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Abstract: We propose a new confocal device for flow profiling in microcapillaries. A 
viewfinder system is developed using a visible light microscope, allowing focusing with high 
precision an 830 nm Fabry-Perot laser diode on a microchannel. By means of a novel 
confocal approach, the Doppler shift produced by the particles of a turbid liquid moving in 
the focal plane can be measured in real time using the well-known self-mixing effect. The 
resolution of this device is characterized in function of the full width at half maximum of the 
Gaussian frequency peak related to the self-mixing signal in the frequency domain. Velocity 
measurements for flow rates from 0.2 to 1.6 mL/min are presented, and the results 
demonstrate that the method reduces the phase noise and the effects of the out-of-focus 
particles, allowing straightforward flow profiling in microchannel structures. 

©2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction 

The first functional laser was presented in 1960 by Theodore H. Maiman [1]. The invention 
of this source of monochromatic light is one of the most important scientific breakthroughs in 
modern history, from engineering to life sciences. In this last area, it has been exploited in 
applications like laser spectroscopy, microscopy, surgery and as a sensor in non-invasive 
methods for measuring the velocity of fluids inside the human body [2]. 

Soon after the laser discovery, the first milestones in laser velocimetry occurred. The first 
laser Doppler flowmeter (LDF), used for measuring the velocity of a gas flowing inside a 
glass tube, was reported in 1965 by Forman et. al. [3]. 

As explained in [4], a conventional LDF estimates the flow velocity by means of the 
Doppler shift generated in a coherent source of light divided into two optical paths using two 
different approaches. In the first, an unbalanced scheme is used, a high-intensity beam 
interacts with the particles of a flow that scatters a small portion of the light over a 
photodetector (PD) where a low-intensity beam also converges (reference beam mode); and 
another that uses two beams of equal intensity to generate interference fringes in a focal point, 
where particles scatter light in any angular direction, then, a PD registers the beating in 
intensity concerning the Doppler shift (differential Doppler mode). 

The basis for an alternative to the double-arm LDF was presented by Rudd [5] in 1968. 
He investigated the Doppler shift occurring in the light-wave of a He-Ne laser focused onto a 
rotating mirror, using a PD he registered the modulation of the optical output power (OOP) 
caused by the small portion of back-reflected light that is re-injected into the laser cavity after 
interacting with the moving object. Later on, Shinohara et. al. [6] named this phenomenon the 
Self-Mixing effect. 

Self-mixing interferometry (SMI), also known as optical feedback interferometry (OFI), is 
nowadays a well-established technique employed for measuring variables such as absolute 
distance [7,8], displacement [8,9], vibration and velocity [10]. A SMI-based device is able to 
perform similar tasks such as a Michelson or Mach–Zehnder interferometer [10], having the 
additional advantage of being a self-aligned system (an additional reference arm is not 
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needed) which in its basic configuration does not require optical components other than a lens 
for focusing/collimating the laser beam on a target. Additionally, with the emergence of laser 
diodes (LD) having a monitoring PD integrated in the same packaging, an external PD is not 
needed anymore. 

In recent years, the appearance of biomedical solutions based on SMI has increased [11]. 
Consequently, SMI flowmeters (SMF), useful for measuring the velocity of biological fluids 
(both in-vivo and ex-vivo), have been previously reported by other authors [12–15]. 

In [16] a SMF able to reconstruct the velocity profile of streams with a low particle 
concentration (single-scattering regime) is presented; however, one of the most critical issues 
faced by SMF/LDF systems is dealing with turbid media (such as blood flowing into a natural 
or artificial channel), because of the quantity of particles moving along the channel that 
causes the photons to interact with more than one particle before to be detected (multiple-
scattering regime). Therefore, the Doppler shift registered is not related to the velocity of a 
single particle, but to the sum of all the scattering events in the light path. This phenomenon 
is known as phase noise [17], and adds a high degree of uncertainty to the measurement. 
Additionally, in difference with the double-arm LDF scheme, the sensing volume of a SMF is 
defined only by the numerical aperture (NA) of the optics that focuses the laser beam on the 
flow. Thus, all the particles interacting in the focal region, and in a given area close to the 
near and far field, will contribute to the Doppler spectrum, which causes a significant 
broadening in the spectrum itself (out-of-focus particles effect) [18]. 

Several techniques have been presented for overcoming the previous issues [17–22]. 
Some of them are based on signal processing solutions, which usually make an application in 
real-time impossible. As an alternative, we propose to provide confocal capabilities to a SMF 
system, which allows us to exploit the ability of this microscopy technique to instantly define 
a measurement volume and a sampling depth in the flow profiling of microchannels. 

The well-known confocal concept, applied to microscopy, was patented by Minsky [23] in 
1961, and the technique revolutionized the field of imaging by allowing researchers to obtain 
optical information from different depths inside a sample. There is a vast scientific literature 
on the subject [24–29]. Confocal microscopy is, by its very nature, an imaging technique; the 
basic idea lies in the use of a spatial filter or pinhole (PH) placed in the conjugated plane to 
eliminate the out-of-focus light reflected or emitted from the sample under observation. The 
resolution of a confocal system is related to the full width at half maximum (FWHM) of the 
intensity point spread function (PSF) produced in the focal plane; in consequence, the 
resolution is controlled by the numerical aperture of the microscope objective (MO) and the 
wavelength of the coherent source of light. The diameter of the PH is determined by the 
balance between sectioning strength (small diameter) and better SNR (large diameter); 
therefore, the PH size must be optimized for an adequate signal detection, being small enough 
to reject most of the out-of-focus light without compromising the SNR [25]. 

Based on the above facts, we define a confocal system as one that uses a mechanical 
optical filter to reduce the out-of-focus and phase noise effects, which allows unambiguous 
data acquisition from a very specific focal plane. In the present work, thus, we propose a 
novel confocal self-mixing (CSMI) approach, where a MO with high-NA (0.55) controls the 
sensing volume in combination with a spatial filter, reducing the noise produced by the 
particles moving in the out-of-focus region and the multiple scattered photons that reaches the 
cavity of an 830 nm Fabry-Perot (FP) laser diode. 

It was proposed in [30,31] that a single-mode optical fiber coupled into a laser acts as a 
spatial filter for achieving confocal performance in microscopy imaging. In [32–34] the SMI 
signal was obtained by coupling a semiconductor laser onto an optical fiber, and the fiber was 
later inserted directly into a blood vessel to measure the flow conditions. The Doppler 
spectrum reported, however, exhibits the typical broadening caused by the phase noise and 
the out-of-focus particles effect. It is important to note that the authors do not mention any 
confocal implication in using an optical fiber for SMI sensing. 
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In [35] it is stated that the micrometrical cavity of a single-mode laser is equivalent to a 
PH in confocal microscopy and, therefore, the signal obtained as a result of the modulation of 
the OOP produced by the back-reflected light that re-enters the cavity is equivalent to a 
confocal signal. It has been accepted in consequence that SMI is by its very nature a confocal 
technique. This approach was applied in [36], where a confocal architecture based on the SMI 
effect is used to image dynamic turbid media by acquiring confocal reflectance and Doppler 
signals; and in [37], where a confocal laser feedback tomograph based on SMI acquire cross-
sectional and volumetric images of a two-layered skin tissue phantom that contains a 200 µm 
diameter channel where a 10% Intralipid solution flows. 

However, we demonstrate that a spatial filter effectively increases the confocal 
capabilities of a SMI-based flowmeter when is combined with a high-NA microscope 
objective, which allows real-time velocity profiling in microchannel structures. 

This novel confocal device aims to provide the basis towards a medical grade alternative 
for the diagnosis and prognosis of diseases involving alterations in the characteristics of body 
fluids moving inside biological or artificial capillaries, in both in-vivo or ex-vivo applications 
(e.g. determination of the vertical growth phase of cutaneous melanoma, in-vivo burn depth 
determination, thrombosis, hypercholesterolemia, among others). In addition, we enhance the 
effectivity of the flow profiling by including a visual tracking system of the laser spot. This 
allow to focus precisely on a given region of interest, while providing a real-time depth-
sectioning capability not presented in other methods. 

Next, the theoretical framework is explained; from these bases, the design of our confocal 
scheme is detailed. In section 3, we characterize the resolution of our system and present the 
measurements corresponding to the maximum velocity of an emulsion composed by 5% fat 
milk and 95% distilled water pumped into a microcapillary of ≈235 μm in radius. We 
compare a non-confocal measurement against three confocal registers for nine different flow 
rates to demonstrate that our system effectively reduces the phase noise and the out-of-focus 
particles effect, significantly improving the results. Finally, conclusions are drawn in section 
4. 

2. Material and methods 

2.1. Theoretical approach 

Let us considerer a system like the one depicted in Fig. 1, where a laminar fluid under a 
Newtonian regime flows inside a microcapillary. The velocity profile of this fluid can be 
described through the Hagen-Poiseuille law: 

 
2

max 2
( ) 1 .

r
V r V

R

 
= − 

 
 (1) 

where V(r) is the flow velocity at a given point r from the center of the microcapillary of 
radius R (where r = 0) to its interior wall (where r = R). Thus, the maximum velocity Vmax is 
found in the center of the channel, tending to become null at the walls. 
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light is back-reflected to the laser cavity due to the surface reflection coefficient rs. 
According to [40], the surface roughness must be significant compared to the laser 
wavelength in order to modulate the external cavity and produce a Doppler shift. This back-
reflected field modulates the light phase without feedback ω0t = 4πVLt/λ0, being λ0 the laser 
wavelength without feedback. The light phase under feedback ωFt is then found solving the 
phase equation: 

 ( )0 sin arc tan .F Ft t C tω ω ω α= − +  (5) 

Here, C is the feedback level factor, which is related to the quantity of the back-reflected 
light that re-enters the cavity, and α is the line-width enhancement factor [41]. C is of special 
interest because it explains the strength of the changes in the behavior of the laser due to 
optical feedback; when C < 1, a unique solution that satisfies (5) can be found; otherwise, for 
C > 1 several external cavity modes may satisfy the phase equation [42]. 

C is determined by: 

 21 .L

l

C
ηγ α
η

= +  (6) 

where Lη  = 2L/c and lη  = 2l/c are the time of flight in the external and internal cavity 

respectively, c stands for the speed of light in vacuum, and: 

 ( )2
2

2

1 .sr r
r

γ = −  (7) 

The time-domain SMI signal obtained due to the modulation in the OOP, exhibits a fringe 
pattern equivalent to that found in a Michelson or Mach–Zehnder interferometer; therefore, 
its frequency corresponds to the Doppler frequency associated to the velocity at which the 
target is moving. This allows a simple frequency analysis by means of an FFT algorithm. 

Figure 3 presents experimental results of SMI signals on solid and liquid targets. When 
the beam interacts with an oscillating solid target, the amplitude of the signal is clear and 
shows the time dependence of the movement of the target (Fig. 3(a)) and the associated 
Fourier transform with a single frequency peak (Fig. 3(c)). In the scenario depicted in Fig. 1, 
where a liquid element is involved, the resulting SMI signal includes the Doppler frequencies 
corresponding to the velocity V(r) of all the photons scattered around the focal point and a 
certain region above and below it. As a consequence, the time-domain signal becomes much 
more complex (Fig. 3(b)) and the FFT spectrum obtained will not show a single frequency 
peak but a broad band of them (Fig. 3(d)). 
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4. Conclusions 

We have presented a prototype of a confocal SMI-based flowmeter, aimed to provide the 
basis for developing medical resources for the prognosis and diagnosis of diseases involving 
changes in the velocity profile of body fluids in-vivo and/or ex-vivo, or as auxiliary 
equipment for infusion therapies. The proposed CSMI system was used to measure the 
Doppler frequency concerning the maximum velocity present in the center of a laminar flow 
inside a microcapillary of ≈235 μm in radius in real-time over a highly scattering medium (an 
emulsion of 5% fat milk and 95% distilled water) and under relatively high flow rates (Up to 
1.6 mL/min). Due to our confocal approach, not used in a SMI setup before, no signal 
processing other than a fast Fourier transform on the signal was needed to obtain the Doppler 
frequency and the maximum velocity of the particles flowing in the center of the 
microcapillary. This shows the phase noise and the effect of out-of-focus particles were 
effectively reduced by using a mechanical optical filter. By integrating an optical microscope 
in the setup, aiming the laser over a very specific region of interest is possible and allows us 
to perform non-invasive depth sectioning by changing the focal point along a vertical section 
of the microcapillary. This feature can be an important tool for the prognosis and treatment of 
diseases that involve the alteration of the velocity profile of physiological fluids, originated 
by intrinsic (e.g. embolisms, thrombosis and angiopathies) or extrinsic causes (e.g. 
traumatisms, burns or iatrogenic effects). Although we have presented an average of thirty-
one confocal signals obtained in a single measurement in different conditions, equivalent 
results can be achieved using a single capture in real time. Yet we have reported here a 
confocal depth limit of ≈995 μm, this can be improved by varying parameters such as optical 
output power, pinhole diameter and even the numerical aperture or effective focal length of 
the microscope objective; this limit also varies depending on the scattering coefficient of the 
sample under analysis. We are reporting results for a wavelength of 830 nm because at the 
near-infrared region scattering becomes dominant due to reduced absorption of tissue, usually 
designated as the diagnostic window. Thus, the SNR in a SMI-based system is improved at 
this wavelength due to reduced absorption while scattering effects become more visible. 
However, wavelength can be adapted depending on the optical properties of the target, or the 
laser safety specifications required on medical applications. Regarding this last issue, the 
OOP of the laser source and the NA of the MO need be modified in order to meet the laser 
safety standards according the laser-tissue interactions and the desired application. The results 
obtained and the requirements of each application should be analyzed individually. 
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