a 

broad-band light source, as it is commonly measured; a motorized linear actuator sequentially 

positioned each LED cluster in front of the sample. One of the cameras was based on a Charge-

Coupled Device (CCD) sensor with enhanced sensitivity in the UV range (200–1000 nm) and a size of 

1392 × 1040 pixels; the other camera used an InGaAs sensor to work from 900 to 1650 nm with lower 

resolution, 320 × 256 pixels. In order to produce a uniform diffuse illumination for the evaluation of 

graininess, the lens that guided the light from the LEDs to the sample was removed and a 250 mm × 

250 mm 220 Grit Ground Glass Diffuser from Edmund Optics (Barrington, United States) was used. 

The aperture angle (2σ) is defined in the aforementioned standards as the angle subtended by 

the sensor or the light source with respect to the center of the sample. For the ASTM E2194 and ASTM 

E2539, it should be 2σ < 8° in any geometry. The aperture angle for the DIN 6175-2 varies depending 

on the measurement configuration: in a constant direction (fixed element) it should be 2σ ≤ 5°, and in 

the variable directions it should show values 2σ ≤ 4° for observation angles less than 0°, and 2σ ≤ 10° 

for those larger than 0°. 

In order to conform to the standards, for sparkle evaluation the UV–VIS camera was positioned 

at 218.0 mm from the sample to achieve an aperture angle of 0.56°. The IR camera was placed closer, 

at 129.0 mm, with an aperture angle of 1.83°. With regard to the graininess assessments, the 

adjustments for the UV–VIS camera were preserved, whereas the IR camera was placed closer, at 88.2 

mm from the sample, to compensate for the low spatial resolution. The aperture angle for this new 

configuration was 2.90°. A longer arm was used for the analysis of mottling because this effect is 

mainly visible from large distances. The UV–VIS camera was placed at 419.1 mm, thereby obtaining 

an aperture angle of 0.31°, while the IR camera was located at 164.7 mm with an aperture angle of 

1.55°. 

All these aperture angles satisfied the three standards, since they were lower than the minimum 

tolerance established by the DIN 6175-2 (4°). Although a measurement area or region of interest (ROI) 

of 50 mm × 37 mm was available for the UV–VIS camera, only a field of view of 23 mm × 23 mm was 

finally considered to match that of commercial systems available, i.e., the BYK-mac®, and conduct 

valid comparisons of the results; the ROI for the IR camera was kept at 23 mm × 23 mm for further 

comparison among spectral ranges. For mottling, a larger ROI was set at 92 mm × 68 mm to capture 

the effect as a whole. 

3. Methods 

3.1. Samples 

A total of 25 pearlescent, 25 metallic and 25 solid samples of automotive coatings were selected 

to measure sparkle and graininess (AUDI AG, Ingolstadt, Germany; BASF SE, Ludwigshafen, 

Germany; and PPG Industries Inc., Pittsburgh, United States). A reduced set was used to evaluate 

mottling, including a light gray and a light blue metallic sample with striping, in addition to two 

pearlescent, two metallic and two solid samples without this effect. Each of the last subsets contained 

a light blue and a light gray sample for a more accurate comparison. All samples consisted of 90 mm 

× 150 mm or 100 mm × 200 mm plates. 

3.2. Measurements Settings 

The analysis of texture in goniochromatic pigments is not as well established as color evaluation, 

and thus, no standard exists in this case to define a set of geometries. In contrast, specific geometries 

are commonly used for sparkle, graininess and mottling analysis [2,8,16,40]. 
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Sparkle geometries tend to be situated at illumination angles of 15°, 45° and 75° with respect to 

the normal to the sample, and the observation at 0° (−15°x: 0°, 45°x: 0° and 75°x: 0°; x: refers to 

directional illumination) [2,16,40]. These three angles imitate the effect of solar radiation under a 

cloudless sky. 

In contrast, analysis of graininess presents few restrictions, since the angle of observation is not 

critical due to the closeness to the sample and the use of diffuse illumination [2,8,16]. However, the 

distance to the sample is subject to the imaging system to ensure a proper capture of this effect. 

Consequently, the diffuser was placed as far as possible from the light source (393.0 mm) to increase 

its diffusing effect; the d:12.5° geometry was found to produce the most uniform illumination over 

the sample. 

Since mottling appears under direct illumination at different angular configurations, the 

geometries selected were 15°x: 0°, 15°x: 30° and 15°x: 45°. 

All samples were measured with the GOHYLED system and the BYK-mac® for further 

comparisons. At this stage of the study, this gonio-spectrophotometer was chosen as a reference 

because it has become one of the standards in the automotive industry for spectral, colorimetric, 

sparkle and graininess quantification. Since the BYK-mac® works in the VIS, only the results obtained 

in this range were compared. The input data for all the assessments were reflectance images as in 

reference [35]. 

3.3. Sparkle Quantificacion 

A sparkle index was developed in this work based on the geometric mean, like that of Equation 

(1), and computed from the acquired images. Firstly, an intensity threshold was established to detect 

the bright pixels. The thresholding algorithm was based on the triangle method proposed by Zack et 

al. [41], particularly effective on skewed histograms. Next, a new image was created for the analysis 

of the sparkle-area, AS, and the sparkle-intensity, IS. The sparkle-area was estimated by means of a 

binary image that only considered the sparkling regions above the intensity threshold with 

dimensions of 4 by 20 pixels and a connectivity of 4 chosen according to experimental evaluations. 

Afterwards, this image was used for the estimation of sparkle-intensity. The AS index was calculated 

as the mean area of these regions.  

With regard to sparkle-intensity IS, it was derived from the Weber's contrast [36], which 

describes the contrast between bright spots and their surroundings. However, the indices used in this 

study replaced the luminance by reflectance values, r, with the purpose of expanding these 

evaluations beyond the VIS range and for spectral assessments: 

s b
S

b

r r
I

r


 . (2) 

In accordance with the previous threshold, the image reflectance values were divided into two 

categories (bright spots and background) and respectively averaged. The parameters rs accounted for 

the mean reflectance value of the bright spots, while rb referred to the mean reflectance value of the 

background. 

Next, the sparkle-area and sparkle-intensity indices were combined to obtain a unique sparkle 

grade, SG. In order to weight this parameter by the number of sparkling spots, a quantification factor, 

QS, was added to Equation (1), as shown in Equation (3). It represents the ratio between the amount 

of bright pixels and the total amount of pixels of the image. 

G S S SS Q I A  (3) 

3.4. Graininess Quantificacion 

First order statistical descriptors were used in this study as metrics for graininess determination. 

In fact, first and second order descriptors, which extract information from the histogram and the 

image itself, have already been proposed to evaluate the spatial distribution of an image and 
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previously applied to aerial and satellite images [42,43], images of the human iris [44] and images of 

sand paper [45]. 

Statistical moments such as the mean, standard deviation and third central moment provide 

information about the average intensity and contrast, and the skewness of the histogram, respectively 

[43,44,46]. However, this information did not describe precisely enough, the graininess effect. 

Therefore, other textural descriptors computed from of the image histogram were employed, such as 

the energy, En. It is a numerical descriptor of the image uniformity that ranges between 0 and 1, 

reaching the maximum value for a constant image [43,44,46] and is computed as follows: 

1
2

0

( )
N

i

En P i




 , (4) 

where P(i) is the value (frequency) of the intensity element i (bin) of the histogram and N is the 

number of levels that the histogram is divided into. 

3.5. Mottling Quantificacion 

The macroscopic features of mottling required a different interpretation, since statistical 

descriptors are specifically suitable for textural effects of microscopic size. This new index focuses on 

the analysis of striping, a type of mottling that presents a banding impression over the coating (Figure 

3a). 

This approach considered the profile of three equidistant rows perpendicular to the stripes 

present in the reflectance images (Figure 3a). They were averaged and smoothed to generate one 

single profile representing the striping effect of the whole image and to remove the sparkle peaks. 

Next, a linear fitting was applied to the smoothed profile and the resulting fitted curve was then 

subtracted. As a result of their lower reflectance, the stripes became more evident (Figure 3b). Finally, 

the mottling-striping index, MSt, was computed as the difference of the maximum and minimum 

values of the subtraction profile DSt and multiplied by 50 to obtain values within the same scale as 

sparkle and graininess. 

50[max( ) min( )]St St StM D D  . (5) 

 

Figure 3. (a) Image of a sample with striping, and (b) a plot with the averaged and smoothed image 

profile (blue line), the linearly fitted curve (red line) and the subtraction profile DSt (black line). 

4. Results and Discussion 

The evaluation of sparkle and graininess with the new indices computed from the images 

acquired with the GOHYLED system was divided into two stages. Firstly, their performance was 

assessed considering only the images acquired under white light, since this is the commonly used 

approach; at the same time, these results were compared to those given by the gonio-

spectrophotometer BYK-mac®. For this purpose, statistical analysis was performed using IBM SPSS® 

v25.0 software (IBM Corp.). To determine the correlation between the measurements of the two 

instruments, bivariate correlations were carried out and quantified using Pearson’s (r) or Spearman 
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() coefficients for parametric or nonparametric variables, respectively. Bland and Altman analysis 

[47] was also used to analyze agreement between measurements. This method studies the degree of 

agreement between two sets of data by plotting the mean difference and the corresponding 95% 

confidence limits (CL), defined as 1.96 times the standard deviation of the mean difference, within 

which 95% of the differences measurements are expected to lie. Secondly, the proposed textural 

indices were implemented into the different spectral channels in the VIS and IR range. Mottling was 

also firstly analyzed considering the results for the white LED cluster, and afterwards, spectrally. 

4.1. General Assessment of Sparkle 

This section shows the sparkle results of area, intensity and total sparkle indices. Other 

approaches for quantifying sparkle apart from those previously explained, such as local contrast for 

sparkle-intensity, were also implemented although with less accurate results, and therefore, they are 

not shown here.  

As an example, Figure 4 shows images acquired at the −15°x: 0° geometry of representative 

individual samples, one for each of the three types of pigments analyzed, when illuminated with the 

white LED cluster. Sparkle is clearly revealed for the pearlescent (Figure 4a) and metallic (Figure 4b) 

samples, with values of 0.052 and 0.137, respectively. On the contrary, the solid sample (Figure 4c) 

reaches a sparkle grade of almost zero (0.002) due to the lack of goniochromatic pigments. The range 

of sparkle grades measured for the entire sample set covered from 0 to 0.140, being minimal for solid 

samples. 

 

Figure 4. GOHYLED sparkle images of (a) a pearlescent, (b) a metallic and (c) a solid sample for the -

15°x:0° geometry when illuminated with the white LED cluster. 

The statistical comparison performed between sparkle parameters of the GOHYLED system and 

the BYK-mac® is summarized in Table 1. The correlation analysis provided good results for those 

geometries closer to the specular reflection (−15°x: 0° and 45°x: 0°) with correlation coefficients above 

0.870 and very similar outcomes for the sparkle grade (>0.930); all correlations found were statistically 

significant (p < 0.001). The 75°x: 0° configuration produced the results that differed the most from 

those provided by the BYK-mac®. As aforementioned, the settings for textural effects measurement 

with the GOHYLED system were adjusted according to the standards for multi-angle color 

measurements, and this, together with the mechanical and optical features of the device, led to a large 

illumination distance (≈600 mm). This fact caused less reflected light to reach the camera at the 

geometry further away from the specular reflection, and hence, the sparkle grades at this geometry 

were more sensitive to show larger differences when compared to the BYK-mac®. 

The degree of agreement between the two instruments was assessed by means of the Bland and 

Altman method to gather more information that proved or rejected the similarity of the sparkle 

grades provided by the two devices (Table 1 and Figure 5). The mean of the differences for the three 

sparkle parameters was closer to zero for the two geometries next to the specular reflection, which 

confirmed the behavior previously observed; the 95% CLs were also smaller for these configurations, 

encompassing most of the values in a very narrow region. Again, it is remarkable that the geometry 

further away from the specular reflection is that including more outliers due to the darker images 

available in this geometry, and thus, worse signal-to-noise ratio. This especially occurred for very 

dark coatings, as can be observed in Figure 5c, wherein two samples fall out of the lower CL. To 

increase the signal captured by the camera, a more powerful light source and/or a more sensitive 
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camera should be used. It is also noticeable that the mean sparkle grade (SG mean) for solid samples 

is almost zero in all plots, since they do not contain goniochromatic pigments. 

Table 1. Pearson† or Spearman‡ correlation coefficients, and corresponding p-values; and Bland and 

Altman analysis (mean of the differences, MD, and the corresponding confidence limits, CL) between 

the sparkle-area (AS), sparkle-intensity (IS) and sparkle grade (SG) of the GOHYLED and the BYK-

mac®. 

Sparkle 

Parameters 

Pearson† or Spearman‡ 

Correlation Coefficient 
p-Value MD CL 

AS -15°x:0° 0.931† <0.0011 −0.07 −0.39 to 0.26 

AS 45°x:0° 0.884† <0.0011 −0.13 −0.51 to 0.26 

AS 75°x:0° 0.725† <0.0011 −0.21 −0.68 to 0.27 

IS -15°x:0° 0.910‡ <0.0011 −0.24 −0.48 to 0.01 

IS 45°x:0° 0.872† <0.0011 −0.14 −0.46 to 0.17 

IS 75°x:0° 0.788† <0.0011 −0.26 −0.61 to 0.08 

SG -15°x:0° 0.963† <0.0011 0.05 −0.13 to 0.24 

SG 45°x:0° 0.933‡ <0.0011 0.11 −0.17 to 0.39 

SG 75°x:0° 0.739‡ <0.0011 0.13 −0.41 to 0.67 
1 Statistically significant correlations. 

 

Figure 5. Bland and Altman plots for the sparkle grade (SG) at the three sparkle geometries: (a) −15°x: 

0°, (b) 45°x: 0° and (c) 75°x: 0°. Dashed lines indicate the 95% limits of agreement and dotted lines 

denote the mean difference value. 

4.2. Spectral Assessment of Sparkle 

Additionally, the sparkle grade of the GOHYLED system was tested throughout the whole 

spectral range (368–1309 nm) at the three sparkle geometries (−15°x: 0°, 45°x: 0° and 75°x: 0°) and at 

the geometries for spectral and colorimetric analysis (45°x: −60°, 45°x: −30°, 45°x: −20°, 45°x: 30°, 45°x: 

65°, 15°x: −30° and 15°x:0°) [37–39]. Figure 6 illustrates the spectral performance of the GOHYLED 

sparkle grade for blue pearlescent, gray metallic and green solid samples. 

As it can be seen, the highest sparkle values were found between 450 and 600 nm for pearlescent 

and metallic samples, the values being larger than those obtained under white light. Spectral shifts 

only arose in this range at geometries for spectral and colorimetric analysis with the same aspecular 

angle (Figure 6d,e), which is the angle between the specular reflection and the observation direction 

(45°x: −60° and 45°x: −30°, and 15°x: −30° and 15°x: 0°). From 750 to 1309 nm, the sparkle grades 

decreased substantially for all samples and no additional significant information was obtained. 

Accordingly, the most relevant spectral range for sparkle evaluation spans from 450 to 600 nm.  

The geometries of −15°x: 0° and 45°x: 0° produced similar spectra for some samples (e.g., Figure 

6a), which could be explained by the orientations of the goniochromatic particles. That is, at random 

orientations, different geometries can cause similar amounts and distributions of reflected light. 

Additionally, it was observed that the color of the sample did not determine the spectral sparkle; 

i.e., blue and gray paints originated spectra with similar peak wavelengths even with different 
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sparkle grades. Indeed, while the color of these coatings is mainly provided by the substrate, the 

sparkle is entirely caused by the goniochromatic particles. On the other hand, solid samples exhibited 

very low values for all wavelengths and geometries (Figure 6c), with sparkle grades slightly above 

zero due to coating impurities and scratches. 

 

Figure 6. GOHYLED sparkle spectra of (a) a pearlescent, (b) a metallic and (c) a solid sample for the 

−15°x: 0°, 45°x: 0° and 75°x: 0° geometries of sparkle, and GOHYLED sparkle spectra of (d) a 

pearlescent, (e) a metallic and (f) a solid sample for the geometries of spectral/colorimetric 

measurements 45°x: −60°, 45°x: −30°, 45°x: −20°, 45°x: 30°, 45°x: 65°, 15°x: −30° and 15°x: 0°. The sparkle 

grade related to the white LED cluster (W) is represented by diamond markers (−15°x: 0° in blue; 45°x: 

0° in green; 75°x: 0° in purple). 

4.3. General Assessment of Graininess 

As described, graininess was quantified by means of the energy (En) statistical descriptor 

computed from the histogram. Although other descriptors were also tested, such as the mean, 

standard deviation, skewness and entropy; En provided the most reliable results. It was computed 

from images such as those in Figure 7, where a grainy pattern can be observed for both the pearlescent 

and metallic samples, whereas the solid one is completely uniform. These images are shown as 

examples and extracted from representative individual samples, one for each type of pigment, when 

illuminated with the white LED cluster. 

 

Figure 7. GOHYLED graininess images of (a) a pearlescent, (b) a metallic and (c) a solid sample for 

the −15°x: 0° geometry when illuminated with the white LED cluster. 

The En descriptor reached the highest values for surfaces with a very homogeneous distribution, 

which means very low graininess, and therefore, an opposite relationship between both parameters. 

In order to avoid this effect and for a better comparison, 1-En was computed and a linear 

transformation was finally applied to generate values within the range of the BYK-mac®. By doing 
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so, the pearlescent, metallic and solid samples in Figure 7 reached graininess values of 4.56, 6.47 and 

2.06, respectively. The whole set of samples exhibited graininess values from 0.11 to 6.74.  

The quantification of graininess by the GOHYLED system compared to the BYK-mac® led to a 

Pearson’s correlation coefficient of 0.820 (p < 0.001). The evaluation through the Bland and Altman 

method (Figure 8) led to a mean difference of −0.05, very close to zero, and narrow 95% CLs (−0.38, 

0.29) with very few outliers, indicating good agreement between devices; these outliers were 

produced by a weak signal reaching the camera when measuring very dark coatings. Although the 

illumination is more uniform over the sample for graininess evaluations, the total amount of light 

decreases when compared with sparkle assessments close to the specular reflection. As mentioned in 

the general assessment of sparkle, this could be improved by increasing the signal-to-noise ratio of 

the system. 

 

Figure 8. Bland and Altman plot of the GOHYLED graininess. 

4.4. Spectral Assessment of Graininess 

Similarly to sparkle, the graininess values obtained through the GOHYLED were spectrally 

characterized from 368 nm to 1309 nm. The relationship observed between spectral reflectance and 

graininess was stronger than for sparkle, indicating that, even if graininess is caused by 

goniochromatic particles, the influence of the substrate is more noticeable when sparkle is eliminated 

by the use of diffuse light. In this case, pearlescent and metallic samples (orange and blue lines in 

Figure 9, respectively) reached the highest graininess values for wavelengths with higher reflectance. 

The graininess peak found between 525 and 575 nm reached values close to those obtained with the 

white LED cluster (diamond markers in Figure 9). Another characteristic peak was observed in all 

samples between 380 and 430 nm. With regard to the IR, very small variations were detected above 

850 nm among goniochromatic pigments, where a flat spectrum was found. On the other hand, lower 

values of graininess and more fluctuating spectra were found in solid pigments (i.e., green line in 

Figure 9). In general, the graininess peaks were located in the VIS range, while beyond 850 nm this 

effect decreased substantially, reaching values of zero for most solid samples. In other words, higher 

graininess values were found at wavelengths where the reflectance was also high. Additionally, no 

distinctive data were obtained for graininess in the IR range among the samples analyzed. 
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Figure 9. GOHYLED graininess spectra of a pearlescent (orange), a metallic (blue) and a solid (green) 

sample for the geometry of d: 12.5°. The graininess value corresponding to the white LED cluster is 

represented in each graph with a diamond marker. 

4.5. General Assessment of Mottling 

The evaluation of mottling was carried out by means of the novel MSt index proposed, extracted 

from the GOHYLED system. Images taken at the 15°x: 0° geometry of the two samples affected by 

this effect and three without are shown in Figure 10, all of them when being illuminated by the white 

LED cluster; white arrows point to the vertical stripes. As anticipated, the two samples with stripes 

reached the highest values of this index for all geometries, which are shown in Table 2. The strongest 

mottling-striping effect was found at 15°x: 0° because the acquisition took place closer to the specular 

reflection. The largest acquisition distance especially affected the geometries further away from the 

specular reflection (15°x: 30° and 15°x: 45°). 

 

Figure 10. Images of (a) the grey and (b) the blue samples with stripes, and (c) the grey metallic, (d) 

the grey pearlescent and (e) the grey solid samples without striping for the white LED cluster at the 

geometry of 15°x: 0°. The arrows indicate the stripes in samples with mottling-striping. 

For the geometry 15°x: 0°, the samples with stripes reached values above 4, while the remaining 

samples were scored with lower values; at 15°x: 30°, the threshold was circa 0.5 and at 15°x: 45° 

approximately 0.2. These results suggested that the methodology proposed is relevant for the 

evaluation of mottling and striping. 

Table 2. Mottling-striping indices MSt for the gray and blue samples with stripes; and the pearlescent, 

metallic and solid samples without striping at the geometries of 15°x:0°, 15°x:30° and 15°x:45°, and 

under white LED illumination. 

Geometry Grey Striping Grey Pearlescent Grey Metallic Grey Solid 

15°x: 0° 6.70 3.73 3.52 0.12 

15°x: 30° 1.13 0.17 0.41 0.15 

15°x: 45° 0.32 0.11 0.16 0.17 

Geometry Blue Striping Blue Pearlescent Blue Metallic Blue Solid 

15°x: 0° 4.33 3.21 3.43 0.34 

15°x: 30° 0.93 0.36 0.25 0.16 

15°x: 45° 0.40 0.06 0.09 0.09 

4.6. Spectral Assessment of Mottling 
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Mottling was also analyzed spectrally from 368 to 1309 nm. Figure 11 shows the MSt spectra for 

the two samples with striping. The spectra of samples without striping resulted in substantially 

smaller values. 

The samples with striping were also related to the largest MSt grades for the spectral assessment, 

particularly at 15°x: 0°. The greatest response to mottling at longer wavelengths was observed for 

both samples with stripes, partly because of the diminished sparkle at the end of the VIS range. The 

better performance in the IR could also be caused by the thickness variations of the base coat, where 

the goniochromatic particles are immersed. In this case, the distance among particles increases, to the 

extent that regions where the deepest layers of the coating are more visible with IR light appear free 

from these particles. Consequently, the evaluation of mottling-striping beyond 750 nm, particularly 

from 900 to 1000 nm, is of great interest in addition to the VIS range. Moreover, the measurement of 

mottling in the IR range would simplify the mathematics behind this index because the removal of 

sparkle prior calculations by smoothing of the curves would not be critical. 

The MSt values of the remaining geometries were lower than the 15°x: 0° values but still slightly 

above the geometries of samples without stripes. Finally, a connection between the 

spectral/colorimetric features and mottling-striping was observed, similarly to the spectral evaluation 

of graininess. It was therefore inferred that once the influence of sparkle is removed, textural effects 

in goniochromatic pigments are strongly related to the spectrum of the sample. 

 

Figure 11. Mottling-striping spectra MSt of (a) the grey and (b) the blue sample with striping. The MSt 

related to the white LED cluster (W) is represented by diamond markers. 

5. Conclusions 

New methods and indices for the analysis of sparkle, graininess and mottling of automotive 

coatings were developed using a novel gonio-hyperspectral imaging system based on LEDs that 

operates from 368 to 1309 nm. This work could have a great impact on the automotive industry due 

to its interest in improving the quality control of car finishes, and because it is the sector wherein the 

demand for goniometric analysis is stronger. 

A sparkle evaluation method including a quantification index was proposed and proved to be 

particularly suitable for geometries close to the specular reflection. The spectral assessments of 

sparkle showed that this textural effect does not depend on the color or reflectance spectra of the 

substrate of a sample, since it was found to be mainly determined by the goniochromatic particles. 

This fact could help manufacturers to produce new sparkling effects by focusing their efforts on 

improving the intrinsic features of these bright particles instead of modifying the substrate. Quality 

control processes could also benefit from this by assessing how goniochromatic particles are settled 

in the base coat. Additionally, the spectral region from 450 to 600 nm was shown to be the most 

relevant. 

An index based on the first order statistics of the energy descriptor computed from the histogram 

of the images taken with the gonio-hyperspectral imaging system was employed for graininess 

assessments. The spectral analysis of graininess showed a strong relationship with spectral 

reflectance up to 850 nm, unlike sparkle. Therefore, graininess seems to depend on both the 

goniochromatic particles and the substrate. Accordingly, the selection of the substrate should be done 
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considering the targeted graininess rather than the desired sparkle effect, in terms of spectral 

reflectance. Beyond 850 nm, no remarkable differences were found among samples. 

The new mottling-striping index MSt was found to be very useful, as it revealed a dissimilar 

behavior between samples with and without striping and geometries, particularly at that of 15°x:0°. 

Spectral differences were mainly observed between 900 and 1000 nm, as a consequence of sparkle 

removal and higher penetration of IR light. In fact, this IR analysis could be easily implemented in 

current devices by simply adding IR illumination, since most of them use sensors with sensitivities 

up to 1000 nm. The relationship between mottling-striping and spectral reflectance would not be 

critical in this case, because this effect is mainly caused by thickness variations of the coating. 

Future work will focus on improving the performances of sparkle and graininess evaluations for 

dark samples and expanding the set of samples with mottling, comparing the results obtained by 

means of the GOHYLED system with other instruments. 
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