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Morphological study of skin cancer lesions
through a 3D scanner based on fringe
projection and machine learning
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Abstract: The effective and non-invasive diagnosis of skin cancer is a hot topic, since biopsy
is a costly and time-consuming surgical procedure. As skin relief is an important biophysical
feature that can be difficult to perceive with the naked eye and by touch, we developed a
novel 3D imaging scanner based on fringe projection to obtain morphological parameters of
skin lesions related to perimeter, area and volume with micrometric precision. We measured
608 samples and significant morphological differences were found between melanomas and
nevi (p<0.001). The capacity of the 3D scanner to distinguish these lesions was supported by
a supervised machine learning algorithm resulting in 80.0% sensitivity and 76.7% specificity.

© 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

The incidence of skin cancer increases every year, thus it is crucial to diagnose and treat it
effectively. Risk factors are too much exposure to sunlight, fair skin, family history and age.
The World Health Organization estimates that 60,000 people die every year from skin cancer:
48,000 from melanoma, its most aggressive form, and 12,000 from other types [1].

Skin cancer is usually diagnosed through visual inspection followed by dermoscopy. In
order to facilitate dermoscopic diagnosis and to spotlight the warning signs of the most
common type of melanoma, the ABCDE criteria were proposed: A is for asymmetry, B for
border irregularity, C for color, D for diameter and E for evolution [2]. However, these
methods result in a significant number of false positives. Currently, the gold standard for
diagnosis is histopathology, which requires the surgical excision of the tumor (biopsy), is
time consuming, uncomfortable for patients and contributes to the high direct annual costs for
the diagnosis and treatment of skin cancer [3]. Due to the large number of affected people,
much research has focused on reducing unnecessary biopsies. Some authors have tried to
detect skin cancer quantitatively and non-invasively through optical devices. Confocal
microcopy [4], optical coherence tomography [5] and multispectral imaging [6,7] are among
the most commonly used imaging modalities. Three-dimensional (3D) technology can also be
used to retrieve topographic information of cutaneous lesions, producing a height map of the
lesion’s surface from which parameters of area, volume and texture can be calculated. 3D
techniques can be mechanical and optical, but they are mainly classified into two categories:
ex-vivo techniques, which measure skin indirectly from a replica; and in-vivo techniques [8].
Ex-vivo techniques are reliable and provide high resolutions, but since they are based on
point-wise scanning they are too slow to be performed in clinical environments. In-vivo
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techniques are faster, but the great majority do not retrieve height maps per se, but rather a
visual distribution of texture, and consequently cannot quantify roughness in accordance with
International Organization for Standardization (ISO) standards [9]. The only imaging
modality whose acquisition is fast enough for in-vivo applications while retrieving
quantitative information on surface heights is fringe projection, which is based on the
triangulation measuring principle combined with light intensity modulation using sinusoidal
functions [10]. The use of a whole fringe pattern covering the skin sample instead of a single
laser point was facilitated by the advent of high-resolution digital cameras, cost-effective and
real time frame grabbers, and powerful image processing. By avoiding point-wise scanning,
acquisition time dropped to a few seconds. In consequence, fringe projection can now be
applied to ex-vivo [10] and in-vivo studies [11-13]. According to the literature, current in-
vivo methods to analyze skin topography that are suitable for clinical measurements can be
divided into three groups: videoscopy, capacitance mapping, and fringe projection. The first
two methods produce only a visual distribution of texture, whereas fringe projection retrieves
a height map that can contribute to the accuracy for the detection of non-melanoma skin
cancer [11] and to the assessment of the 3D changes in patient’s body during radiotherapy
[12], among other applications.

In this study, a new handheld 3D scanner based on this technology was developed for the
morphological analysis of cutaneous lesions, with the goal to improve skin cancer diagnosis.
In Section 2, we describe the 3D scanner, the clinical measurements, and data processing.
Section 3 includes the statistically significant parameters and the classification of lesions by
means of supervised machine learning. Section 4 compares this methodology with others used
in the past. Finally, Section 5 contains the most remarkable findings.

2. Materials and methods
2.1 Experimental setup and clinical measurements

The 3D handheld prototype is based on stereovision and structured light projection (Fig. 1).
The device has a compact design (220 x 240 x 120 mm) and includes two DMK 24U445
monochrome CCD cameras (The Imaging Source Europe GmbH) attached to two lenses
(TECHSPEC Compact Fixed Focal Length lens, Edmund Optics Ltd) placed in a standard
stereo geometry, at a 100 mm distance from each other and oriented at an angle of 42°.
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Fig. 1. (a) Skin lesion and 3D prototype, which is acquiring fringe images of a lesion. (b)
Fringe images, reconstructed and unwrapped phase maps and 3D images with the
superimposed color texture. (c) Height map of the lesion.

The cameras have a working distance of 110 mm, a fixed focal lens of 25 mm and a 19 x
14 mm field of view (FOV). Between the cameras, a Pek3 picoprojector (MicroVision, Inc.)
creates an image of the fringe pattern onto the skin; this pattern is moved horizontally at a
small distance during acquisition. Once this procedure has finished, the skin is illuminated
with a uniform white field and an image is captured with a C615 color camera (Logitech
International S.A.). The recorded fringe images are then processed by a conventional phase-
shifting algorithm to obtain the wrapped phase maps. Afterwards, they are unwrapped based
on the well-known Goldstein algorithm [14] without using patterns of different period.



Research Article Vol. 10, No. 7 | 1 Jul 2019 | BIOMEDICAL OPTICS EXPRESS 3406 I

Biomedical Optics EXPRESS .

Finally, the corresponding phases between both cameras are identified and the height map can
be reconstructed by means of the triangulation principle [8]. Additionally, the RGB
information obtained with the color camera is superimposed to the geometric coordinates of
the object points (X, Y, Z). The calibration of the three cameras followed the technique
proposed by Tsai [15]. The 3D scanner developed in this study offers a spatial resolution of
15 pm (XY dimension) and an acquisition time less than 4.5 s per whole FOV.

Clinical measurements were carried out at the Hospital Clinic i Provincial de Barcelona
(Spain) and the Universita degli Studi di Modena e Reggio Emilia (Italy). A total of 654 skin
lesions from Caucasian individuals were assessed. Patients remained still to avoid motion
artifacts; the area over the skin was cleaned and hair was carefully cut instead of shaved to
avoid irritation. All patients provided written informed consent before any examination and
ethical committee approval was obtained. The study complied with the tenets of the 1975
Declaration of Helsinki (Tokyo revision, 2004). The lesions were diagnosed by
dermatologists using a commercial dermoscope and the confocal microscope VivaScope 1500
from MAVIG GmbH. When malignancy was suspected, a histological analysis was carried
out. From the total set of lesions, 93% (608) could be measured with the 3D prototype; in the
remaining 7% (46), the use of the 3D scanner was impractical for the body area involved. Out
of the 608 lesions measured, 194 (32%) could be analyzed. The remaining 414 (68%) were
rejected because of artifacts caused by micro-movements, lesions out of the system’s FOV,
and hair inaccurately removed. Regarding the lesions properly collected, 81 (42%) were
benign nevi; 60 (31%) melanomas; 18 (9%) basal cell carcinomas; 18 (9%) non-nevi benign
lesions such as angiomas, dermatofibromas and actinic keratosis; 11 (6%) seborrheic
keratosis; and 6 (3%) squamous cell carcinomas.

2.2 3D image processing

Point-wise height maps of each lesion were obtained through the reconstruction of the fringe
images. Next, the 3D reconstructed data was imported into the software MountainsMap (Fig.
2). Preliminary removal of artifacts was carried out. A first operator levelled the scanned
surface to remove the general slope caused by small tilts. A second operator zoomed in the
area where the lesion and the surrounding healthy skin were located to select the Region of
Interest (ROI). Finally, the application of a Fast Fourier Transform (FFT) filter allowed the
exclusion of frequencies corresponding to artifacts of movement. Lesions were segmented
from the healthy skin on the color image and the selected contour was pasted into the 3D
image to extract the rest of parameters. Their perimeter was obtained by manual
segmentation. Next, the area and volume were calculated by means of an operator that
accounts for both peaks (convex curvatures) and holes (concave curvatures). The area and
volume divided by the perimeter (4p in mm and Vp in mm?) were also computed to determine
which lesions, despite presenting a smaller perimeter, had a greater surface or volume. In
order to compute additional parameters, the 3D surface was converted into a series of 2D
profiles (horizontal and vertical axial cuts). A set of 200 horizontal profiles and their mean
profile were obtained. From them, parameters for roughness and texture established by the
ISO 25178 were calculated such as the profile maximum height, skewness and arithmetic
mean deviation, number of peaks per centimeter and amplitude of the peaks.

2.3 Statistical analysis and classification algorithm

The parameters described were compared among types of lesions to evaluate their differences
using SPSS statistics V23.0 (IBM Corp.). Comparisons were considered statistically
significant for p-values under 0.05. Non-nevi benign lesions, seborrheic keratosis and
squamous cell carcinomas were excluded from the statistical analysis due to the low number
of samples. The Kolmogorov-Smirnov test was used to evaluate the normal distribution of all
variables. The ANOVA / Kruskal-Wallis (KW) tests were used to compare the data among
groups of skin lesions for parametric and non-parametric variables, respectively. The T-test /
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Mann-Whitney U (MWU) tests were used to compare outcome measures between pairs of
groups for normal and non-normal distributed data.

In order to classify the lesions, the accuracy of the parameters to train a good
classification model was evaluated. For this purpose, the Matlab R2015a Classification
Learner application was used to perform supervised machine learning by supplying the 3D
morphological parameters with statistical significance and the known classification of the
lesions. Since only 18 basal cell carcinomas were measured, they were excluded from this
process to avoid inaccurate results from the statistical analysis and machine learning
algorithms. The Classification Learner uses the data to train different models. Accordingly, an
automated training was performed to search for the best classification model including
discriminant analysis, decision trees, support vector machines and nearest neighbors. The
different validation options of the fitted models were analyzed beforehand [16]. The first
scheme was the ‘Cross Validation’, in which the data is divided into k& subfolds, a model is
trained using the out-of-fold observations, and then, the algorithm calculates the average test
error for all folds. For this, £ was set equal to two and the samples in the two folds were
randomly selected by the algorithm. The second scheme used was the ‘Holdout Validation’,
which divides the data into two folds, containing random observations of each lesion, and
uses one fold for training and the second for validating. The percentage of data used for
training and validating was set equally to 50%. Additionally, in order to test an algorithm that
does not divide the data into training and validation sets, the ‘No-Validation’ scheme, in
which all data is used for training and afterwards also for validating, was also tested.
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Fig. 2. 3D data of (a) a nevus and (b) a melanoma. Top, from left to right: height maps and 3D
views of the surface after image processing (leveling, zooming, filling-in non-measured points
and FFT filtering). The mean profile of each lesion is shown at the bottom.

3. Results

For nevi (N), melanomas (MM) and basal cell carcinomas (BCC), all analyzed parameters
followed a non-normal distribution (p < 0.05). Of all parameters computed, the KW test
reported significant differences for the different types of lesions regarding area, 4, volume, V,
perimeter, P, normalized area, Ap, and volume, Vp (p < 0.001). In contrast, the profile and
amplitude parameters calculated following the ISO 25178 did not provide significant
differences (p > 0.05), and for this reason they are not reported. Table 1 shows the mean ( +
standard deviation) and the minimum and maximum values (in parenthesis) for each type of
lesion and globally (Total). In addition, the MWU test analyzed if significant differences
existed between pairs of types of lesions. As shown in Table 2, when comparing MM versus
N, all parameters showed significant differences (p < 0.001), meaning that MM and N are
significantly different. In contrast, when comparing MM vs BCC and N vs BCC, differences
were not significant, with the exception of the area when comparing BCC with MM (p =
0.034), indicating the complexity of discriminating BCC from MM and N.

Regarding the machine learning based classification algorithm, the best results were
obtained with decision trees (e.g. Bagged Trees) and nearest neighbors (e.g. Weighted -
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Nearest Neighbor, KNN). The final data set contained 60 observations of nevi and 60 of
melanomas. The nevi observations were randomly chosen from the 81 to avoid returning
higher specificities than sensitivities as a result of the higher number of nevi. Table 3 contains
the different validation schemes and the classification models that provided the lowest error
rate. The predictive accuracy of each classification model is shown in terms of sensitivity and
specificity, i.e., the percentage of melanomas and the percentage of nevi correctly identified.
The sensitivity and specificity corresponding to the ‘No Validation” scheme were 100%, with
an associate error rate of 0% for all trials. The repeatability of the results was also assessed by
the creation of different random sets of nevi. The ‘Cross Validation’ scheme applied to the
different sets of nevi led to maximum variations of 5.00% for sensitivity and specificity and
0.05% of error rate. Regarding the ‘Holdout Validation’, the variations of sensitivity,
specificity and error rate were 10.00%, 13.40% and 11.65%, respectively.

Table 1. 3D Morphological Parameters with Statistically Significant Differences among
Groups (p < 0.001, KW Test): area (4, mm?), volume (V, mm®), perimeter (P, mm), Ap
(mm) and Vp (mm?).

N MM BCC Total

A4 28.6+239(29,1273) 50.8+384(49,128.8) 30.0+18.0(32,64.8)  37.2+31.5(29, 182.8)
v 58+7.9(02,37.6) 15.9439.6(0.5,298.2)  7.5+7.4(0.5,0.2) 9.8 +25.5 (0.2, 298.2)
P 18.9+7.7(6.6,44.4) 26.5+10.9(7.9,53.3)  20.9+65(13.5,35.1)  21.9+9.6(6.6,53.3)
Ap  14+08(0.5,7.1) 1.7+ 0.6 (0.6, 3.5) 1.440.5 (0.5, 2.5) 1.5+0.7 (0.5, 7.1)

Vp  0.19+0.20(0.02,1.42) 0.5+ 1.9 (0.04, 14.6) 0.2940.28 (0.31,1.24) 0.3+ 1.7 (0.02, 14.63)

Table 2. p-values between Groups of Lesions (MWU Test)

A Vv P Ap Vp
MM vs N <0.001*  <0.001* <0.001* <0.001*  <0.001*
MMvs BCC  0.034* 0.270 0.052 0.075 0.943
Nvs BCC 0.341 0.150 0.160 0.835 0.085

*Statistically significant differences.

Table 3. Sensitivity (SN), Specificity (SP) and Error Rate (ER) Values for the ‘Cross’ and
‘Holdout Validation’ Approaches.

Validation Scheme  Classification Model SN (%) SP (%) ER (%)
Cross Validation Bagged Trees 70.00 68.30 30.85
Holdout Validation Weighted KNN 80.00 76.70 21.65

4. Discussion

High accuracy (80.00% sensitivity and 76.70% specificity) was obtained through the
‘Holdout Validation’ scheme and training a ‘Weighted KNN’ classification model. This
model categorizes query points based on their distance to the nearest k neighbors in a training
data set. Specifically, medium distinction between classes is set with a number of £ neighbors
equal to ten, using a distance weight. On the other hand, the ‘No Validation’ scheme returned
100% sensitivity and specificity values since the data set was classified with respect to the
data set itself. In conclusion, ‘Holdout Validation’ achieved the best results, but ‘Cross
Validation” was considered the most reliable approach, since it uses both sets for training and
validation. Other methods such as multispectral imaging systems, which acquire images at
different wavelengths, have also been used to detect skin cancer. Comparing the 3D results
with those obtained in a previous study where a multispectral imaging system from 414 nm to
995 nm was applied to the study of skin cancer [6], our results show significantly increased
specificity at the only expense of a slightly lower sensitivity. The authors obtained sensitivity
and specificity of 87.2% and 54.5%, respectively, for a 50%-50% validation scheme with a
customized classification algorithm in a set of 502 lesions (nevi, melanomas and basal cell
carcinomas). Another study evaluated skin lesions combining this system with another that
used 995 nm to 1613 nm wavelengths [7]. The sensitivity and specificity obtained were
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85.7% and 76.9%, respectively, for a no-validation algorithm when analyzing 14 melanomas
and 39 nevi. We should underscore that the classification algorithms and the sample sets used
were not the same for all studies.

5. Conclusions

This is the first report showing that non-invasive 3D technology based on fringe projection
could assist practitioners in making a final diagnosis and contribute to a significant reduction
in the number of false positives thanks to its enhanced specificity. Further work will focus on
reducing the system sensitivity to the micro-movements of the patients, since the main cause
for discarding 3D images was the inability to adequately filter all image artifacts.
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