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Abstract

Sustainable management of marine ecosystems requires a better knowledge about the
space-time distribution and dynamics of ecological parameters such as phytoplankton
communities, including critical bloom-forming algal groups. Better understanding of
phytoplankton biodiversity and dynamics is essential in evaluating the role of each
algal group in the global marine ecosystem and biogeochemical cycles. In attempting
to address this question, in situ and remotely-sensed spectrometric optical obser-
vations have demonstrated to provide previously unavailable information regarding
several optically active constituents in seawater at local and global scales, in par-
ticular, regarding phytoplankton community structure. In this sense, the advent of
high spectral resolution (hyperspectral) optical sensors have raised new expectations
about the possibilities of discriminating phytoplankton community composition in
the ocean, beyond the estimation of only the primary pigment in phytoplankton,
chlorophyll-a, a proxy for the phytoplankton biomass and primary production since
it is common to all taxonomic groups. This PhD thesis has been carried out with
the aim of improving our ability to extract information regarding phytoplankton
community structure in the ocean by developing and evaluating a novel approach
based on hyperspectral data analysis. In particular, a dissimilarity-based cluster
technique, which accounts for complete spectral behaviour of hyperspectral data of
each seawater sample, has been applied in combination with derivative spectroscopy,
which exploits the spectral shape features of each analyzed spectrum. As a novelty,
a validating tool has been proposed and proven useful to illustrate the e�ectiveness
of the optical-based classi�cation for discriminating di�erent phytoplankton assem-
blages. This novel validation approach is based on the pigment composition analyzed
in conjunction with concurrently obtained optical data, information which has been
commonly used by the scienti�c community as a proxy for the phytoplankton com-
position. The feasibility of this methodology has initially been demonstrated using
a simulation-based approach, i. e. using a radiative transfer modeling framework
for open ocean and shallow coastal environments. In addition, di�erent real open
ocean environments corresponding to several stations in the eastern Atlantic Ocean
have successfully been classi�ed by applying the cluster analysis to di�erent hyper-
spectral data sets including absorption and remote-sensing re�ectance spectra and
their second derivative spectra. This classi�cation has served to identify a potential
application of the proposed methodology: the establishment of di�erent bio-optical
provinces from the analysis of hyperspectral oceanographic observations, leading to
examination of its biogeographical relevance by comparison to ecological provinces
previously proposed in the literature. This thesis concludes by con�rming the main
hypothesis that discrimination of phytoplankton community structure and dynamics
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in the ocean can be enhanced while using hyperspectral oceanographic observations.
It is noteworthy that the proposed approach is generally applicable to di�erent data
sets, besides in-situ pigment or optical data data also to remotely-sensed, biogeo-
chemical or hydrographic data sets.
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Resum

La gestió sostenible dels ecosistemes marins requereix d'un millor coneixement de la
distribució de certs paràmetres ecològics com les comunitats de �toplàncton, inclosos
aquells grups algals causants d'a�oraments. La caracterització acurada dels patrons
espacio-temporals de la biodiversitat del �toplàncton és essencial per tal d'avaluar el
paper de cada grup algal en l'ecosistema global marí i els cicles biogeoquímics. En
l'intent d'abordar aquesta qüestió, observacions espectromètriques adquirides in situ
i per teledetecció han demostrat proporcionar informació valuosa sobre la distribució
de diversos components òpticament actius presents a l'aigua de mar, tant a escala lo-
cal com global, i en particular, sobre l'estructura de les comunitats �toplanctòniques.
En aquest sentit, l'aparició de sensors òptics d'alta resolució espectral (hiperespec-
trals) ha augmentat les expectatives per discriminar la composició de les comunitats
de �toplàncton, permetent anar més enllà de l'estimació del pigment primari del �-
toplàncton, la cloro�l·la-a, utilitzat convencionalment com un indicador global de
la biomassa i la producció primària de �toplàncton ja que és un pigment comú a
tots els grups taxonòmics. Aquesta tesi doctoral s'ha dut a terme amb l'objectiu de
millorar la nostra capacitat d'extraure informació sobre l'estructura de les comuni-
tats de �toplàncton en l'oceà, mitjançant el desenvolupament i avaluació d'una nova
aproximació basada en l'anàlisi de dades hiperespectrals. En particular, s'ha pro-
posat una tècnica de classi�cació, on s'examinen les dissimilituds entre les signatures
hiperespectrals de cada mostra d'aigua, i que ha estat aplicada en combinació amb
l'espectroscopia derivativa, tècnica amb la qual s'exploren les característiques de la
forma de l'espectre analitzat. Com a novetat, es proposa també una eina de vali-
dació per demostrar l'e�càcia d'aquesta nova tècnica de classi�cació. En el procés de
validació es demostra que les classi�cacions obtingudes amb les dades òptiques i la
metodologia proposada són molt semblants a les obtingudes amb dades basades en
l'anàlisi de la composició pigmentària (utilitzant un cromatògraf líquid d'alta resolu-
ció, HPLC), tècnica habitualment utilitzada per la comunitat cientí�ca com a indi-
cador de la composició de �toplàncton. La viabilitat d'aquesta metodologia ha estat
demostrada inicialment utilitzant una aproximació basada en simulacions, on la dis-
tribució del �toplàncton està predeterminada i on s'han generat diferents escenaris
lumínics d'aigües en mar obert i costaneres mitjançant un model de transferència
radiativa. Per altra banda, escenaris reals de mar obert corresponents a diferents
estacions en l'oceà Atlàntic han estat classi�cats satisfactòriament mitjançant les
tècniques proposades, aplicades a dades hiperespectrals incloent espectres d'absorció
i re�ectància, així com els seus espectres derivats. Aquesta classi�cació ha servit
per identi�car una aplicació potencial de la metodologia proposada: l'establiment
de diferents províncies bio-òptiques a partir de l'anàlisi de mesures hiperespectrals
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oceanogrà�ques, donant lloc a l'examen de la seva rellevància biogeogrà�ca en com-
paració amb províncies ecològiques proposades prèviament en la literatura. Aquesta
tesi conclou amb la con�rmació de la hipòtesi principal: una millor discriminació
de l'estructura i dinàmica de les comunitats de �toplàncton és possible mitjançant
l'ús d'observacions hiperespectrals oceanogrà�ques. Cal destacar que l'aproximació
proposada és en general aplicable a diferents conjunts de dades, més enllà de la com-
posició pigmentària o dades òptiques obtingudes in situ també a dades obtingudes
per teledetecció, dades biogeoquímiques i altres paràmetres hidrogrà�cs.
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Introduction

Motivation

The oceans cover two-thirds of the Earth's surface and contain 97% of the planet's
water, the most important substance for life on Earth. They have a profound in�u-
ence on its environment since the oceans contain 99.5% of our planet's livable habitat.
Monitoring and protecting water resources, including the oceans, is therefore a must
and a challenge for all countries of the world. In this sense, the United Nations (UN)
recommended the proclamation of an International Decade for Action from 2005 to
2015, �Water for Life�, which provided an excellent opportunity for the international
community to advance towards a truly integrated approach to the management of the
world's water. In accordance, authorities and initiatives like the European Union Wa-
ter Framework Directive (WFD, 2000/60/EC), the Global Ocean Observing System
(GOOS) of UNESCO, or the European Network Global Monitoring for Environment
and Security (GMES) were established as frameworks to assess the marine role in
Earth system dynamics by promoting a dense and frequent monitoring of the ocean's
composition. Of particular importance are climate research related monitoring ap-
plications as to record indicators of the ocean's response to climate change, and to
calibrate and validate biogeochemical ocean-ecosystem models (LeQuéré et al., 2005).
Sustainable management of oceanic ecosystems requires comprehensive informa-

tion on phytoplankton community composition and distribution. Phytoplankton, as
primary producers that convert light and CO2 into biomass through the photosyn-
thesis, stand at the base of the oceanic food web. They are important to monitor
for being an indicator of the biological state of the oceans. Their importance as
a food source for the pelagos and as a potential sink of atmospheric carbon have
been widely recognised (Holligan, 1992). Some phytoplankton groups have also been
identi�ed to have an important role in the climate regulation and the atmospheric
sulfur cycle (Fig. I.1a). These groups named DMS-producers are able to produce
the cellular component dimethylsulfoniopropionate (DMSP), which once converted
into sulfate molecules are emitted to the atmosphere and act as cloud condensation
nuclei, increasing general cloud cover (Vallina and Simó, 2007). In addition, some
phytoplankton species are able to cause harm through the production of toxins or by
their accumulated biomass. Such outbreaks which typically occur in coastal areas are
known as �harmful algal blooms� (HABs, Babin et al., 2008). Social impact of envi-
ronmental changes associated to algal blooms is signi�cant (Fig. I.1b). When blooms
are formed the toxins travel up the food chain and pose serious human-health threats
and severely a�ect numerous industries and commercial �sheries, causing substantial
economic losses in the form of reduced sales or diminished tourist activity.
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Figure I.1: (a) Diagram illustrating the role of phytoplankton in the sulfur cycle.
Source: modi�ed from Takahashi et al. (2011). (b) Episode of a "red tide" algal
bloom (non-toxic) of Noctiluca scintillans in New Zealand. Source: M. Godfrey.

Phytoplankton have a pivotal role in driving and maintaining aquatic biodiversity
and the marine food web as a whole. Causative links between phytoplankton growth,
abundance, species success and succession and how they are a�ected by the driving
environmental forces need to be established. Moreover, the understanding of the
regulation of phytoplankton productivity and biomass in the ocean is crucial for the
understanding on e�ects of global climate change by radiative forcing to the ocean's
food web structures and carbon �uxes. In this sense, there is an important need
for better information on the spatial distribution of biological activity in the upper
ocean and its temporal variability, especially in the case of oceanic phytoplankton
biomass. Further research is therefore needed to develop new techniques that enable
to recognize phytoplankton-related ecological changes and perturbations.
For all the above-mentioned compelling reasons, increasing emphasis is being placed

upon scienti�c research and monitoring of the phytoplankton biodiversity and dynam-
ics. In attempting to monitor spatial and temporal variations of the phytoplankton
community structure at a local and global scale, in situ and remote sensing optical
observation represents the most suitable, fastest and less invasive method currently
available for synoptically measuring wide-area properties of ocean ecosystems. Tra-
ditional description of global phytoplankton abundance and distribution involved the
monitoring of the primary pigment in phytoplankton, chlorophyll-a, a proxy for the
phytoplankton biomass. In fact, numerous studies over the past three decades have
focused on the development of bio-optical algorithms linking di�erent processes to
this pigment (O'Reilly et al., 2000; Reynolds et al., 2001). However, biogeochemical
cycling in marine systems is intimately linked to the activity of speci�c phytoplank-
ton groups (see Table I.1), meaning that phenomena such as the production of sulfur
components like DMSP or proliferation of algal blooms are taxon-dependent (Vila-
Costa et al., 2006; Stumpf et al., 2003). Further e�orts are thus needed to go beyond
the estimation of only chlorophyll-a, which is common to all taxonomic groups.

2



Motivation

Table I.1: Summary of properties of di�erent phytoplankton groups, which play
a speci�c role in the marine ecosystem and are characterized by speci�c bio-marker
pigments. Source: generated from tables in Nair et al. (2008), Hirata et al. (2008)
and Hirata et al. (2011).

Mapping marine phytoplankton community structure from a
hyperspectral perspective

Today, in situ and remotely-sensed spectrometric optical observations of ocean waters
have the potential to provide information regarding the concentrations of optically
signicant constituents in seawater, in particular, regarding phytoplankton community
structure. In fact, e�orts to expand the use of spectrometric measurements for esti-
mating some biogeochemically important ocean variables and phytoplankton-related
phenomena have increased considerably. For example, in recent years, a variety of bio-
optical methods have been established (Nair et al., 2008; Brewin et al., 2011) that use
satellite spectrometric data to identify di�erent phytoplankton communities through
the detection of either Phytoplankton Functional Types (PFTs, i.e., phytoplankton
that have a speci�c biogeochemical function such as calci�cation, silici�cation, DMS
production or nitrogen �xation) or Phytoplankton Size Classes (PSCs, i.e., the au-
totrophic pool is partitioned according to cell size, which may be useful to better
understand their contribution to global ocean primary production).
There are two main types of approaches to derive PFTs and PSCs from remote

sensing ocean color data: (1) the abundance-based approach, in which the eutrophic
status of the waters, indicated by the chlorophyll concentration or the magnitude of
the absorption optical coe�cient of phytoplankton, is related to community structure
(Sathyendranath et al., 2001; Uitz et al., 2006; Devred et al., 2006 and 2011; Aiken
et al., 2007; Hirata et al., 2008 and 2011; Brewin et al., 2010a; Mouw and Yoder,
2010) and (2) the spectral response approach, in which di�erent PFTs and PSCs are
detected providing they have contrasting optical signatures or traits (Sathyendranath
et al., 2004; Alvain et al., 2005 and 2008; Ciotti and Bricaud, 2006; Bracher et al.,
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2009; Brewin et al., 2010b; Sadeghi et al., 2012). All types of approaches have their
limitations to describe phytoplankton biodiversity due to the fact that for instance
the same taxonomic size class may contain phytoplankton of di�erent functional types
(see some examples in Table I.1). On the other hand, abundance-based algorithms
may fail to distinguish between algal blooms of di�erent PFTs or PSCs that have the
same biomass. And a size-based classi�cation alone may not be fully satisfactory from
a biogeochemical perspective, since the functional role of phytoplankton in marine
ecosystems also depends on the nutrient, iron, or light uptake. Furthermore, in
the spectral-response approaches, accurately exploiting the spectral characteristics
of di�erent PFTs or PSCs to identify and distinguish among them may not always
be successful. In this sense, further work is still required to assess the reliability of
these bio-optical approaches. In order to con�dently use these satellite products, as
with any satellite-derived geophysical or biogeochemical product, validation exercises
remain a key issue to ascertain accuracy and limitations (Brewin et al., 2011). This
is of particular importance given that the detection of PFTs from satellite data is a
�eld of research in its early stages of development.
Although it is becoming a reality the global monitoring of certain dominant phy-

toplankton taxonomic and size groups from satellite data, the real challenge of un-
derstanding the phytoplankton biodiversity in the ocean lies in the identi�cation of
di�erent groups of phytoplankton under non-bloom or dominant conditions (i.e., when
multiple phytoplankton assemblages are present in the water) or in coastal waters (i.e.,
more optically complex environments). In order to overcome this challenge, techno-
logical advances and especially the advent of high spectral resolution (hyperspectral)
sensors have raised new expectations about the possibilities of spectrally discriminat-
ing phytoplankton community composition in the ocean. Compared to multispectral
sensors that collect optical data at a limited number of wavelengths, hyperspectral
sensors give continuous spectral coverage over a broad wavelength range with better
than 10 nm resolution and have opened the possibility for optical oceanographers to
more accurately characterize complex oceanic environments (Chang et al., 2004).
In all the above-described approaches, except in the method developed by Bracher

et al. (2009), analyses of single band or single band-ratios obtained in discrete multi-
spectral bands were employed to retrieve concentrations of the pigment chlorophyll-a
and resolve the presence of speci�c PFTs or PSCs. The advantage of a hyperspectral-
based over a these multispectral-based inversion methods for phytoplankton biodi-
versity identi�cation stems from the fact that more accurate spectral information,
such as spectral features related to characteristic phytoplankton pigment absorption
peaks, is resolved. Hyperspectral observations are thus a key feature due to more sub-
tle di�erences in targets are discriminated. This fact suggests that the e�ectiveness of
hyperspectral optical information for assessing phytoplankton community structure
in ocean water, even in non-bloom conditions, should be further explored.
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Objectives

Better understanding of phytoplankton biodiversity and dynamics is essential in eval-
uating the contribution of each algal group in the global marine ecosystem and bio-
geochemical cycles. In order to overcome this challenge, the increasing availability of
in situ and remotely sensed hyperspectral measurements of ocean waters raises new
expectations and leads to a need for ongoing evaluation of high-spectral-resolution
processing methods. In this thesis, it is attempted to attain one step further in mon-
itoring of phytoplankton communities in the ocean by developing and evaluating a
novel processing approach based on hyperspectral data.

The central question of this thesis is: given the capability to obtain hyperspectral
oceanographic observations, how can our ability to extract information regarding
phytoplankton community structure and dynamics in the ocean be improved? Other
speci�c questions addressed in the framework of this thesis are:

� what role can the shape of hyperspectral data play in the assessment of phyto-
plankton composition of a seawater sample?,

� how e�ective can a hyperspectral-based approach be at discriminating di�erent
oceanic environments in which various phytoplankton groups co-exist under
non-bloom or non-dominant conditions?,

� how feasible is the global identi�cation of di�erent types of water masses in
terms of phytoplankton composition by assessing their hyperspectral optical
signatures?

� what e�ect does a hyperspectral-based approach have on the analysis of phy-
toplankton community structure of both types of environments: open ocean or
coastal waters?
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Thesis outline

In order to answer all the above listed questions, the manuscript has been structured
as follows1:

Chapter 1 �rst provides a general introduction to bio-optical oceanography, in
which some key concepts are detailed regarding the radiative transfer in the ocean and
biology of phytoplankton. In addition, the most relevant optical-based technologies
to assess phytoplankton biodiversity are reviewed, including the advances achieved
using the full potential of hyperspectral measurements. Finally, the role of radiative
transfer modelling in this thesis is also emphasized.

In Chapter 2, a novel methodology which exploits the spectral shape features of
hyperspectral data is proposed with the aim to automatically identify di�erent phy-
toplankton communities in the ocean. As a �rst approach, a synthetic hyperspectral
data set is generated using a oceanic radiative transfer model. A simulation-based
framework, representing several simpli�ed environmental scenarios in terms of phy-
toplankton composition, is used in this chapter to test the feasibility of the proposed
methodology.

[ Torrecilla, E., J. Piera and M. Vilaseca (2009). Derivative analysis of oceano-
graphic hyperspectral data. In G. Jedlovec (Ed.), Advances in Geoscience and
Remote Sensing (pp. 597�619). Vienna: InTech. ]

Chapter 3 examines the potential of the methodology described in the previous
chapter for classifying a small but carefully selected data set from real open ocean
environments. The analysis is applied to hyperspectral absorption and remote-sensing
re�ectance measurements from the eastern Atlantic Ocean in 2005, corresponding to
non-bloom conditions in terms of phytoplankton abundance and composition. Ra-
diative transfer modelling is only considered in this chapter to reconstruct the hy-
perspectral remote-sensing re�ectances at each station, since only multispectral mea-
surements were carried out in the �eld. In order to illustrate the e�ectiveness of the
optical-based classi�cation, a new validating tool is proposed against in situ pigment
information from each evaluated station (i.e., against a commonly used proxy for the
phytoplankton composition). In addition, di�erent analyses are conducted to demon-
strate the important role in the performance of the selected spectral range and other
parameters involved in the analysis of hyperspectral data.

[ Torrecilla, E., D. Stramski, R. A. Reynolds, E. Millan-Nunez and J. Piera
(2011). Cluster analysis of hyperspectral optical data for discriminating phyto-
plankton pigment assemblages in the open ocean. Remote Sensing Environment,
115, doi: 10.1016/j.rse.2011.05.014:25782593. ]

1 articles directly arised from the elaboration of the thesis are referred between brackets in the
corresponding chapter.
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Chapter 4 is devoted to provide some results demonstrating the potential of the
methodology described in the previous chapters by examining a larger database com-
posed of 48 stations from the eastern Atlantic Ocean in 2008. In this case, the
analysis is applied to both �eld hyperspectrally-resolved measurements of absorption
and remote-sensing re�ectance spectra. It is also discussed how the identi�cation of
several phytoplankton assemblages spatially distributed along the covered transect
serve to demonstrate the feasibility of this approach to de�ne di�erent bio-optical
provinces based on the phytoplankton community structure and their hyperspectral
signatures. It is qualitatively examined the biogeographical relevance of these bio-
optical provinces by comparison to ecological provinces previously proposed in the
literature.

[ Taylor, B. B., E. Torrecilla, A. Bernhardt, M. H. Taylor, I. Peeken, R.
Röttgers, J. Piera and A. Bracher (2011). Bio-optical provinces in the Eastern
Atlantic Ocean and their biogeographical relevance. Biogeosciences, 8, 3609-3629,
www.biogeosciences.net/8/3609/2011/, doi:10.5194/bg-8-3609-2011. ]

In Chapter 5, the role of hyperspectrally-resolved optical observations is also as-
sessed but when considering optically more complex underwater scenarios. As a
�rst approach to shallow estuarine environments and by means of model simulations,
the sensitivity of remote-sensing re�ectance spectra to the phytoplankton taxa, the
bottom type, the abundance of suspended matter and the vertical structure of phy-
toplankton is examined. This study is focused on several underwater scenarios em-
ulating similar conditions to those found in one of the most studied coastal sites in
Catalonia: the Alfacs Bay (Ebro Delta, NW Mediterranean Sea).

Chapter 6 �nally summarizes the results achieved in this thesis and points the
direction of future work. Some guidelines for future developments and applications
are proposed.

Additional material that is relevant to several chapters is provided in di�erent Ap-
pendices. A detailed description of the oceanic RTE equation and its link with some
of the optical properties is given in Appendix A. An independent corroboration for
the pigment analysis performed in Chapter 3 is provided in Appendix B. Appendix C
is devoted to describe a preliminary characterization and correction of the stray-light
radiation on the response of the two in-water array spectroradiometers considered in
one of the research projects in which this thesis has been developed.
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1 Bio-optical oceanography: general
background

This chapter, with the aim of underpinning the research work presented in the fol-
lowing chapters, provides a general overview of bio-optical oceanography. First, an
introduction to fundamentals of the radiative transfer in the ocean and phytoplankton
biology is supplied. Hence, the relevant optical-based technologies that have recently
been developed to assess phytoplankton biodiversity are reviewed, with special atten-
tion to the hyperspectral technology. Finally, a brief overview of the role of radiative
transfer models in this �eld of research is presented.

1.1 Oceanic radiative transfer and phytoplankton biology

It has long been recognized that transmission of light in sea water is essential to
the productivity of the oceans. It provides the energy necessary for ocean currents,
and the majority of marine life is supported by the thin layer of warm water near
the ocean's surface. As it will be further described in greater detail, light plays a
decisive role in the primary formation of biomass by oceanic phytoplankton (i.e.,
chlorophyll-bearing marine plants) through the process of photosynthesis, which is
the basis of the entire marine food chain. Light transmission is therefore a key factor
in the ecology of the upper ocean and biogeochemical cycling, since it has a strong
in�uence on the dynamics of their chemical compounds.
Ecologists have traditionally classi�ed ocean habitats and their organisms on the

basis of light levels and depth. The major life zones in the ocean are shown in Fig.
1.1. The open sea is divided into several sections. The euphotic zone is the depth of
the water that is exposed to su�cient sunlight for photosynthesis to occur and it can
be a�ected greatly by seasonal turbidity. It extends from the surface downwards to a
depth where light intensity falls down to 1% of that at the surface (i.e., the euphotic
depth). Accordingly, its thickness varies widely on the extent of light attenuation in
the water column. Typical euphotic depths vary from only a few centimetres in highly
turbid waters to around 200 metres in the open ocean. About 90% of all marine life
lives in the euphotic zone. The aphotic zone is the portion of the ocean where there is
little or no sunlight. Consequently, bioluminescence is essentially the only light found
in this zone. Most food comes from debris and dead organisms sinking to the bottom
of the ocean from overlying waters. It comprises the bathyal zone (or middle zone)
and the abyssal zone, where sunlight does not penetrate although there are many
more nutrients than in the euphotic zone. The coastal ocean is the area of the ocean
close to land, which tends to be warm and shallow with many nutrients available. The
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1 Bio-optical oceanography: general background

higher sunlight penetration and the runo� of water from inland bringing nutrients
from soil and plants, contribute to the fact that although coastal ocean comprise less
than 10% of the ocean's total area, 90% of marine species inhabit this region. Coral
reeefs, known for their great variety of organisms, can be found in this area.

Figure 1.1: Diagram illustrating the major life zones and vertical zones in an ocean
(not drawn to scale), based on the available light (Source: Miller, 2007).

Variability of light in the ocean is strongly in�uenced by the distribution of the
components in the water column, which varies across horizontal and vertical space
and time scales. In this sense, ocean waters vary in color from the deep blue of the
open ocean to yellowish-brown in a turbid region.
The most optically signi�cant water constituents are brie�y described as follows1:

� Pure water

Water itself limits the wavelength range of interest in optical oceanography
from the near-ultraviolet to the near infrared because it is highly absorbing at
wavelengths below 250 nm and above 700 nm.

� Inorganic particulate matter (minerals)

These particles are created by weathering of terrestrial rocks and are entered
the water as wind-blown dust settles on the sea surface, as rivers carry eroded
soil to the sea or as currents resuspended bottom sediments. They can dominate
water optical properties when present in su�cient concentrations.

1 Air bubbles generated by breaking waves at sea surface can signi�cantly contribute to scattering
properites of a water body (Stramski et al., 2004). Nevertheless, their e�ect is beyond the scope
of the research presented in this thesis and therefore it is not described in detail.
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1.1 Oceanic radiative transfer and phytoplankton biology

� Colored Dissolved Organic Matter (CDOM or gelbsto�)

These compounds are produced during the decay of plant matter. In high
concentrations these compounds can color the water yellowish-brown. CDOM
absorbs very little in the red, but absorption increases rapidly and exponentially
with decreasing wavelength. It can be the dominant absorber at the blue end of
the spectrum, especially in coastal waters in�uenced by river runo�. Scattering
by CDOM is generally considered negligible.

� Particulate organic matter

Phytoplankton are microscopic plants (see Fig. 1.2), which occur with in-
credible diversity of species, cell shapes, concentrations (from less than 0.03
mgm−3 in oligotrophic waters up to about 30 mgm−3 in eutrophic waters) and
sizes (3 phytoplankton size classes (PSCs): microphytoplankton from 20 to 200
µm, nanophytoplankton from 2 to 20 µm and picophytoplankton < 2 µm).

Figure 1.2: An astonishing diversity of phytoplankton live in Earth's oceans
(Source: Smithsonian Environmental Research Center and U.K.
Fisheries Research Service).

These algal organisms have an essential role in the ocean since, through the
process of photosynthesis, they convert inorganic materials into organic com-
pounds (Kirk, 1994). Phytoplankton, as primary producers of biomass, form
the �rst link of the oceanic food chain that reaches through all trophic levels. In
order to photosynthesise, phytoplankton require carbon dioxide (CO2), water
(H2O) and light energy. The process itself occurs within the chloroplasts which
contain the photosynthetic pigments that convert the radiant to chemical
energy. The dominant pigment is chlorophyll-a which is common to all species,
but there are also cholorphylls-b and -c plus several accessory pigments (i.e.,
carotenoids, xantophylls and the photoprotective phycobiliproteins: phycoery-
thrin and phycocyanin). Each of the above pigments is able to absorb light of
wavelengths within the visible range with strong spectral selectivity (see Fig.
1.3). This range (approx. from 400 to 700 nm but occasionally slightly extended
towards the near infrared and near ultraviolet regions) is referred to as pho-
tosynthetically available radiation (PAR) because it provides energy to marine
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1 Bio-optical oceanography: general background

phytoplankton to perform photosynthesis. In fact, the visible and near infrared
(approx. from 400 to 800 nm) constitute the only portion of the electromag-
netic spectrum that penetrates water and directly probes the water colum (see
Fig. 1.4). The solar spectrum peaks correspond to the maximum transparen-
cy of water and the peak in phytoplankton absorption. Thus, phytoplankton
photosynthesis is tuned to the spectral range of maxium light.

Figure 1.3: Absorption spectra of several individual phytoplanktonic pigments
in solvents. Pigment abbreviations are: Chl a = monovinyl
chlorophyll-a, DV a = divinyl chlorophyll-a, Chl b = monovinyl
chlorophyll-b, DV b = divinyl chlorophyll-b, Chl c = chlorophyll-
c1+c2, Fuco = fucoxanthin, 19HF = 19'-hexanoyloxyfucoxanthin,
19-But = 19'-butanoloxyfucoxanthin, Zea = zeaxanthin, Peri =
peridinin (Source: Taylor et al., 2011).

Figure 1.4: Solar irradiance, phytoplankton speci�c absorption and water ab-
sorption spectra (Source: McClain, 2001).
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1.1 Oceanic radiative transfer and phytoplankton biology

Each phytoplankton group di�er signi�cantly with respect to motility, cell-wall
and pigment composition, likewise to nutrition and reproduction strategies. At
the same time, all species are at the mercy of oceanic currents for transport to
areas that are suitable for their survival and growth. Thus, physical processes
and light conditions for phytoplankton photosynthesis play both a signi�cant
role in determining the composition and distribution of phytoplankton species.
Phytoplankton, with a great diversity of species, are responsible for determining
the optical properties of most oceanic waters.

Bacteria are the smallest living organisms on Earth (i.e., size range 0.2 -
1.0 µm). They can be signi�cant scatterers and absorbers of light at blue
wavelengths in oceanic waters, where the larger phytoplankton are relatively
scarce.

Detritus are non living organic particles of various sizes that are produced
when phytoplankton die and their cells break apart or when zooplankton graze
on phytoplankton and leave cell fragments and fecal pellets. They have signi-
�cat absorption only at the blue wavelengths. They can, however, contribute
signi�cantly to scattering in the open ocean.

Having identi�ed the most optically signi�cant water consituents, which are responsi-
ble for diversity in color of oceanic waters (see some examples in Fig. 1.5), a bipartite
classi�cation scheme for oceanic waters has traditionally been used in optical oceanog-
raphy. It was introduced by Morel and Prieur (1977) and re�ned later by Gordon
and Morel (1983) and Sathyendranath and Morel (1983). A pictorical representation
of the two cases (i.e., Case 1 and Case 2) is presented in Fig. 1.5. Moreover, the
component absorption and scattering coe�cients for two hypothetical water bodies
representing each of them are depicted in Fig. 1.6.

Figura 1.5: Examples of di�erent colored sea areas and diagram representing the
Case 1 and Case 2 waters. Case 1 waters represent the phytoplankton-
dominant cases, whereas Case 2 waters represent all other possible cases
(Source: Sathyendranath, 2000).
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1 Bio-optical oceanography: general background

`Case 1 waters' are those in which the contribution by phytoplankton to the total
absorption and scattering is high compared to that by other substances. Therefore,
absorption by chlorophyll and related pigments plays the dominant role in determin-
ing the total absorption in such waters, although covarying detritus and dissolved
organic matter derived from the phytoplankton can also contribute to absorption and
scattering in these waters. Case 1 waters can range from very clear (i.e., oligotrophic,
phytoplankton-poor) to very productive (i.e., eutrophic, phytoplankton-rich) water,
depending on the phytoplankton concentration. On the other hand, `Case 2 wa-

ters' are `everything else,' namely, waters where inorganic particles in suspension or
colored dissolved organic matter (CDOM) from land drainage contribute signi�cantly
to the absorption and scattering. In this sense, the e�ect of pigments is relatively
less important in determining the total absorption. Roughly 98% of the world's open
ocean and coastal waters fall into the Case 1 category, but near-shore and estuarine
Case 2 waters are disproportionately important to human interests such as recre-
ation, �sheries and military operations. Even this classi�cation scheme cannot be
implemented in a very strict quantitative fashion, its value lies most in its use as a
simple device to di�erentiate waters where phytoplankton-related features dominate
the signal (see Chapters 2, 3 and 4) from more optically complex water bodies, where
such simplifying assumptions would not hold (see Chapter 5).

Figura 1.6: Absorption and scattering coe�cients for the Case 1 and 2 water bodies
and the contribution by each water consituent (Source: Mobley, 2001).
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1.1 Oceanic radiative transfer and phytoplankton biology

For the Case 1 scenario, the total absorption is dominated by phytoplankton (i.e.,
chlorophyll-bearing particles) at blue wavelengths and by the pure water at wave-
lengths greater than 500 nm. The total scattering is also dominated by phytoplank-
ton. In the Case 2 scenario, mineral particles present an absorption comparable to or
greater than that by the chlorophyll-bearing particles and are the primary scatterers.
In both Case 1 and Case 2 waters, oceanographic optical measurements can be

important indicators of the health of the ocean in the form of changing turbidity
together with changing diversity and distribution of phytoplankton species. In this
sense, the assessment of optical properties of the ocean can help elucidating the
link between the phytoplankton communities and several biogeochemical processes
in which phytoplankton play a key role. For instance, as it has been described in
the thesis introduction (see Fig. I.1), practical applications of knwoledge of plankton
diversity and distribution in the oceans include ecosystem responses to climate change
(including the carbon and sulfur cycle), detection of harmful algal blooms in coastal
waters, food web modelling and management of marine resources. Knowledge of the
variability of bio-optical properties of the ocean is essential for understanding all these
processes.

The subdiscipline of ocean optics, which concerns the assessment of the propaga-
tion of light through the oceanic water column and surface, has become fundamental
for understanding water dynamics and composition, including phytoplankton commu-
nities distribution. This subdiscipline is based on the radiative transfer (RT) theory
(Kirk, 1994; Mobley, 1994), utilized as the theoretical framework and de�ned to bet-
ter comprehend light propagation in the optically complex ocean. Radiative transfer
is therefore a complex �eld that requires physical understanding of the absorption
and scattering processes in the atmosphere and oceans, as well as sea surface and
bottom re�ection characteristics (see Fig. 1.7). In this sense, optical properties of
sea water are divided into two classes:

� Inherent Optical Properties (IOPs) are those properties that are only af-
fected by the constituents of the aquatic medium and are independent of the
ambient illumination conditions. Examples of IOPs are the spectral absorption
and scattering coe�cients. IOPs are additive, which means that they result
from additive contributions associated with all individual water components
that absorb and scatter light (see Fig. 1.6). Therefore, their variation is gen-
erally attributed to variability in four constituents of the aquatic medium in
natural oceanic waters: pure sea water, phytoplankton, non-algal particles and
colored dissolved organic matter (CDOM).

� Apparent Optical Properties (AOPs) are not additive and depend both
on the medium (i.e., on the IOPs) and on the directional structure of the am-
bient light �eld. Examples of AOPs are the spectral radiance and irradiance
distributions.
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1 Bio-optical oceanography: general background

Historically, the IOPs were easy to de�ne and interpret in terms of water constituents,
but hard to measure. This is, however, less true today because of advances in instru-
mentation. In contrast, the AOPs are much easier to measure and readily available,
but are often more di�cult to interpret because of the confounding environmental
e�ects. For instance, a change in the state of the sea surface or in the sun's position
modi�es the spectral radiance distribution, and hence the AOPs, even though the
IOPs are kept unchanged.

Figura 1.7: Depiction of the various optical pathways and interactions within the
atmosphere-ocean system.

Radiative transfer theory provides the connection between the IOPs and the AOPs
of a water body and is expressed as a mathematical structure by the Radiative
Transfer Equation (RTE). The physical environment of a water body � waves on
its surface, the character of its bottom, the incident radiance from the sky � enters
the theory via the boundary conditions necessary for solution of the equations arising
from the theory. Figure 1.8 summarizes the relationships between the various radio-
metric quantities, including IOPs and AOPs. Note that all of them have wavelength
dependence.

A detailed description of the oceanic RTE equation and its link with some of the
optical properties is given in the Appendix A. Nevertheless, the de�nition of the
most important optical properties necessary to understand the results presented in
the following chapters (and also shown in Fig. 1.8) is provided below.
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1.1 Oceanic radiative transfer and phytoplankton biology

Figura 1.8: Relationships among the various optical quantities commonly used in hy-
drological optics, which are de�ned below (Source: Mobley, 1994).

Inherent Optical Properties (IOPs)

IOPs can be de�ned by using the diagram shown in Fig. 1.9, which illustrates a small
volum (4V ) of water of thickness 4r, that is illuminated by a collimated beam of
monochromatic light wavelength λ and spectral radiant power Φi(λ) [Wnm−1]. Part
of the incoming beam of light is absorbed, Φa(λ) [Wnm−1], and the other part is
scattered, Φs(λ) [Wnm−1], from the incident to other directions.
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1 Bio-optical oceanography: general background

Figura 1.9: Geometry used to de�ne the Inherent Optical Properties (IOPs) of a water
body (Source: Mobley, 1994).

Absorption coe�cient - a (λ) is the absorbance (i.e., the ratio of the absorbed
to incident spectral radiant �ux) per unit distance:

a (λ) = lim∆r→0
1

Φi(λ)
Φa(λ)

∆r

[
m−1

]
(1.1)

Volume scattering function (VSF) - β (ψ, λ) is the radiant �ux per unit solid
angle (∆Ω) scattered in the ψ direction with respect to the direction of the incident
light, per unit distance, expressed as a proportion of the incident �ux:

β (ψ, λ) = lim∆r→0lim∆Ω→0
1

Φi(λ)
Φs(ψ,λ)
∆r∆Ω

[
m−1sr−1

]
(1.2)

Scattering coe�cient - b (λ) is obtained by integrating β(ψ, λ) over all directions:

b (λ) =
´

4π β (ψ, λ) dΩ = 2π
´ π

0 β (ψ, λ) sinψdψ
[
m−1

]
(1.3)

Beam attenuation coe�cient - c (λ) is the total loss of radiant energy from the
original beam, which is the sum of absorption and scattering coe�cients:

c (λ) = a (λ) + b (λ)
[
m−1

]
(1.4)

Backscatter coe�cient - bb (λ) is obtained when restricting the integration of
β(ψ, λ) to the interval π/2 ≤ ψ ≤ π:

bb (λ) = 2π
´ π
π/2 β (ψ, λ) sinψdψ

[
m−1

]
(1.5)

Single-scattering albedo - wo (λ) is the ratio of scattering e�ciency to total
attenuation e�ciency:

w0 (λ) = b(λ)
c(λ) (1.6)
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1.1 Oceanic radiative transfer and phytoplankton biology

Volume scattering phase function - β̃ (ψ, λ) provides the angular distribution
of the scattered light and is obtained dividing β(ψ, λ) by b (λ):

β̃ (ψ, λ) = β(ψ,λ)
b(λ)

[
sr−1

]
(1.7)

It is important to note that in the preceding de�nitions, no inelastic scattering
processes (e.g. �uorescence by phytoplankton or CDOM and Raman scattering by the
water molecules) were considered. This factor appears as a source term (S (z, θ, ϕ, λ))
in the radiative transfer equation (see Appendix A for further details). Moreover, due
to the additive property, the total IOPs of a water body (i.e., a(λ), b(λ), β(ψ, λ), bb(λ)
and c(λ)) are the sums of the IOPs associated with each of the various components
present in this water body. In this sense, for instance, atotal(λ) = aw(λ) + aph(λ) +
anap(λ) + acdom(λ) where: w = pure water, ph = phytoplankton, nap = non-algal
particles such as detritus or minerals and cdom = colored dissolved organic matter
(see the examples for absorption and scattering coe�cients in Fig. 1.6).

Fundamental radiometric quantities in ocean optics

Spectral radiance - L (z, θ, ϕ, λ), as shown in Fig. 1.10, is the radiant energy
incident in a time interval (∆t), onto a surface of area ∆A located at a position
(x, y, z) and arriving through a set of directions contained in a solid angle (∆Ω)
about the direction (zenith angle θ and azimuthal angle ϕ) normal to the area ∆A
and produced by photons in a wavelength interval ∆λ:

L (x, y, z, θ, ϕ, λ) = ∆Q
∆t∆A∆Ω∆λ

[
Wm−2sr−1nm−1

]
(1.8)

Figura 1.10: Geometries used to de�ne the spectral radiance (Source: Mobley, 1994).

Scalar spectral irradiance - Eo (z, λ) is obtained by integrating the radiance
over all directions that reaches a certain surface. It is commonly measured using a
spherical collector (see Fig. 1.11) and as the sum of the downwelling and upwelling
components:
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1 Bio-optical oceanography: general background

Eo (z, λ) = Eou (z, λ) + Eod (z, λ)
[
Wm−2nm−1

]
Eo (z, λ) =

´
Ξu
L (z, θ, ϕ, λ) dΩ +

´
Ξd
L (z, θ, ϕ, λ) dΩ (1.10)

Plane spectral irradiance - E (z, λ) is obtained by using a plane collector (i.e.,
its sensitivity is proportional to | cos θ|, where θ is the angle between the photon
direction and the normal to the surface of the detector, see Fig. 1.11) and as the sum
of the downwelling and upwelling components:

E (z, λ) = Eu (z, λ) + Ed (z, λ)
[
Wm−2nm−1

]
E (z, λ) =

´
Ξu
L (z, θ, ϕ, λ) | cos θ|dΩ +

´
Ξd
L (z, θ, ϕ, λ) | cos θ|dΩ (1.9)

Figura 1.11: Geometries used to de�ne the spectral scalar (left) and plane (right)
irradiance. Note that Ξd denotes the hemisphere of downward directions,
i.e., the set of directions (θ, ϕ) such that 0 ≤ θ ≤ π/2 and 0 ≤ ϕ ≤ 2π,
if θ is measured from the nadir direction (Source: Mobley, 1994).

The plane spectral irradiance, E(z, λ), is the sum of the plane spectral upwelling
irradiance, Eu (z, λ), and the plane spectral downwelling irradiance, Ed (z, λ),
depending on the detector's orientation (in Fig. 1.11 the case for the downwelling
irradiance is shown). The di�erence Ed − Eu is called the net irradiance. On the
other hand, the scalar spectral irradiance, Eo(z, λ), is the sum of the scalar spectral
upwelling irradiance, Eou (z, λ), and the scalar spectral downwelling irradi-

ance, Eod (z, λ). It is noted that in many oceanic environments horizontal variations
of the IOPs and the radiance are much less than variation with depth. Therefore, it is
assumed an horizontal homogeneity (i.e., these radiometric quantities vary only with
depth, z). In addition, time-independent RT theory is adequate for most oceano-
graphic studies due to the temporal variations of the IOPs or in the environment are
much greater than the time required for the radiance to reach steady state after a
change in IOPs or boundary conditions.
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1.1 Oceanic radiative transfer and phytoplankton biology

Another relevant measure of the light �eld in bio-optical oceanography is the Pho-
tosynthetic Available Radiation (PAR). It is used in studies of phytoplankton
biology to quantify the number of available photons, given an amount of radiant en-
ergy, that is relevant for photosynthesis to take place. PAR is de�ned by:

PAR (z) ≡
´ 700nm

400nm
λ
hcEo (z, λ) dλ

[
fotons s−1m−2

]
(1.11)

where h = 6.6255 · 10−34J is the Planck constant and c = 3.0 · 1017nms−1 is the
speed of light. The range approximately from 400 to 700 nm is used to calculate the
PAR radiation because it provides the energy to marine phytoplankton to perform
photosynthesis.

Radiative Transfer Equation (RTE)

The RTE equation connects the IOPs and the radiance, and for extension the rest of
radiometric quantities and AOPs (see Fig. 1.8) and is de�ned as2:

cos θ dL(z,θ,ϕ,λ)
dz = −c (z, λ)L (z, θ, ϕ, λ)

+
´

4π L (z, θ′, ϕ′, λ) · β (z; θ′, ϕ′ → θ, ϕ;λ) dΩ′ + S (z, θ, ϕ, λ) (1.12)

The source term, S (z, θ, ϕ, λ), can describe either an internal light source (i.e., bi-
oluminiscence) or inelastically scattered light from other wavelengths. See Appendix
A for further details on the RTE equation and these processes.

Apparent Optical Properties (AOPs)

Given the IOPs and boundary conditions of a water body (i.e., sea state, bottom type
or incident radiance from the sky), the RTE is solved for the radiance distribution,
which in turn, allows the computation of the AOPs. They are always obtained as a
ratio of two radiometric variables.

Irradiance Re�ectance - R (z, λ) is the ratio of upward and downward irradi-
ance:

R (z, λ) ≡ Eu(z,λ)
Ed(z,λ) (1.13)

2 The dependence on θ and ϕ is noted and combined by the symbol Ω.
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Remote-sensing Re�ectance - Rrs (θ, ϕ, λ) is de�ned as:

Rrs (λ) ≡ Lw(λ)
Ed(λ)

[
sr−1

]
(1.14)

where Lw(λ) is the water-leaving radiance or the upwelling radiance just above the
sea surface (i.e., the total upward radiance minus the sky and solar radiance that was
re�ected upward by the sea surface) and Ed(λ) the above water downward irradiance.
Rrs(λ) and Lw(λ) are of particular interest because they can be retrieved with remote
sensing techniques and represent what is generally called the ocean color.

Spectral di�use attenuation coe�cients - K (z, λ) indicates the extinction of
irradiance in the water column:

K (z, λ) = − 1
E(z,λ)

dE(z,λ)
dz

[
m−1

]
(1.15)

Di�erent di�use attenuation coe�cients can be de�ned (i.e., Kd (z, λ) ,Ku (z, λ),
Kod(z, λ),Kou(z, λ)) using each corresponding irradiance (i.e., the plane irradiances:
Ed (z, λ) , Eu (z, λ) or the scalar irradiances: Eod(z, λ), Eou(z, λ)).

All the above described radiometric quantities and bio-optical properties permit
the assessment of the biological state of the oceans and some of them have been
used in this thesis with this purpose. As previously mentioned, however, in the
case of AOPs, their interpretation in terms of water constituents and phytoplankton
community composition becomes more complicated than in the case of IOPs since
they are not additive. In fact, with the aim to better assess the ecosystem dynamics
in marine waters from these bio-optical properties, several types of models have been
reported over the last decades. On the one hand, the so-called �direct models� are
used to predict AOPs given �eld measurements of IOPs and environmental conditions
(see Section 1.4 and the results shown in the following chapters). On the other hand,
�inverse models� are used to estimate IOPs given experimental measurements of AOPs
(Lee, 2006). In addition, the additive property of IOPs permitted the development
of di�erentiated models for absorption and scattering of each constituent of a water
body.

1.2 From single to bulk particle measurements

Advances in core photonics and materials sciences as well embedded computing make
a new realm of options available in applying optical technologies for identifying mate-
rials in the ocean (Moore et al., 2009a; Zielinski et al., 2009). Sensors incorporating
optical techniques are �lling increasingly signi�cant roles in ocean monitoring and
research. For instance, membranes and analyzers coupled with optical sensors have
demonstrated to provide information on pH, nutrients, dissolved gases such oxygen,
methane or carbon dioxide, and metal concentrations. In addition, optical techniques
have demonstrated the ability to measure fundamental physical parameters such the
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1.2 From single to bulk particle measurements

solar radiance distribution, absorption, scattering, stimulated �uorescence and �ow
cytometry, which play a key role in the identi�cation of concentrations and dynamics
of multiple phytoplankton and zooplankton species. In this sense, optical sensors
have given researchers biological sampling capabilities on the same time and space
scales as physical measurements.
With the aim to address the recent advances in monitoring of phytoplankton dy-

namics, this section reviews some of the existing and emerging optical-based tech-
nologies for in-water phytoplankton community composition assessment:

Single particle analysis

� Microscopy (including light and electron microscopy) is one of the earliest
methods for identifying phytoplankton. Its ability to provide information on
the phytoplankton composition up to the species level is second to none. How-
ever, it relies on the taxonomic skills of the observer and it is a very time con-
suming methodology, which makes it unsuitable for analysis of large numbers
of samples. In addition, as a method entirely based on morphological charac-
teristics, it can not identify some small picophytoplankton species that lack of
distinct morphological features but have an essential role in the total marine
primary production. In this sense, epi�uorescence microscopy has been utilized
to exploit the auto�uorescence properties of chlorophyll and phycobiliproteins
to di�erentiate di�erent types of picophytoplankton species.

� Flow cytometry can resolve to a certain extend the limitations of microscopy
(Sosik et al., 2010). In this method, individual cells in liquid suspension (e.g.,
seawater for marine samples) are allowed to pass one by one through a focused
light �eld (often a laser beam). Its �uorescence and light scattering proper-
ties are measured with detectors (usually photomultiplier tubes) as each cell
passes this light �eld (see Fig. 1.12). Each phytoplankton group is identi�ed
given that it possesses di�erent scattering properties (depending on the size,
shape and refractive index of the cells) and �uorescence responses (associated
with their photosynthetic pigments such as chlorophyll and phycobiliproteins).
In general, �ow cytometry measurements of phytoplankton permit enumera-
tion, quanti�cation of cell properties such as size and pigmentation, and some
level of taxonomic or size-based discrimitation (e.g., microplankton diatoms,
nanoplankton coccolithophores, picoplankton Synechococcus or Prochlorococ-
cus). This technique has been used extensively by biological oceanographers to
de�ne the distributions and dynamics of marine phytoplankton.

Despite the ability of �ow cytometry to make rapid measurements of cells and
to identify picoplankton, standard �ow cytometers have a limited particle size
range with an upper limit of only 15-20 µm. Moreover, since the accessory
pigments carotenoids do not �uorescence directly, it makes di�cult the iden-
ti�cation of some phytoplankton groups. Nevertheless, the need of long-term,
broad-space and higher-taxonomic measurement capabilities has motivated the
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development of automated �ow cytometers to be performed outside the labora-
tory. For instance, submersible instruments combined with cell-imaging capa-
bilities have extended the use of �ow cytometers to characterize and enumerate
microplankton (Sieracki et al., 1998; Olson and Sosik, 2007).

Figure 1.12: A typical �ow cytometer con�guration and an example of mea-
surements of side scattering and chlorophyll �uorescence performed
with the FlowCytobot instrument in 2004. Di�erent regions in
the scattering/�uorescence plot contain di�erent species, which are
identi�ed by images of the corresponding phytoplankton cells col-
lected by the imaging system (Source: Olson and Sosik, 2007).

Molecular analysis

� High Performance Liquid Chromatography (HPLC) facilitates the sepa-
ration of phytoplankton communities on the basis of their pigment composition
(Je�rey and Vesk, 1997) and the estimation of the biomass of the di�erent algal
groups (see Fig. 1.13). Phytoplankton that cannot be separated by microscopic
or �ow cytometric techniques can be classi�ed using this method. In HPLC,
the sample to be separated is forced by a liquid at high pressure (the mobile
phase) through a column that is packed with a stationary phase composed
of irregularly or spherically shaped particles, a porous monolithic layer, or a
porous membrane. The components of the sample move through the column
at di�erent velocities function of speci�c physical or chemical interactions with
the stationary phase. The velocity of each component depends on the nature
of each analyte, on the nature of the stationary phase and the composition of
the mobile phase. The time at which a speci�c analyte emerges from the col-
umn is called the retention time and is provided by a detector. The retention
time under particular conditions is considered an identifying characteristic of
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1.2 From single to bulk particle measurements

a given analyte. The detector usually provides additional information related
to the analyte such as its UV/VIS spectral signature, which helps to determine
the phytoplankton community composition.

Figure 1.13: Diagram showing the methodology for determining algal commu-
nity composition using diagnostic photopigment analyses by HPLC
(Source: https://dcerp.rti.org).

Apart from chlorophyll-a which is common and present in all phytoplankton
groups (in Prochlorococcus as divinyl chlorophyll-a), the inventory of all other
pigments (i.e., chlorophylls-b and c, carotenoids and phycobiliproteins) varies
in di�erent taxa of phytoplankton. Many phytoplankton accessory pigments
are taxonomically signi�cant (see Table I.1). Therefore, detection of speci�c
accessory pigments (i.e., marker pigments) in aquatic systems can reveal what
types of phytoplankton are present there. The commercially available software
CHEMTAX is a commonly used tool to reconstruct phytoplankton commu-
nity composition from accessory pigment concentrations derived from HPLC
analyses (Mackey et al., 1996).

Pigment analyses are usually faster, require less taxonomic knowledge of the
analyst and yield more precise measurements when compared to microscopic
analyses. In part of the research presented in this thesis, HPLC pigment infor-
mation has been used as the reference in terms of phytoplankton community
composition (see Chapters 3 and 4). However, as an estimate of phytoplankton
biomass and community composition, pigment analyses are not always neces-
sarily accurate (see an example regarding this issue in Appendix B).
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� Other molecular techniques that are beyond the scope of this thesis exploit
genetic variations to distinguish between phytoplankton groups and provide a
solution to the limitations encountered with HPLC. DNA sequencing techniques
have opened avenues to distinguish organisms at all taxonomic levels, from the
level of classes to ecotypes (Rocap et al., 2003). Despite of the advances, probes
are not available for all possible phytoplankton functional types (PFTs) and
speci�city of probes remains an area of ongoing research.

Bulk particle analysis

� Secchi disc and Forel-Ule scale are two simple and fast methods that were
described at the end of the 19th century to establish the ecological state of
surface water (Wernand, 2011). The optical properties of seawater such as
color and transparency in water have been measured for a long period: color
through the Forel-Ule scale and transparency through the Secchi disc. The
Forel-Ule Scale is a method to approximately determine the color of a water
body by comparison with a standard color palette produced with mixtures of
colored chemical solutions in a series of numerically designated vials (1-21). The
Secchi disc is a circular white disk 30 cm in diameter, which is lowered over the
side of a ship. The depth at which it is no longer visible is known as the Secchi
depth and has been used as a rough measure of optical clarity or transparency.
It is noted that these methods depend on the eyesight of the observer, thus, the
major problem is the lack of absolute calibration. In addition, these methods
are just helpful to classify gross phytoplanktonic activity of a water body.

� Spectrometric techniques

Traditionally, as described in almost all previous methods, phytoplankton species
discrimination has involved exhaustive and time consuming �eldwork, imply-
ing a ship-based approach to collect discrete water samples for later laboratory
analysis to retrieve taxonomical information. These traditional methods often
require �ltering of discrete samples or even solvent extractions, which are time
consuming and challenging to use when at sea. After the introduction of spec-
tral radiometers to in situ and remote sensing oceanic observing platforms, the
extrapolation of such information became easier, faster, much less invasive and
usually non-destructive. In fact, by directly measuring the amount of light that
is absorved, scattered or re�ected from a bulk, which is a function of its pig-
ment and chemical composition, one can possibly distinguish the phytoplankton
composition of it. Scientists are now engaged in developing inversion methods
to obtain biogeochemical products from these type of measurements. Next, a
description of several in-water spectrometric-based technologies is provided:

Measurement of Inherent Optical Properties

Recent advances in optical instrumentation and methodologies now enable the
in situ measurement of some IOPs (see Fig. 1.14). These instruments generally
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employ an active light source given that IOP measurements are independent
to the ambient radiance �eld. Therefore, they can be used at any time of day
and are not subject to variable cloud or surface conditions and shadows from
the observing platform or the instrument itself. The derivation of absolute
coe�cients of optical transfer properites is performed over relatively short path
lengths and with a resolution of in-water variability at scales ranging down to
a few centimeters.

Beam attenuation meters (also known as transmissometers) operate upon the
principle by which the attenuation (i.e., loss of light due to both absorption and
scattering) of a narrow, well collimated beam of light through a path length
of water is measured (Fig. 1.14a). Modern transmissometers for in situ ocean
research operate at single or multiple wavelengths (Moore et al., 2004a) and are
used to estimate species composition, particulate organic carbon, suspended
particles and visibility (Claustre et al., 2008; Zaneveld and Pegau, 2003).

Absorption meters measure the light loss through a given path of water due
only to the molecular absorption of the water and the components contained
therein. The conceptual framework behind underwater absorption meters is
based on minimizing measurement losses due to highly scattering media found
in natural waters. In order to retrieve the absorption component, di�erent
designs have been developed: (1) Refractive tube absorption meters use a colli-
mated beam propagating through a �xed path surrounded by a re�ective tube
and impinging upon a large area detector (Fig. 1.14b). Commercial units
incorporating this design are available in multispectral and hyperspectral con-
�gurations (Zaneveld et al., 2004). (2) The Point Source Integrating Cavity
Absorption Meter (PSICAM) was designed to detect absorption spectra in an
integrating cavity sphere �lled with the water sample. The principle is based on
multiple re�ection and scattering, i.e. the light �eld is di�used inside the cavity
(Röttgers et al., 2005). In comparison to the refractive tube meters, it reduces
the scattering e�ects on absorption measurements (i.e., the overestimation of
the sample absorption resulting from backscattering). Submersible versions of
this design have been developed by Dana and Ma�one (2006) (Fig. 1.14c),
likewise instruments built for operation on Autonomous Underwater Vehicles
(Kirkpatrick et al., 2006).

It is important to note that there exist similar approaches that measure the
absorption coe�cient by planktonic algae contained in a bulk but performed in
the laboratory. These approaches deserve a mention since they also represent
an essential source of information in terms of phytoplankton composition and
have been used within the framework of this thesis (see Section 3.1.1.2 and
4.1.3). They are performed by combining light-transmission and light-re�ection
measurements of the algae previously concentrated onto a �lter (i.e., the �lter
pad and T-R techniques, see Tassan and Ferrari, 1995) and using an integrating-
sphere attached with a dual-beam spectrophotometer. In order to minimize the
photon loss by backscattering, another solution has been developed in which
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the sample is placed in the center of the integrating sphere (Simis et al., 2005).
In all these cases, as the �lter pad technique is used to prepare the sample, it
has to be considered that multiple scattering in the �lter increases the optical
path length. Therefore, a correction for the path length amplication factor has
to be applied to convert the measured absorption of the algal particles on the
�lter to the absorption coe�cient of the algal particles in suspension.

Figure 1.14: Schematic diagrams for IOP sensors. (a) Beam attenuation meter
or transmissometer. (b) Re�ective tube absorption meter. (c)
Submersible spherical cavity absorption meter. (d) Backscattering
sensor (Source: Moore et al., 2009a; Dana and Ma�one, 2006).

Backscattering meters are used to measure light scattered in the backward di-
rection (i.e., between 90 and 180 degrees). The backscattering coe�cient is im-
portant in understanding remote sensing signals seen for instance by satellites.
These sensors are most widely used in applications focused upon validating
ocean color measurements from satellites or also to retrieve information regard-
ing the particle size distribution of a bulk, including phytoplankton. Optical
backscattering sensors have been con�gured for measurement typically between
115 and 145 degrees (Fig. 1.14d) and multispectral con�gurations (Lee and
Lewis, 2003; Moore et al., 2000).

Fluorescence sensors are used to estimate concentrations and provide invalu-
able physiological information from phytoplankton materials. Due to its cellular
pigment composition, phytoplankton species are characterized by speci�c exci-
tation wavelengths triggering speci�c emission wavelengths. Fluorometers have
been con�gured for in situ single channel detection, which provide reasonable
proxies for phytoplankton biomass. Moreover, multichannel �uorometers have
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been developed to detect spectral excitation and/or emission �uorescence sig-
natures, which can be used to infer taxonomic composition and identify speci�c
phytoplankton types (Moore et al., 2004b; Chekalyuk et al., 2006).

Measurement of Apparent Optical Properties

Sensors measuring AOPs are in general passive since these properties vary as the
angular radiance distribution varies. It implies that they use as their light source
the incident solar beam directly transmitted and scattered by the atmosphere,
the sea surface and the ocean interior. In this sense, passive detection of sunlight
results in relatively low energy consumption and implies that AOP sensors
measure light levels experienced by the surrounding biota.

Radiance and irradiance sensors are used to determine and derive all the AOPs.
They can be di�erentiated by the angular integration performed by the front-
end optics, which is the component that captures the ambient light �eld. Nar-
row angular �eld-of-view (FOV) collectors are used to measure radiance, while
plane collectors provide cosine weighting to yield plane irradiance, and spheri-
cal collectors, which weight all directions equally, measure scalar irradiance (see
diagrams in Fig. 1.10 and 1.11). These sensors have been manufactured in mul-
tispectral and hyperspectral con�gurations to provide full spectral distribution
over the ultraviolet, visible and near infrared bands. The spectral dispersion
to separate the broadband �eld into narrow spectral intervals is accomplished
by prism or grating elements. For some applications, spectral weighting �lters
have also been employed to return the integral energy over the entire visible
spectrum and are known as irradiance PAR sensors.

Radiance and AOP sensors are now operationally for applications including
the determination of phytoplankton biomass. For instance, it is estimated
via the measurement of the in-water irradiance, the water leaving radiance
or the re�ectance at the sea surface. These signals are in�uenced by the ab-
sorption and scattering properties of the water column and hence, by the red
�uorescence (approx. at 680 nm) resulting from phytoplankton activity. It is
also under study the identi�cation of di�erent phytoplankton functional groups
(PFTs) from the in-water and remote-sensing radiance characteristics and re-
lated AOPs (Nair et al., 2008). These instruments are also used routinely for
ocean color applications such remote sensing validation and calibration and for
capturing optical changes associated with some phytoplankton-related episodic
events (e.g., harmful algal blooms). As it is emphasized below, the increas-
ing use of high spectral resolution (hyperspectral) sensors is being crucial in
all these applications, in particular for phytoplankton species monitoring (see
Section 1.3).

It is important to note that protocols for e�ective use of instruments measuring
IOPs and AOPs have been developed during the last years (see Mueller et al.,
2003b; Mueller et al., 2003a and references found therein). For instance, there
exist international standards of radiance and irradiance measurements for ocean
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color applications, which provide a reference to which instruments anywhere in
the world (i.e., including onboard space-based platforms) and at any time can
be calibrated and intercompared with a high degree of con�dence.

� Other approaches that are beyond the scope of this thesis include the use of
holographic instruments and confocal technologies for the 3D in-situ visualiza-
tion of plankton (Malkiel et al., 1999; Matsumoto, 1993).

1.3 From multi- to hyperspectral applications

It has been described how phytoplankton community composition in the ocean may
be assessed using a wide range of optical-based techniques in the laboratory and
in the �eld. Due to the faster and less invassive characteristics, however, a notice-
able increase has been in the number of coastal and open ocean studies based on
spectrometric measurements.
In situ and remotely-sensed spectrometric observations of ocean waters (i.e., IOPs

and AOPs) provide information regarding the concentrations of optically signi�cant
constituents in seawater, and o�er the ability to observe important biological and bio-
geochemical variables (e.g., Chang et al., 2006). Numerous studies over the past three
decades have focused on the development of bio-optical algorithms linking measurable
spectral optical properties to the primary pigment in phytoplankton, chlorophyll-a,
a proxy for the phytoplankton biomass and primary production (e.g., Bricaud et al.,
1998; Morel, 1988; O'Reilly et al., 2000 and the illustrating example shown in Figure
1.15 from Reynolds et al., 2001). Current global algorithms use simple wavelength-
ratios of re�ectances to retrieve chlorophyll concentrations, such as the NASA OC2
version 2 algorithm, also depicted in Fig. 1.15 and the NASA OC4 version 4 algo-
rithm, both developed by O'Reilly et al. (2000). In particular, the OC4 algorithm is
a four-band maximum band ratio formulation that uses a fourth order polynomial to
estimate chlorophyll concentration and is given by the relation:

[Chl] = 10(0.366−3.067X+1.93X2+0.649X3−1.532X4) (1.16)

where X = log(Rrs(443)/Rrs(555) > Rrs(490)/Rrs(555) > Rrs(510)/Rrs(555)).

More recently, e�orts to expand the use of spectrometric measurements for esti-
mating other biogeochemically important ocean variables and phytoplankton-related
phenomena have increased considerably. For example, spectrometric measurements
including satellite remote sensing have been used to detect harmful algal blooms
(Cullen et al., 1997; Stumpf et al., 2003), surface concentrations of particulate in-
organic and organic carbon (Balch et al., 2005; Stramski et al., 2008), particle size
distribution (Kostadinov et al., 2009), phytoplankton community composition and
size structure (Aiken et al., 2007, 2005; Ciotti and Bricaud, 2006; Nair et al., 2008;
Uitz et al., 2006), and class-speci�c primary production (Uitz et al., 2010).
It is noteworthy, however, and in accordance with the central topic of this thesis,

that recent advances in measuring ocean spectrometric properties and light �elds
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within and leaving the ocean have included a progressive shift from using multispec-
tral to high spectral resolution (hyperspectral) acquisition systems (Chang et al.,
2004). The capability to obtain measurements at hundreds of narrow and closely
spaced wavelength bands from the ultraviolet to near-infrared, with a resolution bet-
ter than 10 nm, has become one of the most powerful and fastest growing areas of
technology in the �eld of ocean optics. The rapid maturing of optical instrumenta-
tion has led to hyperspectral technology, which has opened the possibility for optical
oceanographers to more accurately characterize complex oceanic environments.

Figure 1.15: (a) Particulate absorption coe�cients at particular wavelengths (i.e.,
490 and 555 nm) as a function of chlorophyll concentration for di�erent
stations within the Southern Ocean. Solid and open symbols represent
surface data from the Ross Sea and Antarctic Polar Front Zone, respec-
tively. The lines illustrate the predicted relationship from the model
developed by Bricaud et al. (1998). (b) Modeled relationships between
the spectral band ratio of remote-sensing re�ectance, Rrs(490)/Rrs(555),
and chlorophyll obtained in the same locations shown in (a). The lines
inllustrate the predicted relationship from di�erent models, among them
the NASA OC2 version 2 algorithm developed by O'Reilly et al. (2000)
(Source: Reynolds et al., 2001).

The advantage of a hyperspectral over a multispectral inversion for phytoplankton
species identi�cation stems from the fact that more accurate spectral information,
such as spectral features related to characteristic phytoplankton pigment absorption
peaks, is resolved. This is a key factor in the identi�cation of phytoplankton types
because it relies on very small signal and changes in the shape of spectral optical
characteristics. In the past, analyses of single band or single band-ratios obtained in
discrete multispectral bands were employed to retrieve concentrations of the pigment
chlorophyll-a (O'Reilly et al., 2000, see Fig. 1.15), resolve the presence of speci�c
phytoplankton functional groups (Sathyendranath et al., 2004; Alvain et al., 2005) or
determine phytoplankton size classes (Hirata et al., 2008). However, in most stud-
ies phytoplankton species mapping failed or was limited to the identi�cation of some
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phytoplankton groups given the limited number of spectral bands. The multispectral-
based approach usually implied a lack of spectral resolution necessary to di�erentiate
more species in the ocean. In this sense, the advent of hyperspectral sensors pro-
vides ample spectral information and facilitates to go beyond the estimation of the
chlorophyll-a and identify more phytoplankton species, which are spectrally unique
and complex. For instance, Craig et al. (2006) assessed the feasibility of remote
detection and monitoring of the toxic dino�agellate, Karenia brevis, accounting for
complete spectral behavior of in situ hyperspectral measurements of remote-sensing
re�ectance, Rrs(λ) and Lohrenz et al. (2008) directly explored the hyperspectral pat-
terns of Rrs(λ) to better characterize water mass properties in coastal areas (i.e., Case
2 waters). More recently, the composition and concentrations of two major phyto-
plankton functional groups (i.e., diatoms and cyanobacteria) have been derived from
hyperspectral measurements of the satellite sensor SCIAMACHY (Scanning Imaging
Absorption Spectrometer for Atmospheric Chartography) on ENVISAT and analysed
with the PhytoDOAS method (Bracher et al., 2009; Sadeghi et al., 2012).
As for what this thesis concerns, all hyperspectral-based applications developed

up to now and the increasing availability of hyperspectral observations of ocean wa-
ters clearly lead to a need for ongoing exploration of its potential to better map
phytoplankton community composition and dynamics.

Expanding role of hyperspectral oceanography

New technologies and the miniaturization of electro-optical components have permit-
ted the development of accurate, low-cost and energy-e�cient hyperspectral sensors
designed to measure oceanic high spectral resolution optical properties (i.e., including
IOPs and AOPs). As a result, their use is no longer limited to bench-top applica-
tions but they are being deployed on fully �edged sea-going observational platforms.
New interdisciplinary ocean observing platforms incorporating hyperspectral sensors
are being deployed such as in-water vertical pro�ling systems, moorings, drifters, au-
tonomous vehicles, air-borne and space-borne platforms (Dickey et al., 2006; Twar-
dowski et al., 2005; Perry and Rudnick, 2003). Various satellite-based hyperspectral
imagers are currently available: NASA's Hyperion sensor on the EO-1 satellite (Fig.
1.16a), ESA's CHRIS sensor on PROBA satellite or US Air Force Research Lab's
FTHSI sensor on the MightySat II satellite. In addition, examples of existing hy-
perspectral airborne sensors providing high spatial resolution images of speci�c areas
are the Ocean Portable Hyperspectral Imager for Low-Light Spectroscopy (PHILLS,
Davis et al., 2002), the Compact Airborne Spectrographic Imager (CASI) or the Air-
borne Visible Infrared Imaging Spectrometer (AVIRIS). Other in situ ocean observing
platforms for which hyperspectral sensors may be suitable are ships and moored buoys
(Fig. 1.16b, Kuwahara et al., 2007). These platforms o�er continuous measurements
at a high spatial and temporal resolution delivering data even under cloudy con-
ditions, thereby complementing discrete observations by satellites and aircrafts and
providing the data essential for calibration and validation purposes. Furthermore,
Lagrangian platforms that follow a particular water mass (e.g. �oats and drifters)
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can provide hyperspectral measurements in oceanic regions not normally accessible by
satellites or oceanographic research vessels. The goal of these monitoring missions is
to determine the material composition of the water mass under investigation through
the accurate analysis of simultaneous optical and hydrographic measurements.
The number of newly emerging ocean observing platforms capable of incorporat-

ing hyperspectral instrumentation is continuously growing. For instance, new au-
tonomous underwater vehicles (AUVs) have been developed recently with integrated
equipment for adaptive sampling and the ability to perform a wide-range of pre-
programmed monitoring surveys over extended periods of time (Perry and Rudnick,
2003). Another member of this family of instruments are the special AUVs called
gliders that propel themselves through the water by changing their buoyancy with a
minimal expenditure of energy (Fig. 1.16c). The glider provides a wide spatial cover-
age measuring � among others - the optical properties during periods of three or four
weeks (Wood, 2009). Another approach to monitor the variability of optical proper-
ties in the ocean is the use of vertical pro�ling systems (Fig. 1.16e, f) which can, for
instance, be part of some of the emerging cabled observatories. Instrument platforms
such as the Vertical Pro�ler System (VPS), part of Neptune Canada (Barnes et al.,
2008), the world's �rst regional-scale underwater ocean observatory plugged directly
into the Internet, o�er great power and bandwidth for gathering large quantities of
hyperspectral data.

Figure 1.16: Examples of ocean observing platforms suitable to incorporate hyper-
spectral sensors.

The amount of hyperspectral data sets available collected using all these types of
oceanographic observing platforms, covering a wide range of temporal and spatial
scales, will increase in the near future. New interdisciplinary research initiatives are
being successfully carried out such as the Hyperspectral Coastal Ocean Dynamics
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Experiment (HYCODE, see Pegau, 2002) conceived to exploit the new capabilities
of hyperspectral ocean color sensors. Within this framework, several collaborative
short-term and long-term �eld experiments, involving the simultaneous use of hyper-
spectral devices deployed in situ and remotely, are being conducted for calibrating,
�sea truthing� and relating subsurface optical properties to remote sensing ocean color
measurements. These investigations are essential to develop and validate optical ra-
diative models (see next Section) and to further our understanding of the processes
that contribute to the temporal and spatial variability of IOPs and AOPs in the
ocean. One of the most important challenges of HyCODE experiment is the stan-
dardization of the quality control protocols, including the de�nition of procedures to
perform detailed analysis of the reliability of measurements and an evaluation of the
impact of instrumentations inaccuracies.

1.4 Radiative Transfer (RT) models

In situ and remote sensing hyperspectral measurements in the ocean might be the two
methods providing su�cient information on phytoplankton distribution in their spa-
tial and temporal variability. However, collecting signi�cant amount of hyperspectral
data from such a high dynamic environment and under fully-controlled conditions is
still not straightforward. In fact, there are currently no hyperspectral sensors that
provide validated observations with a high temporal and spatial coverage of extended
marine areas. In this sense, there are still several limitations in the applications
where multispectral and hyperspectral data is used. For instance, despite current
global remote sensing products (that rely on algorithms based on spectral ratios
of the remote-sensing re�ectance for the operational determination of chlorophyll-a,
O'Reilly et al., 2000) bene�t from reduction in uncertainties partially cancelled out
through ratios, residual uncertainties may still become the source of large uncer-
tainties in derived products. These uncertainties are related to error estimates for
atmospheric correction or to errors in the performance of the sensors themselves and
are a limiting factor for the successfull development of the satellite-derived products.
One approach to �nding a solution to these problems and exploring the feasibility

of hyperspectral oceanographic observations to detect phytoplankton functional and
toxic groups is using radiative transfer (RT) modelling. On the one hand, model-based
approaches may be useful to show the feasibility of di�erent optical measurements
and their results for drawing the attention to the possibilities of how the problems
that might arise could be solved. On the other hand, and as it is shown in this thesis,
optical modelling can be an optimal and essential tool for developing and testing new
methods for estimating variability and dynamics of phytoplankton communities. In
any case, it is noteworthy that models are only useful for these applications when we
have good knowledge on the phytoplankton properties and other marine components.
The use of in-situ measurements of in-water properties, together with theoretical RT
models and laboratory experiments is the most suitable combination to validate in
situ and remote sensing observations and investigate biological activity, marine optical
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properties, and changes in the concentration and composition of material in surface
waters, over larger temporal and spatial scales (Tzortziou et al., 2006).
In this thesis, the commercially available RT numerical model Hydrolight/Ecolight

5.0 (Sequoia Scienti�c, Inc., Mobley and Sundman, 2008) has been utilized. Time-
independent radiance distributions within and leaving any plane-parallel water body
(and derived quantities) have been computed as a function of depth, direction and
wavelength given water column absorbing and scattering properties (i.e., the IOPs)
and other oceanographic environmental conditions (see Fig. 1.8 for relationships be-
tween the various radiometric quantities). The Hydrolight/Ecolight code employs
mathematically sophisticated invariant imbedding techniques to solve the radiative
transfer equation (see Appendix A for details on this equation) and o�ers the possi-
bility of performing numerical simulations in controlled environments (e.g., Mobley
and Stramski, 1997 and Albert and Mobley, 2003). When computing the full radi-
ance distribution, invariant imbedding is computationally extremely fast compared
to other solution methods such as Monte Carlo simulations.
Hydrolight/Ecolight 5.0 has been used in a variety of studies ranging from bio-

optical oceanography to remote sensing. In this thesis, the IOPs of di�erent water
types have been used to simulate di�erent in-water light scenarios (each characterized
by an hyperspectral optical signature) with the purpose of evaluating the feasibility of
hyperspectral oceanographic observations to better map phytoplankton communities.
As it is described in each chapter, modeled, laboratory and in situ data were collected
and considered in the simulations performed for each of the presented studies.
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2 Model-based assessment and novel
approach to improve the use of
hyperspectral data in monitoring of
marine phytoplankton communities

The results from this chapter have mostly been published as:

Torrecilla, E., J. Piera and M. Vilaseca (2009). Derivative analysis of
oceanographic hyperspectral data. In G. Jedlovec (Ed.), Advances in Geo-
science and Remote Sensing (pp. 597�619). Vienna: InTech.

The increasing availability of in situ and remotely sensed hyperspectral measurements
of ocean waters leads to a need for ongoing evaluation of high-resolution processing
methods. In this sense, the main objective of this thesis is to attempt a veri�cation
of the hypothesis formulated: �Hyperspectral oceanographic observations play a key
role in a better characterization of complex oceanic environments and mapping of
phytoplankton communities�, by developing new processing strategies.
Hyperspectral optical data provide the opportunity for improvements in spectral

shape analysis and subsequent extraction of environmental information compared
with low spectral resolution optical data (multispectral approaches). Derivative spec-
troscopy is a powerful technique of spectral shape analysis which enhances subtle
features in hyperspectral data, and has been successfully used to obtain information
about optically signi�cant water constituents such as phytoplankton. For example,
Craig et al. (2006) assessed the feasibility of detection of a toxic algal bloom of the
dino�agellate Karenia brevis from the analysis of the fourth derivative of phyto-
plankton absorption spectra, estimated from in situ hyperspectral measurements of
remote-sensing re�ectance, Rrs(λ). The advantages o�ered by hyperspectral mea-
surements of Rrs(λ) in combination with derivative spectroscopy for identifying algal
blooms were also demonstrated by Lubac et al. (2008), who based their analysis
on the position of the maxima and minima of the second derivative of the spectral
Rrs(λ). Louchard et al. (2002) assessed major sediment pigments of benthic sub-
strates from derivative spectra of hyperspectral Rrs(λ) measured in shallow marine
environments. In general, the optical detection of speci�c algal blooms appears fea-
sible because certain accessory pigments with speci�c absorption features (see Fig.
1.3) are unique to individual phytoplankton taxa (e.g., Millie et al., 1995) and can
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2 Model-based assessment to use hyperspectal data in monitoring phyto. communities

be better di�erentiated in hyperspectral absorption data than in multispectral data
with a limited number of spectral bands corresponding to certain wavelengths.
The advantages of high spectral resolution measurements suggest that the e�ec-

tiveness of derivative spectroscopy applied to hyperspectral optical information for
assessing phytoplankton diversity should be further explored. In particular, there is
a need to test whether the hyperspectral approach, which has proven useful in inland
and coastal waters (e.g., Hunter et al., 2008; Lee and Carder, 2004; Lubac et al.,
2008), can also be e�ective for the identi�cation of di�erent phytoplankton assem-
blages at large spatial scales in the open ocean (i.e., Case 1 waters). These tests are
also especially important for the common situation in which various phytoplankton
groups co-exist at signi�cant concentrations (i.e., a non-bloom condition). In such
a case, as no single species dominates the assemblage, it seems also appropriate to
consider some classi�cation technique in combination with derivative spectroscopy to
identify di�erent phytoplankton assemblages, which accounts for complete spectral
behavior of hyperspectral data (Duin et al., 1997; Pekalska and Duin, 2000).
In this chapter, a new methodology applied to hyperspectral data is proposed (see

diagram in Figure 2.1) with the aim to automatically identify di�erent phytoplankton
communities in the open ocean (i.e., non-bloom conditions). A dissimilarity-based
cluster approach is evaluated and applied to a hyperspectral data set of Rrs(λ),
including ordinary spectra and its second derivative spectra, in which the global
contribution over the entire spectral range of all pigments present in the water sample
is considered.
In an ideal case, the e�ectiveness of any new method for estimating variability

and dynamics of phytoplankton communities should be tested on the basis of �eld
data. However, collecting signi�cant amount of hyperspectral data from di�erent
environments under fully-controlled conditions is not straightforward. Moreover, the
availability of satellite or in situ hyperspectral data sets for developing and validating
new algorithms was still complicated at the beginning of this thesis. In fact, there are
currently no hyperspectral sensors that provide validated observations with a high
temporal and spatial coverage of extended marine areas.
The above mentioned reasons indicated the use of oceanic radiative transfer (RT)

modeling as a primary approach in this thesis. In this chapter, a synthetic data set of
hyperspectral Rrs(λ) spectra has been generated and analyzed. As a �rst approach,
several oceanic optical scenarios have been created using a simulation-based frame-
work, to represent simpli�ed environmental conditions in terms of phytoplankton
composition. The main goal is to provide a �rst demonstration of the feasibility of
hyperspectral oceanographic data to discriminate di�erent phytoplankton communi-
ties in the open ocean by using the proposed methodology. In order to address this
question, derivative spectroscopy and a cluster technique (HCA) are applied to the
synthetic hyperspectral Rrs(λ) spectra obtained with the commercially available RT
model Hydrolight/Ecolight 5.0 (Mobley and Sundman, 2008).
The present chapter is organized in the following parts. In Section 2.1 a description

is o�ered regarding some important issues that must be considered when derivative
spectroscopy is applied to hyperspectral oceanographic data. In addition, the funda-

38



mentals of the applied HCA cluster-based approach are provided. In Section 2.2, some
results demonstrating the feasibility of applying derivative spectroscopy and HCA to
modeled hyperspectral Rrs(λ) in open ocean environments are shown. Special at-
tention is given in this section to the role of involved parameters during derivative
computations of hyperspectral data, in order to better identify phytoplankton com-
munities. Section 2.3 is devoted to summarize the main conclusions drawn from this
�rst study.

Figure 2.1: Flowchart showing the methodology proposed in this thesis. The auto-
matic identi�cation of phytoplankton communities is tested in this chapter
by considering a synthetic data set of hyperspectral Rrs(λ) spectra.
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2 Model-based assessment to use hyperspectal data in monitoring phyto. communities

2.1 Hyperspectral data analysis

2.1.1 Derivative analysis

Derivative spectroscopy has been commonly used in the analysis of hyperspectral
data using di�erent computation algorithms such as �nite divided di�erences or least
square �tting (Tsai and Philpot, 1998; Ru�n et al., 2008). In this thesis, the process
of estimating derivative spectra has been addressed using a �nite divided di�erence
algorithm, named ��nite approximation�. As a less computationally expensive ap-
proach, it consists in computing the changes in curvature of a given spectrum (s(λ))
over a sampling interval (∆λ) or band separation (BS). In the discrete domain, this
sampling interval is �nite and small but not necessarily in�nitesimally small and is
de�ned as ∆λ = λj − λi, where λj > λi. Therefore, the �rst and the subsequent nth
derivative are obtained using Eqs. 1 and 2, respectively:

ds
dλ

∣∣∣
i
≈ s(λi)−s(λj)

∆λ (2.1)

dns
dλn

∣∣∣
j
≈ d

dλ

(
d(n−1)s
dλ(n−1)

)
(2.2)

Derivative analysis can be applied to hyperspectral measurements of both inherent
and apparent oceanographic optical properties (e.g. spectral absorption coe�cients,
irradiance distributions or remote-sensing re�ectances). For instance, as shown in
Figure 2.2, it is a useful tool for enhancing spectral features, which are often relevant
and related to absorption bands of pigments present in the considered water samples.
In this sense, successful extraction of spectral details of interest through derivative
spectroscopy depends on the band separation chosen. The importance of selecting a
suitable band separation (∆λ = BS) in each case stems from the fact that spectral
data features of interest with a smaller scale than the BS will not be preserved in the
derivative results. In order to visualise this e�ect, Fig. 2.3 shows di�erent derivative
spectra corresponding to one of the spectral absorption coe�cient shown in Fig. 2.2a,
computed according to di�erent �nite band resolutions (BS).
Another important factor to consider is that noise level in hyperspectral data can

be considerable, as the small amount of energy gathered by the narrow bandwidth
may be exceeded by the intrinsic sensor's noise. In order to make an optimal applica-
tion of derivative analysis, which is a technique clearly sensitive to noise, smoothing
techniques must be applied to hyperspectral data prior to computation of derivative
spectra (Vaiphasa, 2006). A number of smoothing algorithms have been developed
within the last few decades (e.g. Savitzky-Golay, Kawata-Minami or mean-�lter
smoothing). In all approaches, the smoothing level applied depends on the size of the
�lter window (WS) used for averaging. It is therefore worth noting that an appro-
priate selection of the smoothing and derivative parameters (WS and BS) must be
done according to the resolution of each type of hyperspectral data (Torrecilla et al.,
2007). An important e�ort must be made to determine the best trade-o� between
denoising and the ability to resolve �ne spectral details of interest.
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2.1 Hyperspectral data analysis

Figure 2.2: (a) Examples of speci�c absorption coe�cient, a∗ph(λ), corresponding to
two phytoplankton groups (from Kim and Philpot, 2006). (b) Results
from second derivative analysis applied to the a∗ph(λ) spectra. Shape

singularities in each a∗ph(λ) spectra are enhanced in the derivative domain.

Figure 2.3: Second derivative spectra corresponding to one of the a∗ph(λ) spectra
shown in Fig. 2.2a, computed for several values of band separation (BS),
each of them leading to spectral features at di�erent scales and resolution.
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2 Model-based assessment to use hyperspectal data in monitoring phyto. communities

2.1.2 Hierarchical cluster analysis

As it has been mentioned, several of the studies dedicated to derivative analysis of
hyperspectral remote-sensing re�ectances have traditionally focused on the use of
ratios of discrete values of derivative spectra to characterize or classify oceanic envi-
ronments (Lubac et al., 2008; Louchard et al., 2002). However, more advanced and
contemporary methods are beginning to take advantage of the information contained
in the whole derivative spectrum. For example, Filippi (2007) proposes a combina-
tion of derivative spectroscopy and arti�cial neural network (ANN) algorithms. The
derivative-neural approach has been proven to be e�ective for providing bathymetry,
bottom type and constituent concentration estimations from Rrs(λ) measurements.
In this chapter, the assessment of similarity between hyperspectral optical spectra

has been made using a similarity-based cluster algorithm. This type of technique
accounts for complete spectral behavior of optical data with no need to identify
speci�c spectral features (Pekalska and Duin, 2000). This approach is particularly
useful in optical oceanography when the global contribution over the entire spectral
range of all pigments present in the water sample wants to be considered (Duin et al.,
1997).
A method based on a hierarchical cluster analysis (HCA) has been applied using

hyperspectral optical data as input vectors (or objects). The HCA method utilizes
an unsupervised classi�cation algorithm which creates a hierarchical cluster tree (or
dendrogram) by partitioning a given collection of unlabeled input data into clusters
or groups of objects (Berkhin, 2006; Jain et al., 1999). Each cluster includes objects
that have a similar pattern between them and a dissimilar pattern from objects dis-
tributed in the other clusters. Figure 2.4 illustrates the process of creation of each
cluster tree in which a linkage algorithm is utilized based on initial calculations of a
pairwise distance between all objects included in the input data set.

Figure 2.4: Diagram of stages in unsupervised hierarchical cluster analysis (HCA).
Hyperspectral optical data (or derivative) are utilized as input.

Data in each cluster of a dendrogram share a proximity according to some de�ned
distance measure. The selected distance measure determines how the similarity of
two input objects is calculated. In this study, the partitioning of data into clusters
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2.2 Results and discussion

has been based on the determination of an angular distance between each pair of
examined input data objects (i.e., each pair of re�ectance or absorption spectra). In
particular, the similarity between each pair of objects has been evaluated using the
cosine distance, d, calculated as one minus the cosine of the angle θ between each
pair of objects:

d(x1, x2) = 1− cos θ = 1−
(

x1·x2
||x1||×||x2||

)
(2.3)

where x1 and x2 include the two considered input data objects and the cosine of
the angle between the objects (θ) is obtained as the ratio of the dot product of the
objects to the product of norms of the objects. Note that as the angle between the
objects decreases the cosine approaches 1, resulting in a smaller distance between the
input data objects and therefore higher similarity.
Other measures of similarity between the input objects have been tested, e.g.,

Euclidean distance using a similar approach to that proposed in Robila (2005). Fi-
nally, the cosine distance has been selected as the most appropriate measure for this
study because it re�ects mainly the di�erences in the spectral shape of optical data
rather than magnitude. The cosine distance is also advantageous because it is scale
invariant, i.e., insensitive to normalization of optical spectra at a speci�c wavelength.
As a linkage algorithm, the shortest distance D, also referred to as the nearest

neighbor, has been computed to measure the distance between two clusters of objects
in the tree:

D(a, b) = min [dist(xai, xbj)] i ε (1, . . . , na) and j ε (1, . . . , nb) (2.4)

where xai is the ith object in cluster a and xbj is the jth object in cluster b.

In the traditional graphical representation of a dendrogram, the individual objects
appear at one end and a single cluster containing all objects at the other end (e.g., Jain
et al., 1999). In this study, pairs of objects showing a small cosine distance between
them (because of a similar pigment composition and spectral optical pattern) will
provide a small linkage distance and therefore appear closer in the cluster tree.

2.2 Results and discussion

2.2.1 Experimental design

The potential o�ered by hyperspectral observations to identify phytoplankton com-
munities in open ocean waters is investigated based on the analysis tools described
in the previous section (i.e., derivative spectroscopy and HCA). A simulation-based
framework is used to achieve this goal as a primary approach, which includes the use
of the Hydrolight/Ecolight version 5.0 radiative transfer (RT) model (Mobley and
Sundman, 2008). As one of the main interests of this study lies in a methodology
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2 Model-based assessment to use hyperspectal data in monitoring phyto. communities

for estimating variability in phytoplankton communities from remote-sensing opti-
cal observations, this study is based on a set of remote-sensing re�ectance, Rrs(λ),
spectra.
A brief description of the methodology proposed and carried out in this research

work is provided here (and schematically presented in Figure 2.1). As a �rst stage,
the generation of a set of simulated hyperspectral Rrs(λ) spectra is performed using
a RT oceanic model, which takes into account the constituents present in the water
column, their inherent optical properties (i.e., absorption and scattering properties
of each constituent) and their concentration pro�le. The next stage encompasses the
computation of the second derivative spectrum of each modeled Rrs(λ). Previous to
derivative analysis, however, a mean �lter smoothing type is also applied to Rrs(λ)
data. It consists of a simple average of points within the chosen �lter window. As
stated in Section 2.1.1, the e�cient way to accomplish the smoothing and derivative
processing is carefully adapting the �lter size (WS) and the sampling interval (BS)
in order to better match the scale of the spectral features of interest in each case.
As a �nal stage, the goal of validating the potential of hyperspectral Rrs(λ) mea-
surements for identifying di�erent phytoplankton communities is addressed through
a similarity assessment between Rrs(λ) spectra and also between second derivative
spectra of Rrs(λ). To make such a similarity assessment, an approach based on a
hierarchical cluster analysis is used (see Section 2.1.2). Spectra corresponding to
open ocean scenarios with a similar phytoplankton composition (i.e. with a similar
spectral pattern) are expected to appear closer in the dendrogram than those having
a di�erent phytoplankton composition. The feasibility of considering hyperspectral
measurements of Rrs(λ) to identify phytoplankton communities is assessed by ana-
lyzing how close ordinary Rrs(λ) spectra (or derivative spectra) dominated by the
same phytoplankton group appear in the computed cluster tree.

2.2.2 Modeling of underwater optical scenarios

A synthetic data set of hyperspectral Rrs(λ) has been created covering a range of
environmental conditions in terms of phytoplankton composition of an hypothetical
open ocean scenario. Despite natural phytoplankton assemblages usually consist of
several species, the study presented in this chapter has focused on di�erent simpli-
�ed open ocean scenarios. As a �rst approach for testing the proposed methodology,
di�erent scenarios have been created under fully-controlled conditions and each dom-
inated only by a single phytoplankton group.
The RT optical simulations have been carried out within the spectral region 350

to 750 nm with a spectral resolution of 1 nm. In order to emulate the real conditions
for an open ocean scenario, the ocean has been assumed to be in�nitely deep and the
calculations included the inelastic Raman scattering and �uorescence by chlorophyll
and CDOM within the ocean. The sea surface boundary conditions have been con�g-
ured using the default settings in the Hydrolight/Ecolight RT model, being the same
for all modeled scenarios (i.e., wind speed equal to 5 m/s, solar zenith angle equal to
30º and null cloudiness). The inherent optical properties (IOPs) of the water column
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2.2 Results and discussion

required as input to the simulations have been derived from Pope and Fry (1997) for
the pure water component and from Kim and Philpot (2006) for the phytoplankton
component, which included speci�c absorption and scattering spectral coe�cients
corresponding to six di�erent phytoplankton groups. Figure 2.5 shows the signif-
icant variability in spectral features of the speci�c absoprtion coe�cients, a∗ph(λ),
of these phytoplankton groups: cryptophyceae, cyanophyceae, diatoms, dinophyceae,
prasinophyceae and prymnesiophyceae. The contribution of the inorganic component
of particulate matter (i.e., minerals) to total absorption and scattering coe�cients has
been considered negligible for open ocean scenarios (see Fig. 1.6 for Case 1 waters).
For the colored dissolved organic matter, CDOM, absorption has been con�gured to
covary with particle absorption coe�cient according to the commonly used model
from Morel and Maritorena (2001).

Figure 2.5: Speci�c absorption coe�cients corresponding to six phytoplankton
groups, each indicated in a di�erent color.

A set of hyperspectral Rrs(λ) spectra have been simulated, each of them charac-
terized by the presence of only one phytoplankton group along the water column,
which has been assumed to be optically homogeneous (i.e., constant concentration
depth pro�le for all components). Therefore, a total of thirty Rrs(λ) spectra have
been generated from combining the six di�erent dominating phytoplankton groups
at �ve di�erent concentration values (i.e., 0.01, 0.03, 0.05, 0.07 and 0.09 mg/m3).
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2 Model-based assessment to use hyperspectal data in monitoring phyto. communities

It is noted that these levels correspond to typical concentrations encountered under
non-bloom sea conditions. Figure 2.6 illustrates how the modeled Rrs(λ) spectra
display a great variability in both magnitude and spectral shape, in correspondence
with the variable phytoplankton composition at di�erent concentration levels.

Figure 2.6: Results of RT simulations showing the di�erences in hyperspectral Rrs(λ)
spectra (1 nm resolution) corresponding to di�erent dominating phyto-
plankton groups at di�erent concentration levels (i.e., 0.01, 0.03, 0.05,
0.07 and 0.09 mg/m3).

2.2.3 Automatic classi�cation of phytoplankton communities

HCA clustering techniques have been used independently to identify and group similar
phytoplankton communities from hyperspectral Rrs(λ) spectra. The cluster tree
obtained from the analysis applied to the ordinary hyperspectral Rrs(λ) spectra is
displayed in Fig. 2.7. Each scenario (i.e., each simulated Rrs(λ)) is identi�ed with
a speci�c label, consisting of the name of the dominating phytoplankton group and
the concentration value. For instance, if diatoms are the dominating phytoplankton
group, with a concentration of 0.05 mg/m3 along the homogeneous water column,
the label identifying that case will be Diat_0.05. In addition, a speci�c color is used
to identify all cases corresponding to the same phytoplanktonic group.
It is worth noting that, when ordinary Rrs(λ) spectra are used as input data for the

cluster analysis, the dendrogram provides di�erent clusters but most of them com-
posed by cases corresponding to oceanic scenarios with a di�erent phytoplanktonic
dominance. The only phytoplankton group which is clustered satisfactorily and sepa-
rately from the rest is the one corresponding to the group of prasinophyceae (identi�ed
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2.2 Results and discussion

in color cyan), except for the lowest concentration (i.e., 0.01 mg/m3). Whereas, the
remaining cases dominated by the other algal groups (i.e., diatoms, cryptophyceae,
cyanophyceae, dinophyceae and prymnesiophyceae) at di�erent concentration levels
are grouped all mixed. In addition, no improvements are obtained from testing the
cluster analysis of ordinary Rrs(λ) using an Euclidean distance measure instead of
an angular distance (not shown).

Figure 2.7: Cluster analysis based on modeled ordinary hyperspectral Rrs(λ) spectra
shown in Fig. 2.6.

These results point out the real challenge that implies the identi�cation of phyto-
plankton community composition from the analysis of the apparent optical property:
Rrs(λ). The reason is that the spectral Rrs(λ) of the ocean is highly in�uenced by
the optical response of the phytoplankton pigment composition but also by many
other optically signi�cant non-phytoplankton constituents (e.g., CDOM).
The unsatisfactory results obtained from the cluster analysis based on the ordinary

Rrs(λ) spectra suggests the utilization of derivative spectra of Rrs(λ) in order to
improve our ability to classify di�erent open ocean scenarios dominated by di�erent
phytoplankton groups. Figure 2.8 depicts the second derivative spectra of Rrs(λ),
obtained with the parameters WS and BS arbitrarily selected to be equal to 5 nm
and 11 nm, respectively. These values provided a good trade-o� between denoising
and enhancement of spectral details of interest. Although derivative calculations
have been made using data from the whole spectral range (i.e., 350 - 750 nm), the
results from the derivative analysis of Rrs(λ) spectra are reported between 361 nm (≡
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2 Model-based assessment to use hyperspectal data in monitoring phyto. communities

350+11) and 739 nm (≡ 750−11) according to the BS considered. As it is observed,
derivative analysis of Rrs(λ) data enhances shape singularities in hyperspectral data,
which are signi�cant since they are related to absorption features of phytoplankton
pigments present in the samples, specially within the spectral region below 540 nm
(see Fig. 1.3).

Figure 2.8: Second derivative spectra of the modeled Rrs(λ) shown in Fig. 2.6.
Derivative spectra for the range of 470-500 nm is enlarged with regard
to the sensitivity analysis discussed at the end of this section (see Fig.
2.11). This is an optically-signi�cant region in terms of detecting the
phytoplankton community composition.

The cluster analysis based on the second derivative of Rrs(λ) spectra and an angu-
lar distance measure provides better results (see Fig. 2.9) in comparison to the results
obtained based on the ordinary Rrs(λ) spectra. When second derivative spectra over
the whole spectral range are considered for the cluster analysis, the majority of sce-
narios dominated by the same phytoplankton groups at di�erent concentration levels
are identi�ed and connected by closer dendrites in the dendrogram. In this sense,
derivatives of Rrs(λ) spectra corresponding the same phytoplankton group (i.e., the
same color) are located closer in the dendrogram and create clusters that are clearly
separated one from each other, specially for the dinophyceae and prasinophyceae.
The degree of separation between clusters which group scenarios of the same phyto-
planktonic dominance is higher. However, there exist some cases which are not well
grouped, corresponding to those with the lowest concentration levels (i.e. 0.01mg/m3

and in some case 0.03 mg/m3). In fact, two �multi-color� clusters can be identi�ed
grouping all these scenarios due to Rrs(λ) spectra corresponding to low concentra-
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2.2 Results and discussion

tions have a similar signature regardless the dominant phytoplankton group. This is
something expected given that spectral features of absorption of phytoplankton are
less evident and have a smaller e�ect in the Rrs(λ) spectrum as the concentration
decreases.

Figure 2.9: Cluster analysis based on the second derivative of hyperspectral Rrs(λ)
spectra for the total spectral range from 361 to 739 nm (see Fig. 2.8).

Despite the previous analysis does not allow to resolve di�erent phytoplankton com-
munities at low concentrations, the results provide the �rst detailed demonstration of
the advantages and limitations of integrating hyperspectral Rrs(λ) data, derivative
spectroscopy and HCA cluster techniques for an automatic identi�cation of phyto-
plankton communities in open ocean environments. The results con�rm the potential
of accounting for complete spectral behavior of derivative of hyperspectral Rrs(λ)
spectra in comparison with the use of multispectral observations or band ratios of
discrete spectral values of derivatives (Lubac et al., 2008; Louchard et al., 2002). The
HCA cluster analysis based on the hyperspectral data as input, with variable optical
conditions, has been able to automatically bring together scenarios corresponding
to the same phytoplanktonic dominance, going beyond the studies focused on the
detection of the presence of a single phytoplankton group (Craig et al., 2006).
It is important to note that the performance of cluster analysis applied to derivative

spectra of Rrs(λ) is clearly dependent on the examination of the spectral data and
the optimal selection of involved parameters (i.e. smoothing �lter size and band
separation) for each particular data set and for each speci�c purpose of the analysis.
For instance, if smoothing and derivative parameters are selected to be too coarse,
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2 Model-based assessment to use hyperspectal data in monitoring phyto. communities

spectral features of interest might be lost, probably causing a worse performance.
Figure 2.10 illustrates an example in which the cluster analysis is applied to second
derivative spectra of the modeled hyperspectral Rrs(λ) obtained using as parameters
a BS = 40 nm and WS = 40 nm. In this case, scenarios dominated by the groups
prymnesiophyceae and diatoms are clustered together and scenarios corresponding to
the group of cyanophyceae (in color blue) appear also mixed with other phytoplankton
groups. Therefore, the resulting analysis based on the derivative settings for spectra
of Rrs(λ) provides a worse partitioning, which prevents a satisfactory identi�cation
of di�erent phytoplankton communities. It is important to note that a wide range of
values for the BS and WS parameters were also tested to con�rm that variability of
our performance but results are not shown.

Figure 2.10: Cluster analysis based on the second derivative of Rrs(λ) spectra using
analyzing parameters that are too coarse (i.e. BS = WS = 40 nm).

In order to keep on investigating the importance of selecting the optimal param-
eters involved in the proposed analysis, it is also essential to take into account the
spectral region considered for the analysis. Because the absorption characteristics of
main accessory pigments occur at speci�c wavelength ranges, it is therefore useful
to examine whether the cluster analysis of derivative spectra of Rrs(λ) yields bet-
ter results if a speci�c spectral range is considered. Following the examination of
derivative spectra of Rrs(λ) (see Fig. 2.8), a region in which the di�erent scenar-
ios present distinct remote-sensing optical patterns is detected. This spectral region
ranges from 470 to 500 nm and coincides with a spectral region in which several
accessory pigments have relevant spectral features (see Fig. 1.3). The dendrogram
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obtained from cluster analysis as applied to derivative Rrs(λ) spectra over this region
is displayed in Fig. 2.11. The analysis based on this limited spectral information
provide a very good performance, improving signi�cantly the results obtained based
on the complete spectral range (see Fig. 2.9). In this sense, scenarios correspond-
ing to all groups of phytoplanktonic dominance are clearly identi�ed and grouped in
separate clusters, showing a much higher degree of separation between them. The
methodology proposed, however, still presents some limitations when the analyzed
underwater scenarios are characterized by a very low concentration level of phyto-
plankton (i.e., 0.01 mg/m3). Regardless the dominant phytoplankton group, the
optical patterns corresponding to these scenarios are too similar and therefore, are
grouped in a unique cluster. This cluster also includes the scenarios dominated by
cyanophyceae at di�erent levels of concentration (in blue color), which in fact seems
logical since it is the phytoplankton group that presents a weaker absorption pattern
(see Fig. 2.5).

Figure 2.11: Cluster analysis based on second derivative of hyperspectral Rrs(λ) spec-
tra limited to the spectral range from 470 nm to 500 nm (see enlarged
region in Fig. 2.8).

2.3 Summary and conclusions

The e�ectiveness of hyperspectral optical information, in particular remote sensed
observations, for assessing phytoplankton diversity in the ocean has been explored in
this chapter. As a primary approach, the feasibility of hyperspectral oceanographic
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data to discriminate di�erent phytoplankton communities in the open ocean (i.e., un-
der non-bloom conditions) has been examined using a simulation-based framework.
The utilization of the model Hydrolight/Ecolight version 5.0 has served to fully un-
derstand the fundamentals of the oceanic radiative transfer (RT) and to generate a
synthetic data set of hyperspectral remote-sensing re�ectance spectra, Rrs(λ). In this
chapter, several simpli�ed scenarios have been utilized in order to base the analysis
on hyperspectral data created under fully-controlled conditions and each dominated
by a single phytoplankton group.
A new methodology has been proposed for estimating variability in marine phy-

toplankton communities from the modeled hyperspectral optical data set of Rrs(λ),
which is based on the assessment of di�erences in the shape of high spectral res-
olution data. Shape singularities in hyperspectral oceanographic data are relevant
since they are related to absorption features of pigments present in the samples. In
this sense, shape spectral features have been analyzed to obtain information about
optically signicant water constituents, in particular about phytoplankton community
composition. The availability of a hyperspectral data set corresponding to di�erent
modeled oceanic environments has provided the opportunity to test this new method-
ology, which consists in the application of derivative spectrospcopy and a HCA cluster
technique. Derivative spectroscopy has proven useful to extract more information re-
garding phytoplankton communities by enhancing subtle features in hyperspectral
data of Rrs(λ). Whereas, the unsupervised hierarchical cluster analysis (HCA) ap-
plied to hyperspectral data and their derivative spectra has allowed to carry out an
assessment of dissimilarity between high resolution optical data and to automatically
distinguish those open ocean scenarios dominated by the same phytoplankton groups.
The HCA cluster analysis has been optimized by selecting an angular distance as

a measure to determine the degree of similarity between each pair of examined input
spectra, with the aim to recognize similar optical patterns from their shape features.
In addition, this similarity-based cluster technique accounts for complete spectral
behavior of optical data with no need to identify speci�c spectral features. This
approach is particularly useful in cases when it is di�cult or impossible to de�ne
explicitly a set of unambiguous diagnostic spectral features in the original optical
data (Duin et al., 1997; Pekalska and Duin, 2000), or in studies such as the ones
presented in this chapter, in which the global contribution of all pigments over the
entire spectral range is explored.
The application of derivative analysis to numerical simulations of hyperspectral

Rrs(λ) corresponding to di�erent open ocean environments has yielded the most
satisfactory results. A better ability for identifying di�erent oceanic scenarios from
derivative spectra of Rrs(λ), in comparison with the use of ordinary Rrs(λ) spec-
tra, has been demonstrated using the HCA similarity-based cluster approach. In
this sense, the cluster partitioning obtained from the analysis of derivative spectra
of Rrs(λ) as input data has provided a better separation of oceanic environments
corresponding to the same phytoplanktonic dominance.
As a preliminary study, it has been demonstrated the potential of this methodology

to provide a means for optical oceanographers to better map speci�c phytoplankton
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communities from hyperspectral oceanographic information, including remote sensed
observations. Nevertheless, the ability to automatically classify scenarios correspond-
ing to the same phytoplanktonic dominance by analyzing complete spectral behavior
of derivative of hyperspectral Rrs(λ) data instead of discrete values at speci�c wave-
lengths, has shown to be dependent on the examination of the spectral data and on
the optimal selection of parameters involved in the analysis. First, the achievement
of a good performance from derivative analysis of hyperspectral Rrs(λ) stems from
the fact that a suitable selection of the smoothing and derivative parameters (i.e.,
�lter size and band separation) must be done according to the resolution of each
type of hyperspectral data (Torrecilla et al., 2007). Otherwise, spectral features of
interest are lost, preventing a satisfactory identi�cation of di�erent oceanic environ-
ments. Secondly, a signi�cant improvement of our performance is achieved if the
cluster analysis is limited to derivative spectra of Rrs(λ) over a restricted spectral
region. In particular, a better identi�cation of phytoplankton communities has been
obtained considering the spectral range from 470 to 500 nm, which overlaps with
the wavelength range where absorption characteristics of main phytoplankton pig-
ments occur. It is important to note, though, that this successful identi�cation has
only been possible for simulated scenarios whose phytoplankton concentration was
larger than 0.01 mg/m3. For low concentrations, the corresponding optical pattern
of Rrs(λ) spectrum has been very similar regarless the phytoplanktonic dominance
of each modeled scenario and, therefore, not separated with the cluster analysis.
Following completion of the described analyses, the advantages of integrating RT-

modeled hyperspectral data, derivative spectroscopy and the HCA cluster technique
for an automatic identication of phytoplankton communities in open ocean environ-
ments have been identi�ed, likewise its limitations. In this sense, future research
described in chapters to follow has focused on addressing several questions. For in-
stance, the exploration of the proposed methodology using a more realistic approach
based on optical data collected in the �eld is described in Chapters 3 and 4. As
a natural following step, the examination of the hyperspectral-based approach by
considering larger data sets of optical observations, corresponding to real open ocean
environments, becomes essential. In these chapters, it is also tackled the possibility
to identify with the proposed methodology di�erent real phytoplankton assemblages
(i.e., scenarios in which di�erent phytoplankton species co-exist). In order to do so,
the methodology proposed in the present chapter (see diagram in Fig. 2.1) has been
improved by developing an automatic tool of validation, aimed at evaluating how
well di�erent optical data sets perform when considered as input data in the cluster
analysis. It is described how the e�ectiveness of the optical classi�cation can be illus-
trated and quanti�ed using two objective indices. This new validation criteria allows
to go beyond the subjective evaluation used in the present chapter (i.e., the visual
inspection of each cluster tree as a measure of validation of results).
Another assessment of the potential of the proposed methodology is described in

Chapter 5 but in this case focused on more complex underwater scenarios corre-
sponding to shallow estuarine environments (i.e., Case 2 waters). In this case, the
RT modeling has been adapted to this type of coastal environments in which non-
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phytoplankton optically signi�cant water constituents play an important role besides
phytoplankton (e.g. CDOM, suspended sediments). The proposed methodology has
been tested for detecting di�erent phytoplankton groups given di�erent biomass dis-
tributions along the vertical structure of the water column and bottom types, based
on the analysis of the remote-sensing re�ectance.
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phytoplankton pigment assemblages
in the open ocean

The results from this chapter have mostly been published as:

Torrecilla, E., D. Stramski, R. A. Reynolds, E. Millan-Nunez and J. Piera
(2011). Cluster analysis of hyperspectral optical data for discriminating phy-
toplankton pigment assemblages in the open ocean. Remote Sensing Environ-
ment, 115, doi: 10.1016/j.rse.2011.05.014:25782593.

The feasibility of hyperspectral oceanographic data to discriminate phytoplankton
communities has been demonstrated in the previous chapter under a simulation-
based framework and using a new approach. In this chapter, the analysis is extended
to more realistic environmental scenarios based on �eld data collected as part of a
research initiative carried out by the group from the Marine Physical Laboratory
(Scripps Institution of Oceanography, San Diego, USA) led by Prof. Dariusz Stram-
ski. In particular, phytoplankton pigment data are analyzed in conjunction with
concurrently obtained optical data (i.e., absorption coe�cients and remote-sensing
re�ectance), which were determined in the �eld along a north-to-south transect in the
eastern Atlantic Ocean in 2005. The primary goal is to examine the feasibility of clas-
sifying di�erent real open ocean environments under non-bloom conditions in terms
of phytoplankton pigment assemblages from analysis of hyperspectral absorption and
remote-sensing re�ectance measurements. In order to address this question, as it is
schematically presented in Fig. 3.1, the unsupervised hierarchical cluster analysis
described in Section 2.1.2 is applied to the optical data sets including the spectra
of absorption coe�cients and remote-sensing re�ectance and their second derivative
spectra and to the pigment data set obtained from HPLC chromatographic analy-
sis of seawater samples. In this chapter, a validating tool is proposed to evaluate
how well di�erent optical data sets perform. This novel approach is based on the
pigment information, which has been commonly used by the scienti�c community as
a proxy for the phytoplankton composition. Therefore, the pigment-based clusters
provide a reference for partitioning the selected data sets into distinct subsets, each
characterized by di�erent phytoplankton pigment composition. In order to illustrate
the e�ectiveness of the optical classi�cation, the degree of similarity between the
pigment-based clusters (the �sea truth�) and optical-based clusters is quanti�ed using
two indices, cophenetic and Rand.
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The present chapter is divided in three major parts:

� In Section 3.1, before the cluster analysis, since only multispectral measure-
ments of remote-sensing re�ectances were carried out in the �eld, a radiative
transfer model is used to reconstruct the hyperspectral Rrs(λ) spectrum at
each station. A closure exercise is described to discuss the level of consis-
tency between the measured multispectral Rrs(λ) and the modeled hyperspec-
tral Rrs(λ). The successful simulations are based on a comprehensive suite of
IOPs (also used in the further cluster analysis) and atmospheric measurements.

� In Section 3.2, as part of the cluster analysis, the new validation tool proposed
to evaluate how well di�erent optical data sets perform is described. The two
indices, cophenetic and Rand, proposed as objective criteria for the evaluation
of similarity between cluster partitions are described.

� In Section 3.3, the results from the cluster analysis of the pigment information
and several optical data sets measured in the �eld and modeled as described
in the �rst section are provided. Nine stations were selected in this study
to represent distinct di�erences in major accessory pigments present in the
samples. This analysis is basically presented as a proof-of-concept study in
which the approach is to use a relatively small but carefully selected set of data,
which exhibits signi�cant contrasts in the composition of pigments, rather than
to indiscriminately use a large data set. In addition, the degree of similarity
between cluster trees is evaluated for calculations involving di�erent spectral
ranges of optical data. A sensitivity of cluster analysis to the choice of the
derivative parameters, when required, is also included in this section.

Figure 3.1: A schematic diagram illustrating the general approach to cluster analysis
and similarity determination proposed in this chapter. The cluster tree
obtained with pigment composition as the input (upper pathway) is used
as the reference (the �sea truth�) for comparison with results obtained
using various optical data as input (i.e., di�erent absorption coe�cients
and remote-sensing re�ectances at di�erent spectral resolutions).
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3.1 Reconstruction of hyperspectral re�ectances

The combination of detailed in situ and laboratory measurements is essential in gain-
ing a better knowledge of the optical characteristics of the ocean waters. For instance,
in situ measurements of upwelling and downwelling radiation within the water might
permit the validation of the components of the radiation �eld resulting from radia-
tive transfer model estimations. In this sense, the combination of measurements per-
formed within the framework of the detailed �eld program described in this section,
will be used to form a �closure experiment�. This experiement will be possible since
measured inherent optical properties will be used as input information to perform
the model simulations of Rrs(λ) spectra, whereas measured radiance and irradiance
pro�les will be used to compute related optical properties such as Rrs(λ) and com-
pared to the model's output. The radiative transfer (RT) model Hydrolight/Ecolight
version 5.0 (Mobley and Sundman, 2008) will be used for this experiment which aim
is two-fold. First, model calculations of hyperspectrally-resolved Rrs(λ) correspond-
ing to several stations will be obtained. Attention will be paid regarding possible
errors related to the accuracy of instruments or the methodology of in situ measure-
ments, as well as regarding uncertainties in some assumptions of underwater optical
properties used in the model estimations. The results will serve to demonstrate if
the conditions under which theoretical RT calculations of hyperspectral Rrs(λ) were
performed produce a close agreement with the experimental multispectral measure-
ments of Rrs(λ). The level of agreement between measured multispectral-Rrs(λ) and
modeled hyperspectral-Rrs(λ) will be examined. Secondly, modeled hyperspectrally-
Rrs(λ) will be further analyzed for classi�cation purposes (see Section 3.3).

3.1.1 Field measurements

Measurements of phytoplankton pigment composition and seawater optical properties
were obtained during the ANT-XXIII/1 expedition of the R/V Polarstern, as part
of a research initiative carried out by a group from the Marine Physical Laboratory
(Scripps Institution of Oceanography) led by Prof. Dariusz Stramski. Measurements
were collected along a north-to-south transect in the eastern Atlantic Ocean during
October and November, 2005 (Fig. 3.2). The investigated area spanned a wide range
of di�erent oceanic environments between the English Channel and the waters o� the
African coast of Namibia. Typically, one full station was conducted daily near local
noon throughout the cruise. These full stations consisted of in situ measurements
of seawater inherent and apparent optical properties along with laboratory analyses
of water samples collected from discrete depths with the ship's CTD/rosette system
(Fig. 3.3). For the present proof-of-concept study, a subset of nine stations (see Fig.
3.2 for station locations) was selected for cluster analysis based on the observation of
distinct di�erences in the ratios of dominant accessory pigments to total chlorophyll-
a (see Section 3.3.1). The selected data from the nine stations are representative of
surface waters within the top 5�10 m of the ocean, as the main interest lies in the
methodology for estimating variability in phytoplankton communities from remote-
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sensing re�ectance. A brief description of the measurements is given in the following
subsections. More methodological details which are beyond the scope of this study
for the radiometric and backscattering measurements are in Stramski et al. (2008).

Figure 3.2: Map depicting the location of full stations sampled along the north-to-
south ANT-XXIII/1 cruise track in the eastern Atlantic during Octo-
ber and November, 2005. Each full station consisted of in situ optical
measurements accompanied by discrete water sample analyses. Stations
chosen for use in this chapter are identi�ed by �lled circles and labeled.

Figure 3.3: (left panel) Multisensor Datalogger System (MDS) used to measure in
situ several IOPs of seawater. (right panel) CTD/rosette system used
to collect water samples, which led to laboratory measurements of other
IOPs. See Fig. 3.4 for details. Source: D. Stramski and R. Reynolds.
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3.1.1.1 Pigment analysis

Concentrations of chlorophyll-a and accessory pigments in phytoplankton were mea-
sured on surface water samples from each station using HPLC techniques. As a
standard security protocol, two sets of replicate samples were collected in the ship
and analyzed at two laboratories, the Center for HydroOptics and Remote Sens-
ing (CHORS) laboratory at San Diego State University (California, USA) and the
GKSS Research Centre in Geesthacht (Germany). The CHORS analysis was based
on a method described in Heukelem and Thomas (2001), and the GKSS samples
were analyzed following the method of Zapata et al. (2000). However, the CHORS
analysis included identi�cation and quanti�cation of more pigments (27) than the
GKKS method (23) including alternative forms of chlorophyll-a, and therefore was
chosen in this study as the primary pigment data set for identifying phytoplankton
assemblages using cluster analysis (see Section 3.3.1). Throughout the rest of this
chapter, it is used the CHORS values of the total chlorophyll-a (TChla) as a measure
of chlorophyll-a, which is de�ned as the summed contributions of concentrations of
monovinyl chlorophyll-a (MVChla), divinyl chlorophyll-a (DVChla), chlorophyllide-a
(Chlide), and the allomeric and epimeric forms of chlorophyll-a.

Following completion of these analyses, data quality problems in the CHORS ana-
lytical procedures were identi�ed which suggest the potential of errors in the determi-
nation of some pigment concentrations in the samples (Hooker and Heukelem, 2009).
Although it was applied an independently-derived correction factor to a few individual
pigments, the nature of the methodological issues precludes development of a general
correction scheme applicable for all pigments. In the Appendix B, these issues are
discussed in more detail and the results of analyses are summarized, which indicate
that use of the CHORS data provides nearly identical results with respect to station
clustering and classi�cation as the GKSS HPLC data. Because of this independent
corroboration, it was continued to use the CHORS pigment data as the reference data
set in this study. Because of a large range of pigment compositions across di�erent
phytoplankton classes, determination of phytoplankton composition from HPLC pig-
ment data is not straightforward (e.g., Je�rey et al. 1999). Whereas certain diagnos-
tic pigments can serve as unambiguous markers for some phytoplankton classes (e.g.,
peridinin in dino�agellates, alloxanthin in cryptophytes), many important pigments
are shared by more than one algal taxa (e.g., fucoxanthin in diatoms, haptophytes,
chrysophytes, and raphidophytes). Nevertheless, because many of the classes have
distinctive suites of marker pigments, HPLC data can be useful for indicating their
presence and abundance in a mixed phytoplankton population. Speci�cally, a useful
indication of contributing phytoplankton classes can be obtained from the ratios of
the concentrations of speci�c pigments to chlorophyll-a or the ratios of speci�c di-
agnostic pigments to the sum of these diagnostic pigments, because these ratios can
di�er between phytoplankton groups (Mackey et al. 1996; Vidussi et al. 2001; Wright
et al. 1996).
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For each of the nine stations selected in this study, it was calculated a set of pigment
ratios for subsequent use in the cluster analysis (see Section 3.3.1). This set of pigment
ratios consisted of ratios of the concentration of each individual pigment to the TChla
concentration, as obtained from HPLC measurements at the CHORS laboratory. The
following 24 pigments were included in these calculations: monovinyl chlorophyll-a,
divinyl chlorophyll-a, chlorophyllide-a, chlorophyll-a allomer, chlorophyll-a epimer,
monovinyl chlorophyll-b, divinyl chlorophyll-b, chlorophyll-c2, chlorophyll-c3, α -
carotene, β - carotene, alloxanthin, diadinoxanthin, diatoxanthin, fucoxanthin, 19' -
hexanoyloxyfucoxanthin, 19' - butanoyloxyfucoxanthin, neoxanthin, prasinoxanthin,
violaxanthin, zeaxanthin, peridinin, pheophorbide-a, and lutein. The CHORS pig-
ment data set also included a few additional pigments (chlorophyll-c1, gyroxanthin-
diester, and pheophytin-a) which were below the detection level for the nine stations.
They were not included in the analysis as they would have no e�ect on the results.

3.1.1.2 Inherent optical properties

The inherent optical properties (IOPs) of seawater were measured in situ along with
laboratory analyses of water samples through the use of di�erent instruments (Fig.
3.3). They have a two-fold application in this study. First, the absorption, scattering,
and backscattering coe�cients are used to de�ne IOP inputs to radiative transfer
simulations that generate hyperspectral data of remote-sensing re�ectance (see Fig.
3.4 and Section 3.1.2). Secondly, the total and phytoplankton absorption coe�cients,
a(λ) and aph(λ), are utilized directly in the cluster analysis (Section 3.3.2).

As part of the work performed during the �eld campaign in 2005, the spectral ab-
sorption coe�cients of particles, ap(λ), and colored dissolved organic matter (CDOM),
acdom(λ) in m−1, were determined at 1-nm intervals from high spectral resolution mea-
surements on freshly-collected discrete water samples with a point-source integrating
cavity absorption meter (PSICAM) over the range 350�750 nm (Röttgers et al., 2005;
Röttgers and Doer�er, 2007). As the PSICAM did not provide data below 350 nm,
the ap(λ) values within the 300 to 350 nm spectral range were obtained from �lter pad
measurements on discrete water samples collected on glass �ber �lters (GF/F) and
frozen in liquid nitrogen until analysis with a dual-beam spectrophotometer (Lambda
18, Perkin Elmer). The �lter pad measurements were made with the transmittance-
re�ectance (T-R) technique of Tassan and Ferrari (1995, 2002) using a correction for
the path length ampli�cation factor from Stramska et al. (2006).

In this study, it has been chosen to use the PSICAM data of ap(λ) over the major-
ity of the spectrum because the PSICAM technique involves a direct measurement of
absorption on particle suspension with minimal scattering artifacts, which is expected
to be generally superior to the �lter pad measurements. The data of acdom(λ) below
350 nm were obtained from an exponential �t to the PSICAM-measured acdom(λ). A
null point correction based on wavelengths in the far red or near-infrared was applied
to all ap(λ) and acdom(λ) spectra. The total spectral absorption coe�cient, a(λ), was
determined as the sum of ap(λ), acdom(λ), and the pure water component, aw(λ).
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The latter was obtained from Pope and Fry (1997) for the spectral range 380�727 nm
and from Fry et al. (2006) for the range 300�379 nm. It is important to note that
the primary interest is in the spectral information contained at wavelengths longer
than 350 nm extending throughout the visible part of the spectrum up to 725 nm
where most phytoplankton pigments exhibit signi�cant absorption features. How-
ever, data at wavelengths shorter than 350 nm are useful for this analysis, especially
in the context of derivative spectra whose discrete values at speci�c wavelengths
were calculated in this study using data covering a bandwidth on the order of 10�30
nm. The spectra of the phytoplankton absorption coe�cient, aph(λ), were deter-
mined as a di�erence between the absorption coe�cient of particles, ap(λ), and the
non-phytoplankton component of particulate absorption, ad(λ), which is commonly
referred to as detrital absorption. These determinations were based on the T-R �lter
pad measurements, in which the ad(λ) spectra were measured on GF/F sample �lters
following treatment with sodium hypochlorite [NaOCl] (Ferrari and Tassan, 1999).
In this treatment, the particles on the sample �lter were exposed to a small amount
of a 2% NaOCl solution for several minutes to bleach phytoplankton pigments.

Figure 3.4: Diagram illustrating the undertaken process to determine each IOP and
generate each modeled hyperspectral Rrs(λ) spectra.
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The spectral beam attenuation coe�cient of particles and CDOM, cp,cdom(λ) in
m−1, was determined at each station from in situ measurements with two single-
wavelength C-Star transmissometers (488 and 660 nm; WET Labs, Inc.). Note
that the C-Star derived values represent the total beam attenuation, c(λ), with
pure seawater contribution, cw(λ), subtracted, i.e. cp,cdom(λ) = c(λ) − cw(λ) =
ap(λ) + acdom(λ) + bp(λ), where bp(λ) is the spectral scattering coe�cient of par-
ticles and assuming that dissolved matter makes negligible contribution to scat-
tering. In this study (see Fig. 3.4), the values of bp(λ) at 488 and 660 nm were
thus calculated from C-Star attenuation and PSICAM absorption measurements as
bp(λ) = cp,cdom(λ)−ap(λ)−acdom(λ). A power function �t was then applied to these
values to produce the spectral data of bp(λ) over the range 300�750 nm with a 1 nm
resolution. The pure seawater scattering coe�cient, bw(λ), was calculated using the
Buiteveld et al. (1994) equations with measured water temperature and salinity (see
Twardowski et al., 2007 and Stramski et al., 2008). The total scattering, b(λ), was
obtained as a sum bw(λ) + bp(λ).

The spectral backscattering coe�cient, bb(λ) in m−1, was determined in this study
(see Fig. 3.4) by combining in situ measurements with three instruments, a Hydroscat-
6 and two a-βeta sensors (HOBI Labs, Inc.), to yield a total of eight spectral bands:
420, 442, 470, 510, 550, 589, 620, and 671 nm. Because bb(λ) was generally observed to
be a smooth monotonic function of wavelength within the spectral range of the mea-
surements (Stramski et al., 2008), the experimental data were �tted to a power func-
tion to obtain hyperspectral resolution over the 300�750 spectral range. The spectral
backscattering coe�cient of particles, bbp(λ) in m−1, was determined as a di�erence
between the total and pure seawater backscattering coe�cients, bb(λ) − bbw(λ), in
which the pure seawater component, bbw(λ), was previously calculated as indicated:
0.5 bw(λ).

From the values of bp(λ) and bbp(λ), it was calculated the particle backscatter frac-
tion Bp(λ) = bbp(λ)/bp(λ) necessary for this study (see Fig. 3.4). These data were
then �tted to a power function, Bp(λ) = Bp(λ0) · (λ0/λ)m, where λ0 is the reference
wavelength 550 nm. The backscattering fraction Bp(λ0) at the reference wavelength
and the exponent m represent the best �t parameters of the linear regression anal-
ysis performed for the log-transformed data of Bp(λ) vs. λ for each station. The
parameters of the power function �t of Bp(λ) were used as input to radiative transfer
simulations (see Section 3.1.2).

3.1.1.3 Multispectral remote-sensing re�ectance

Values of multispectral remote-sensing re�ectance, Rrs(λ) in sr−1, were estimated
at each station at 13 wavelengths from in situ measurements of underwater vertical
pro�les of spectral nadir upwelling radiance, Lu(λ, z) inWm−2 sr−1 nm−1, and spec-
tral downwelling plane irradiance, Ed(λ, z) in Wm−2 nm−1, where z is depth. These
measurements were made with a freefall spectroradiometer (see Figure 3.5), the Sea-
WiFS Pro�ling Multichannel Radiometer (SPMR, Satlantic, Inc.). The wavelengths
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for these measurements are 339, 380, 412, 443, 470, 490, 510, 532, 554, 589, 619, 666,
and 683 nm. The radiometric measurements and data processing were consistent
with methods recommended in NASA protocols (Mueller et al., 2003b). The deploy-
ment of the spectroradiometer occurred simultaneously with water sample collection
from the CTD/rosette, and immediately before or after deployment of the instrument
package containing attenuation and backscattering sensors.

Figure 3.5: SeaWiFS Pro�ling Multichannel Radiometer (SPMR) utilized to mea-
sure upwelling radiances, Lu(λ, z), and downwelling plane irradiances,
Ed(λ, z). Source: D. Stramski and R. Reynolds.

3.1.2 Modeled hyperspectral remote-sensing re�ectance

Because hyperspectral radiometric measurements were not conducted during the
ANT-XXIII/1 cruise and the primary interest is in the analysis of hyperspectral opti-
cal data, numerical simulations of radiative transfer (RT) were performed to estimate
the hyperspectral remote-sensing re�ectance, Rrs(λ), for each of the nine selected sta-
tions (Fig. 3.4). The radiative transfer model Hydrolight/Ecolight version 5.0 was
used (Mobley and Sundman, 2008). An important prerequisite for undertaking these
RT simulations was the availability of a comprehensive suite of IOPs for each station
for use as input to the simulations (see Section 3.1.1.2), and also the availability of
the multispectral Rrs(λ) derived from in situ measurements for use in validating the
simulated hyperspectral Rrs(λ).
The RT calculations were carried out within the spectral region from 300 nm to

725 nm with high spectral resolution (1 nm). Similarly to the absorption, the main
interest is in the re�ectance data at wavelengths longer than about 350 nm. How-
ever, in addition to the requirements associated with derivative calculations, the RT
simulations below 350 nm are needed to account for Raman scattering contributions
observed at λ >350 nm. The ocean was assumed to be in�nitely deep and optically
homogeneous, and the simulations included the Raman scattering and �uorescence by
colored dissolved organic matter within the ocean. The sea surface boundary condi-
tions were estimated from observations of wind speed and sky conditions (cloudiness)
at each station site, and the solar zenith angle was calculated for the correspond-
ing date, time, and geographic coordinates. The inherent optical properties of the
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water column required as input to the simulations were derived from the IOP mea-
surements in the surface waters and additional relevant determinations of a(λ) and
b(λ) as described in Section 3.1.1.2. The selection of the particulate scattering phase
function, which is also part of IOP inputs to the RT simulations, was based on the
particle backscatter fraction Bp(λ). The Fournier�Forand phase functions (Fournier
and Forand, 1994; Fournier and Jonasz, 1999) were used, which are parameterized in
terms of Bp(λ) and are built into the Hydrolight/Ecolight model.
Fig. 3.6 compares the modeled hyperspectral Rrs(λ) with the measured multispec-

tral Rrs(λ) for two representative stations. The model results compare reasonably
well with measurements, which lends con�dence to the use of hyperspectral Rrs(λ)
in the cluster analysis. This level of consistency between model and measurements
suggests that the suite of parameters used as input to the RT simulations realistically
represents the actual �eld conditions. The ability to de�ne realistic inputs derives,
in turn, from a comprehensive suite of IOP measurements carried out in the �eld.

Figure 3.6: Hyperspectral (1 nm) determinations of the remote-sensing re�ectance
Rrs(λ) obtained from radiative transfer simulations (solid line) compared
with in situ multispectral measurements at 13 discrete bands (solid cir-
cles). Each panel illustrates a di�erent station location.

3.2 Cluster analysis and similarity indices between
dendrograms

A hierarchical cluster analysis (HCA) was used to classify the 9 selected stations into
distinct groups on the basis of several types of input data vectors (or objects), which
included the HPLC pigments and optical data derived from spectral absorption co-
e�cients and remote-sensing re�ectance. For a given type of data, the input to the
cluster analysis consisted of 9 numerical data vectors, each representing one of the
stations. For the input data representing the ratio of individual pigment concen-
trations to TChla, an object for a given station is a data vector {p1, p2, p3, . . . , p24}
where the consecutive elements pi represent the ratio of each of the 24 individual
pigment concentrations to TChla concentration.
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Several types of optical data vectors were used as input to the HCA analysis, includ-
ing objects consisting of hyperspectral data of the remote-sensing re�ectance, Rrs(λ),
the phytoplankton absorption coe�cient, aph(λ), the sum of pure water and phyto-
plankton absorption coe�cients, aw(λ) +aph(λ), and the total absorption coe�cient,
a(λ). The input characterizing the hyperspectral remote-sensing re�ectance for any
given station was used in the form of the following data vector {Rrs(λ1)/Rrs(555),
Rrs(λ2)/Rrs(555), Rrs(λ3)/Rrs(555), ..., Rrs(λn)/Rrs(555)}, where the consecutive
elements represent the values of Rrs(λ) at successive light wavelengths normalized
to Rrs at 555 nm over the spectral range from λ1 to λn. Similar input vectors were
created for the di�erent components of spectral absorption. Because the analysis is
focused on the spectral shapes, all the optical spectra used in the cluster analysis
were normalized by the value of the optical variable at 555 nm at which variations
in Rrs within the open ocean are generally small. The spectra involving the absorp-
tion coe�cients were additionally normalized by TChla concentration to minimize
variability in absorption associated with changes in phytoplankton biomass. The ra-
tionale for selecting the data of a(λ), aw(λ)+aph(λ), and aph(λ) to create input data
vectors for the cluster analysis stems from the fact that the variation in the spectral
shape of a(λ) is typically a major determinant of the variation in the spectral shape
of Rrs(λ). In turn, the variations in the spectral shape of aw(λ) + aph(λ) or aph(λ)
can be viewed as an important or dominant source of variation in the spectral shape
of a(λ) in open ocean situations.
Vectors from the second derivative spectra of the hyperspectral re�ectance and

absorption objects were also created for input into the cluster analysis. The es-
timation of the second derivative spectra from these data was made with a �nite
divided di�erence algorithm (see Section 2.1.1), which computes the changes in cur-
vature of a given spectrum over a sampling interval (4λ) or band separation (BS)
de�ned as 4λ = λj − λi, where j > i. As described in Section 2.1.1, because the
identi�cation of spectral details in the derivative spectra depends on the selection
of the band separation, it was tested the sensitivity of cluster results to the choice
of BS. It was also tested the sensitivity of cluster results to di�erent values of the
smoothing �lter window (WS) used prior to computation of derivative spectra. The
sensitivity analysis over a range of BS and WS values allowed to achieve the best
compromise between the ability to resolve �ne spectral details and the reduction
of noise e�ects in the second derivative spectra. As discussed in Section 3.3.4, the
optimal values of BS and WS chosen in this study for the derivative analysis of ab-
sorption data are 9 nm. For the derivative analysis of re�ectance data, these values
are 27 nm. Therefore, although the derivative calculations were made using data
from the spectral range 300�725 nm, the results from the derivative analysis for ab-
sorption will be reported between the wavelengths of λmin = 309nm (≡ 300 + 9)
and λmax = 716nm (≡ 725 − 9). For the re�ectance derivative, the results will be
reported between λmin = 327nm (≡ 300 + 27) and λmax = 698nm (≡ 725− 27).
With regard to the analysis of remote-sensing re�ectance, the cluster analysis was

also applied to the multispectral re�ectance data obtained from in situ SPMR mea-
surements at several discrete wavelengths (and described in Section 3.1.1.3). The
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3-element objects {Rrs(443)/Rrs(554), Rrs(490)/Rrs(554), Rrs(510)/Rrs(554)} were
examined, which consist of band ratios that are similar to those used in current
research based on satellite ocean color observations such as the Sea-viewing Wide
Field-of-View Sensor (SeaWiFS; O'Reilly et al., 2000). The vectors consisting of
13 band ratios of remote-sensing re�ectance with Rrs(554) in the denominator, as
determined from SPMR measurements at 13 wavebands, were also examined.
The HCA method, schematically presented in Fig. 3.1, was applied using the above

described pigment and optical data vectors as input objects. This method utilizes
the unsupervised classi�cation algorithm de�ned in the previous chapter (see Section
2.1.2). Each cluster tree is obtained using a linkage algorithm (i.e., shortest distance)
based on initial calculations of the pairwise distance (i.e., cosine angular distance)
between all objects included in the input data set.
As a novelty in this study, in order to automatically evaluate the usefulness of op-

tical data for discriminating phytoplankton pigment assemblages, the dendrograms
obtained for the di�erent spectral optical data were compared with a reference den-
drogram obtained using the pigment composition data (see �nal step in Fig. 3.1).
The pigment information has been commonly used by the scientic community as a
proxy for the phytoplankton composition. For this evaluation, the use of two objective
criteria of cluster similarity was proposed, which allowed to go beyond the subjective
validation of performance made by visual inspection of the resulting cluster parti-
tions. An example is shown in Fig. 3.7, illustrating how the similarity between two
given dendrograms is computed using the cophenetic index and the Rand index:

� The cophenetic index (Sokal and Rohlf, 1962), rC , is a measure of how pre-
cisely two dendrograms preserve the pairwise distances between data objects.
This index is computed from the cophenetic matrix (C) associated with each
dendrogram. The elements of a cophenetic matrix (ci,j) encode the distance
between two objects (i, j), representing in the dendrogram the height of the
link at which those two objects are �rst joined. This height is the distance
between the two clusters that are merged by this link. The cophenetic index
rC represents the correlation between two cophenetic matrices (C1 and C2):

rC =

∑
i

∑
j

(
c1i,j− c̄1

)(
c2i,j− c̄2

)
√(∑

i

∑
j

(
c1i,j− c̄1

)2)(∑
i

∑
j

(
c2i,j− c̄2

)2) (3.1)

where c̄1 and c̄2 are the mean values of the elements of the matrices C1 and C2.

� The Rand index (Rand, 1971), rR, provides a measure of the similarity be-
tween two hierarchical dendrograms in terms of the proportion of pairs of objects
whose relationship is the same in both dendrograms. The rR value of 1 means
that all pairs of objects are clustered in the same way in both dendrograms.
Note that this index has to be computed using all dendrograms cut horizontally
at a level (i.e., at a speci�c linkage distance) which yields the optimal number of
clusters (k). Otherwise, rR would always provide a proportion of 100% because
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3.2 Cluster analysis and similarity indices between dendrograms

a complete dendrogram always decomposes the input data all the way through
the lowest level (i.e., until the branches consist only of single objects). Detect-
ing natural groupings in the dendrogram and selecting the optimal number of
clusters is performed by analyzing a diagram of the increasing linkage distances
along the dendrogram. Based on the points at which the linkage distances be-
tween the objects change abruptly (which is associated with a steep increase
of the within cluster variance), the optimal number of clusters k is determined
and all objects located below the point where the hierarchical tree is cut o� are
assigned to a single cluster (Salvador and Chan, 2004).

Figure 3.7: Example of similarity between two hierarchical cluster trees, computed
using the cophenetic and Rand indices. In the latter, an optimal number
of clusters (k) needs to be pre-de�ned in the cluster tree.
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3.3 Results and discussion

3.3.1 Classi�cation of stations based on pigment composition

For the 9 stations selected in the study, the estimate of the TChla concentration
ranges from about 0.11 mgm−3 at the southernmost station 59 in the open ocean o�
the coast of Namibia to 0.62 mg m−3 at the northernmost station 1 in the English
Channel (Fig. 3.2). The variability in pigment composition for the 9 stations is
summarized in Table 3.1, which provides the ratios of the concentration of several
dominant pigments, measured as described in Section 3.1.1.1, to TChla. Apart from
MVChla, which is a principal pigment common to all phytoplankton, the second most
important pigment at di�erent stations was either DVChla, zeaxanthin (Zea), 19' -
hexanoyloxyfucoxanthin (Hex), or fucoxanthin (Fuco). Table 3.1 also identi�es the
two dominant pigments (excluding MVChla) which yield the highest ratio to TChla
at each station. The values for the ratios of the two dominant pigments to TChla
were used as a basis for selecting the 9 stations. As these stations represent di�erent
pigment compositions, a class label A, B, C, D, E, or F was assigned to each station.

Table 3.1: Stations sorted into di�erent classes characterized by di�ering pigment as-
semblages based upon the ratios of the concentrations of two dominant
accessory pigments to TChla (see the 2nd and 3rd columns from the left).
The ratios of six dominant pigments to TChla are also displayed, with the
two most dominant accessory pigments indicated within the shaded areas.
Pigment abbreviations are: MVChla = monovinyl chlorophyll-a, DVChla
= divinyl chlorophyll-a, Fuco = fucoxanthin, Hex = 19' - hexanoyloxy-
fucoxanthin, But = 19' - butanoloxyfucoxanthin, MVChlb = monovinyl
chlorophyll-b, Chlc2 = chlorophyll-c2, Zea = zeaxanthin, Pra = prasinox-
anthin, Dia = diadinoxanthin, and α - caro = α - carotene.
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Most stations visited during the cruise within the tropical and subtropical regions
of the Atlantic were dominated by Zea and DVChla, but the relative predominance
of these two pigments varied between the stations. These pigments are diagnostic of
picophytoplankton that includes DVChla- and Zea-containing prochlorophytes and
Zea-containing cyanobacteria (mainly Synechococcus in the open ocean waters). Five
stations (6, 12, 37, 44, and 46) were selected to represent this type of pigment assem-
blage. Note that 4 stations dominated by Zea and DVChla with fairly similar ratios
DVChla/TChla and Zea/TChla are grouped within the same class C with labels C1,
C2, C3, and C4. The station 6, where DVChla/TChla is signi�cantly higher than
Zea/TChla, is considered as a separate class B. This station (or class B) is dominated
by prochlorophytes as DVChla is an unambiguous marker of this group. The class
C stations also show signi�cant role of prochlorophytes. However, this class exhibits
a relatively higher contribution of Zea than class B, which is likely indicative of an
increased role of cyanobacteria.
Fuco and MVChlb are the predominant accessory pigments at station 1 (class A).

As these two pigments are not con�ned to one phytoplankton class, this station could
have been dominated by Fuco-rich diatoms, haptophytes, and/or dino�agellates, as
well as MVChlb-rich prasinophytes and/or chlorophytes. The predominant accessory
pigment at stations 48 (class D) and 51 (class E) is Hex, which suggests that hap-
tophytes and/or chrysophytes are major phytoplankton groups at these locations.
These stations are designated as di�erent classes because they clearly di�er in ac-
cessory pigments that follow Hex in ranking. Zea and Fuco are the second most
important diagnostic pigments at stations 48 (class D) and 51 (class E), respectively.
Finally, station 59 (class F) also shows a signi�cant role of Hex-rich phytoplankton
although Zea is the most important diagnostic pigment at this location, indicating
potential signi�cance of cyanobacteria and/or prochlorophytes.
Fig. 3.8a shows the hierarchical cluster tree obtained for the input data consisting

of the ratios of concentrations of 24 individual pigments to TChla at each station.
Stations displaying a similar pigment composition (e.g., stations from class C and B)
are linked by a shorter linkage distance (y-axis). In this sense, the optimal number of
clusters (k) is derived from a diagram of linkage distances along the dendrogram (Fig.
3.8b). The �rst steep increase in the linkage distance observed in this diagram, which
is associated with an increase of the within cluster variance, suggests an optimal
partitioning of the pigment data into 5 clusters. The linkage distance of 0.023 can be
selected to characterize this steep increase in variance (see dashed lines in Fig. 3.8a
and b). For the dendrogram cut at a level of linkage distance of 0.023, all clusters
are single object (i.e., single station) clusters, except for a multi-object cluster that
includes stations C1, C2, C3, C4, and B. The results of this cluster analysis are
quite consistent with the preliminary classi�cation obtained by considering just two
dominant diagnostic pigments (see Table 3.1). Note that stations C1, C2, C3, C4,
and B are all characterized by relatively high ratios of DVChla and Zea to TChla.
Some di�erences between these stations in terms of the relative roles of DVChla
and Zea do not, however, produce signi�cant distances between the corresponding
pigment data vectors and hence these 5 stations are grouped into a single cluster.
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The dendrogram also indicates that the stations classi�ed as A, D, E, and F display
signi�cant dissimilarities between each other and when compared to the stations
classi�ed as B and C. Note that the stations 48 (class D) and 59 (class F) have the
Hex and Zea as dominant diagnostic pigments, albeit in reverse ranking (see Table
3.1), so these stations appear closer to one another in the dendrogram (Fig. 3.8a).

Figure 3.8: (a) Dendrogram obtained for the nine stations using 24 pigments to total
chlorophyll-a (TChla) ratios determined from the CHORS HPLC analy-
sis. (b) Linkage distances obtained from the cluster analysis shown in (a)
as a function of distance along the dendrogram.

In the following analysis of optical data as a means for assessing di�erences in
pigment assemblages, the pigment-based cluster partitioning obtained with the 24
pigment ratios (as shown in Fig. 3.8a) is used as a reference.

3.3.2 Classi�cation of stations based on absorption spectra

Fig. 3.9 shows hyperspectral data of absorption coe�cients �rst normalized at 555
nm and then divided by the total chlorophyll-a concentration for the nine stations.
These spectra are referred to as the spectral chlorophyll (Chl)-speci�c normalized ab-
sorption coe�cients. Speci�cally, the Chl-speci�c normalized coe�cients for the total
absorption, a∗n(λ), the absorption of pure seawater plus phytoplankton, a∗n,w+ph(λ),
and the absorption of phytoplankton alone, a∗n,ph(λ) were examined.
The di�erences in the shape of phytoplankton absorption in the UV and blue spec-

tral regions are generally quite large between most stations (Fig. 3.9a). With the
addition of the pure water contribution, di�erences in the spectral shape of a∗n,w+ph(λ)
continue to be seen but are considerably smaller (Fig. 3.9b). Finally, upon further ad-
dition of the contributions associated with non-phytoplankton particles and CDOM,
the spectral shape of total absorption again shows larger di�erences between the sta-
tions at wavelengths shorter than the normalization point at 555 nm (Fig. 3.9c).
From the visual inspection of these plots it is, however, di�cult to deduce to what
extent the observed di�erences might be consistent with the classi�cation of stations
based on pigment composition.
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Figure 3.9: Chlorophyll-speci�c normalized absorption coe�cients for the nine sta-
tions corresponding to: (a) phytoplankton, a∗n,ph(λ), (b) pure seawater

plus phytoplankton, a∗n,w+ph(λ), and (c) total absorption, a∗n(λ).

Figure 3.10 illustrates the results from cluster analysis applied to the absorption
spectra presented in Fig. 3.9 and the corresponding second derivative spectra over the
entire spectral range from 300 nm to 725 nm. The derivative spectra of absorption
were calculated with the parametersWS and BS equal to 9 nm as determined by the
sensitivity analysis discussed in Section 3.3.4. In nearly all cases (Fig. 3.10a�e), the
absorption-based cluster trees di�er signi�cantly from the reference pigment-based
cluster tree shown in Fig. 3.8a. Thus, the full hyperspectral data of a∗n(λ), a∗n,w+ph(λ),
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and a∗n,ph(λ) as well as the second derivative spectra of a∗n(λ) and a∗n,w+ph(λ) do not
provide useful information for discriminating the di�erences in pigment assemblages
at the examined stations. The only case in which stations are classi�ed within the
dendrogram in a similar way to the pigment-based cluster tree is when the second
derivative of phytoplankton absorption spectra is considered (Fig. 3.10f). When this
absorption-based dendrogram is cut horizontally at a level of linkage distance of 0.023
that yields 5 clusters, the same stations are grouped in separate clusters as in the
pigment-based cluster tree. The result obtained from this study supports the poten-
tial usefulness of a method which accounts for the complete spectral behavior of the
second derivative of a∗n,ph(λ) spectra for discriminating di�erent pigment assemblages.

Figure 3.10: Results of cluster analysis applied to absorption data from the nine
stations. The left panels represent dendrograms obtained using: (a)
a∗n(λ), (c) a∗n,w+ph(λ), and (e) a∗n,ph(λ), and the right panels (b, d, and
f) illustrate results obtained using each component's second derivative
spectrum.
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In the analysis above it was considered a spectral range from 300 nm to 725 nm,
which is much broader than the spectral region where speci�c absorption imprints
caused by accessory pigments occur. It was therefore considered useful to examine
whether the cluster analysis of absorption data yielded similarity with pigment-based
clusters if di�erent, narrower spectral ranges were considered.
Within the framework of this thesis, a new graphical representation was created

in order to display the results from the sensitivity of cluster analysis to the selection
of the sepctral range. In each graph, the distribution of values for the cophenetic or
Rand index is shown as a function of the spectral range considered, with the lower
limit of the spectral range, λmin, displayed along the y-axis (ordinate) and the upper
limit, λmax, along the x-axis (abscissa). The similarity indices are thus shown for
many spectral ranges represented by many combinations of λmin and λmax. The
higher values of indices, depicted by darker areas in the graphs, correspond to better
similarity between a given optical-based cluster tree and pigment-based tree. The
best degree of similarity is obtained when the indices are close to 1, indicated by the
nearly black areas in the graphs.
Fig. 3.11 illustrates the degree of similarity between the absorption-based and

pigment-based cluster trees for di�erent spectral ranges of absorption data. The
degree of similarity is shown in terms of both cophenetic and Rand indices. The three
absorption spectra, a∗n(λ), a∗n,w+ph(λ), and a∗n,ph(λ), are considered in this analysis.
According to the distributions of cophenetic index, a maximum degree of similarity
(i.e., cophenetic index = 1) is obtained when the phytoplankton absorption spectrum
a∗n,ph(λ) is analyzed over the spectral range approximately from λmin =425 nm to
λmax =540 nm (Fig. 3.11e). The distribution of the Rand index indicates that the
best similarity between the a∗n,ph(λ)-based cluster tree and the pigment-based tree
occurs within a broader spectral region, approximately between λmin =390 nm and
λmax =610 nm (Fig. 3.11f). These optimal spectral regions generally overlap with the
wavelength range where absorption characteristics of main accessory pigments appear
(e.g., Fig. 1.3, Bricaud et al., 2004). The remaining results in Fig. 3.11 (panels a, b,
c, and d) show generally poor similarity between the a∗n(λ) or a∗n,w+ph(λ) data and
pigment composition, regardless of the spectral range considered.
Fig. 3.12 depicts similar results, but for the similarity between pigment composition

and the second derivative spectra of a∗n(λ), a∗n,w+ph(λ), and a∗n,ph(λ). The use of
derivative spectra generally improves the similarity as indicated by the presence of
darker areas or the larger extent of dark areas in the distributions of the cophenetic
and Rand indices. For example, compared to the results for the ordinary spectra
of a∗n,w+ph(λ) in Fig. 3.11d, a signi�cant increase in the Rand index is observed for
the second derivative spectra of a∗n,w+ph(λ) within the spectral range from λmin =
440 nm to λmax = 650 nm (Fig. 3.12d). The improvement is even more striking for
the results involving the second derivative spectra of phytoplankton absorption (Fig.
3.12e, f). The spectral regions where the cophenetic and Rand indices assume high
values near or equal to 1 are much larger compared with the analysis of ordinary
(non-di�erentiated) spectra of a∗n,ph(λ). The darkest areas in the distributions of the
indices in Fig. 3.12e, f cover a broad spectral range, approximately from λmin = 370
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nm to λmax = 716 nm. This result indicates that a high degree of similarity between
the second derivative spectra of a∗n,ph(λ) and pigment composition can be obtained
for many di�erent combinations of spectral ranges of absorption data (i.e., di�erent
combinations of λmin and λmax).

Figure 3.11: Similarity indices between absorption-based and pigment-based cluster
trees obtained for the 9 stations using di�erent combinations of spectral
range for (a, b) a∗n(λ), (c, d) a∗n,w+ph(λ) and (e, f) a∗n,ph(λ). The y-axis
indicates the lower limit of the spectral range (λmin) and the x-axis the
upper limit of the spectral range (λmax) used in the cluster analysis. Left
and right panels depict the cophenetic and Rand indices, respectively.

74



3.3 Results and discussion

Figure 3.12: Similar to Fig. 3.11, but based on cluster trees obtained using di�erent
spectral range combinations for the second derivative spectra of (a, b)
a∗n(λ), (c, d) a∗n,w+ph(λ) and (e, f) a∗n,ph(λ). Optimal values for band
separation and window size determined from prior analyses (BS=WS=9
nm, see Section 3.3.4) were used in the calculation of derivative spectra.

Because the cophenetic index does not require a priori selection of the optimal
number of clusters, this index facilitates comparison of the results for ordinary and
derivative spectra with pigment-based cluster trees shown in Figs. 3.11e and 3.12e.
The improved similarity obtained by utilization of the second derivative spectra of
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a∗n,ph(λ) was evidenced as a marked increase in the values of the cophenetic index
when computed for all possible combinations of spectral ranges. These increased
values were associated with a broader overall spectral region, or equivalently a larger
number of spectral ranges, for which the index exceeded 0.9 (see Fig. 3.13).

Figure 3.13: Histograms of cophenetic indices obtained for all combinations of spec-
tral ranges shown in Fig. 3.11e and 3.12e based on (a) the absorption of
phytoplankton, a∗n,ph(λ), and (b) its second derivative spectra.

3.3.3 Classi�cation of stations based on remote-sensing re�ectance

The relationship between the spectral remote-sensing re�ectance, Rrs(λ), of the ocean
and phytoplankton pigment composition is less direct and far more complicated than
that for the spectral phytoplankton absorption coe�cient, mainly due to the presence
of many optically signi�cant non-phytoplankton constituents in seawater. The inves-
tigation of Rrs(λ) is of particular interest, however, because information contained
in this measurement provides a potential means for remote-sensing applications. Fig.
3.14 shows the Hydrolight-simulated Rrs(λ) spectra normalized at 555 nm for the
nine stations identi�ed as classes from A (station 1) through F (station 59). In gen-
eral, there are signi�cant di�erences in the UV and blue spectral regions between
these normalized spectra, with the largest contrast between the classes A (station 1)
and C1 (station 12).
The dendrograms obtained from cluster analysis as applied to four di�erent sets

of input data vectors containing information about remote-sensing re�ectance (as
described in Section 3.2) are displayed in Fig. 3.15. The limited spectral informa-
tion, i.e., the three re�ectance band ratios used commonly in satellite ocean color
applications (Fig. 3.15a) and the 13 band ratios corresponding to multispectral
measurements with the SPMR instrument (Fig. 3.15b), provide a very dissimilar
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classi�cation of stations compared with the pigment-based cluster analysis (see Fig.
3.8a). All stations, with only the exception of class A, show very little separation in
the cluster-tree based on multispectral re�ectance data. The high spectral resolution
(1 nm) normalized re�ectance spectra over the entire spectral range 300� 725 nm
also produce a dendrogram (Fig. 3.15c) that is very di�erent from the pigment-based
cluster tree. Although the stations belonging to class C are closer to one another
compared with the multispectral-based cluster tree, they are grouped together with
two other stations (classes E and D). In addition, station B forms a separate single-
object cluster in Fig. 3.15c, whereas it is grouped in a single multi-object cluster
together with the stations from class C in the pigment analysis. The only case when
the cluster analysis of re�ectance data provides a high degree of similarity with pig-
ment analysis (i.e., Rand index of 0.78) is for the second derivative of hyperspectral
normalized re�ectance over the entire spectral range 327�698 nm (Fig. 3.15d). It
is important to note that the derivative re�ectance spectra were calculated with the
parameters WS and BS of 27 nm (as supported by the sensitivity analysis discussed
in Section 3.3.4). The stations A, E, and F in Fig. 3.15d form single-object clusters
at a signi�cant distance from the remaining stations. Similarly to pigment analysis,
the stations C1, C2, C3, C4, and B are grouped relatively close to one another. How-
ever, station D also belongs to that group, which is not the case in the pigment-based
cluster tree. This may be attributable to the fact that Zea and DVChla, which are
the two most dominant diagnostic pigments at stations C1, C2, C3, C4, and B, also
play a signi�cant role at station D where they are ranked as the second and third
most important diagnostic pigments (see Table 3.1).

Figure 3.14: Hydrolight-simulated Rrs(λ) spectra, normalized at 555 nm, computed
for the nine stations using measured IOPs as input.
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Figure 3.15: Dendrograms resulting from cluster analysis of the nine stations calcu-
lated using four di�erent sets of input data vectors: (a) three re�ectance
band ratios of Rrs(λ) based on 4 SeaWiFS wavebands obtained from
measurements with SPMR instrument, (b) 13 band ratios corresponding
to multispectral measurements of Rrs(λ) with SPMR instrument, (c) hy-
perspectral (1 nm) ordinary (non-di�erentiated) normalized Rrs(λ) spec-
tra computed from the Hydrolight simulations, and (d) second derivative
of hyperspectral normalized Rrs(λ) spectra obtained using optimal val-
ues for band separation and smoothing �lter window (i.e., BS = WS =
27 nm, see Section 3.3.4).

The progression of linkage distances corresponding to the four dendrograms from
Fig. 3.15 clearly illustrates the advantage of the second derivative spectra over the
multispectral data or non-di�erentiated spectra of re�ectance (see Fig. 3.16), and
indicates that this approach enables better identi�cation of the di�erences in the
magnitude and shape between the high resolution spectra. In contrast, in the analysis
of multispectral data and ordinary spectra stations are linked at a very small distance,
suggesting that these types of re�ectance data will be of little value for obtaining
information about pigment assemblages from cluster analysis.
The improvement in the similarity between the pigment-based and re�ectance-

based classi�cation achieved with the use of second derivative spectra as opposed to
multispectral data or ordinary spectra of re�ectance is presented in Table 3.2. The
results for the derivative analysis of hyperspectral normalized Rrs(λ) over the entire
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spectral range 300�725 nm show a signi�cant increase in both the cophenetic and
Rand index when compared with multispectral and ordinary spectral data. However,
the best performance is obtained when the derivative analysis is restricted to the
spectral range from 435 to 495 nm (as supported by the sensitivity analysis discussed
below). In this case, the similarity indices are highest.

Figure 3.16: Linkage distances as a function of distance along the dendrogram for
each cluster tree depicted in Fig.3.15.

Table 3.2: A comparison of similarity indices between pigment-based clusters and
re�ectance-based clusters for the di�erent sources of re�ectance data that
are depicted in Fig. 3.15. For the case of the second derivative of hyper-
spectral re�ectance, the result of computations for two di�erent spectral
regions is given.
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Fig. 3.17 shows distributions of the cophenetic and Rand index which identify the
optimal spectral ranges for the cluster analysis of the second derivative of remote-
sensing re�ectance. The cophenetic index is generally close to or slightly lower than
0.5 for most spectral ranges examined, that is for most combinations of λmin and
λmax (Fig. 3.17a). In the spectral region from 435 nm to 510 nm, this index is
about 0.62 and can be considered as an optimal spectral range for the application
of derivative approach with potential for good similarity between the pigment-based
and re�ectance-based cluster trees. This result is also supported by very high value of
the Rand index of 0.86 in that spectral range (Fig. 3.17b). The cophenetic and Rand
indices attain even higher values of about 0.65 and 1, respectively, within somewhat
narrower wavelength range from λmin = 435 nm to λmax = 495 nm, which de�nes
an alternative optimal spectral range. In addition, the cophenetic and Rand indices
suggest good performance of the derivative-based analysis over a broader spectral
regions including shorter and longer wavelengths of λmin. The Rand index is quite
high for λmin varying between 350 nm and 450 nm, for example as high as 1 when the
spectral range is from λmin = 365 nm to λmax = 480 nm. The cophenetic index is also
quite high for the spectral ranges from λmin = 327 nm to λmax = 400 nm and λmin =
610 nm to λmax = 670 nm. However, because the optical roles of di�erent diagnostic
pigments in these regions are insigni�cant or certainly less important than in the
blue region, the use of the spectral range 435�510 nm or 435�495 nm, where both the
cophenetic and Rand indices are relatively high, appears to be most reasonable.

Figure 3.17: Similarity indices between re�ectance-based and pigment-based cluster
trees obtained for the nine stations using di�erent combinations of spec-
tral ranges for the second derivative of the hyperspectral normalized
Rrs(λ). Optimal values of BS = WS = 27 nm, determined from prior
analyses, were used for the calculation of derivative spectra. The y-axis
indicates the lower limit of the spectral range (λmin) and the x-axis the
upper limit of the spectral range (λmax) utilized in the cluster analysis.
Panels (a) and (b) depict the cophenetic and Rand indices, respectively.
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3.3.4 Sensitivity analysis and determination of optimal parameters for
derivative analysis

Although the previous results illustrate the advantages of derivative analysis, such
analysis can be highly sensitive to parameters chosen for the calculation of derivative
spectra, speci�cally the size of the �lter window (WS) used in the spectral smooth-
ing of the ordinary spectra and the band separation (BS) used in the calculation of
derivatives. In order to display the results from the sensitivity of cluster analysis to
the selection of these parameters, a new graphical representation was also used in
this study. The distribution of values of the cophenetic and Rand index is shown as
a function of the band separation (BS) and smoothing �lter window (WS) consid-
ered. In particular, it was computed the distribution of cophenetic index between the
pigment-based and absorption-based cluster trees using the second derivative spectra
of a∗n,ph(λ) within the spectral range of 420�515 nm as input (Fig. 3.19a). This
spectral range is adequate for this sensitivity analysis because it showed very high
values of cophenetic and Rand indices in Figs. 3.11e,f and 3.12e,f. The distribution of
cophenetic index in Fig. 3.19a is shown with the smoothing parameter WS varying
from 1 to 29 consecutive samples (with a step of 2 samples) along the y-axis and
the band separation parameter BS varying also from 1 to 29 samples with a step of
2 samples along the x-axis. Note that the number of consecutive samples is equiv-
alent to the wavelength interval in nanometers because the spectral data (samples)
have the resolution of 1 nm. The highest values of the cophenetic index are obtained
for intermediate values of WS and BS around 9 nm�10 nm, and thus are the opti-
mal values for the derivative analysis of the absorption spectra. The corresponding
derivative spectra of a∗n,ph(λ) are presented in Fig. 3.18a. This result is consistent
with the general expectation that if the values of WS and BS are too small, the
derivative spectra are sensitive to noise and exhibit false spectral features, and on
the other hand if the WS and BS are too large, the real signi�cant spectral features
are smoothed over and essentially removed from the analysis. As the best compro-
mise, the cluster analyses of derivative spectra presented in Fig. 3.10 were obtained
with WS and BS of 9 nm.

A similar analysis was performed to determine the appropriate sizes of WS and
BS for utilization of the second derivative of the re�ectance spectra (Fig. 3.19b).
These results are shown for the derivative spectra calculated over one of the optimal
spectral ranges, speci�cally 435� 495 nm (Fig. 3.18b), which showed high values
for both cophenetic and Rand indices. The best similarity with cophenetic index of
about 0.65 is obtained when the calculations of second derivative spectra are made
with relatively large values of WS and BS. For example, a very good result is
obtained if both WS and BS assume a value of 27 consecutive spectral samples (i.e.,
27 nm as the resolution of the hyperspectral re�ectance data is 1 nm). It is recalled
that this value was used to compute the results pertinent to the derivative re�ectance
spectra presented in Fig. 3.15d. Similarly, good results are obtained with a smaller
WS (~14 nm) and a larger BS (~37 nm), or vice versa. In contrast, if both WS
and BS are small (less than about 10 nm) or large (above ~40 nm) the cophenetic
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index is reduced signi�cantly. This sensitivity analysis, in agreement with similar
analysis for absorption spectra, supports the notion of a strong dependence of the
derivative-based cluster trees on the selection of derivative parameters WS and BS.

Figure 3.18: The second derivative spectra at each station of the (a) chlorophyll-
speci�c normalized phytoplankton absorption coe�cient, a∗n,ph(λ),
and (b) normalized hyperspectral remote-sensing re�ectance,
Rrs(λ)/Rrs(555). Optimal values were used for the derivative cal-
culations, i.e., BS = WS = 9 nm for the absorption data and
BS = WS = 27 nm for the re�ectance data.

Figure 3.19: Cophenetic indices obtained from similarity analysis between the
pigment-based cluster tree with trees obtained using the second deriva-
tive of hyperspectral normalized spectra for (a) phytoplankton absorp-
tion, a∗n,ph(λ), and (b) remote-sensing re�ectance, Rrs(λ), in which dif-
ferent parameter sets for the derivative analysis are considered. The
y-axis indicates the size of the �lter window used in smoothing of the
spectra (WS), and the x-axis represents the band separation used in the
calculation of the derivative (BS). The analysis was conducted using
the optimal spectral regions of 420 to 515 nm for a∗n,ph(λ), and from 435

to 495 nm for Rrs(λ).
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3.4 Summary and conclusions

Through application of an unsupervised hierarchical cluster analysis to pigment and
optical data from the eastern Atlantic Ocean in 2005, the potential usefulness of hy-
perspectral data of absorption coe�cients and remote-sensing re�ectances and their
second derivative spectra for discriminating di�erent phytoplankton pigment assem-
blages in the open ocean has been demonstrated. The ability to discriminate di�erent
phytoplankton pigment assemblages from the hyperspectral-based cluster approach
has been optimized by selecting the optimal spectral range and the most suitable
parameters used in the spectral derivative calculations (i.e., smoothing �lter size and
derivative band separation).
The assessment of similarity between the hyperspectral data and phytoplankton

pigment composition has been made using a novel validation approach which is based
on a cluster algorithm and two similarity indices, cophenetic and Rand. In this
chapter, it has been demonstrated that application of these indices to quantify the
similarity between di�erent optical-based cluster trees and the pigment-based cluster
tree provides a valuable methodology for identifying optical variables and the spectral
ranges most suitable for characterizing the phytoplankton pigment assemblages. In
this sense, the de�ned reference based on the pigment composition (the �sea truth�)
has proven valid as a proxy for phytoplankton community composition.
In order to address the main objectives of this chapter, the following methodol-

ogy has been applied. First, a detailed description of the �eld measurements has
been provided along with a model-data �closure exercise� for the reconstruction of
hyperspectral Rrs(λ) (Section 3.1). It has been demonstrated that the modeled data
set of hyperspectral Rrs(λ) is relatively consistent in comparison to measured multi-
spectral Rrs(λ). Regarding the pigment data, it has been shown by comparing two
independent HPLC pigment data sets that the results and conclusions of this study
were robust and independent of the choice of pigment data used in the creation of
the reference pigment dendrogram for the cluster-based similarity analysis of pigment
and optical data (see Appendix B). Secondly, a successful cluster analysis based on a
small but carefully selected set of stations has been performed as a proof-of-concept
study (Section 3.3).
The most promising results from the cluster analysis were obtained with the sec-

ond derivative spectra of the phytoplankton absorption coe�cient, a∗n,ph(λ), over the
spectral range 370�716 nm (or narrower spectral regions from within that range), and
the second derivative spectra of the remote-sensing re�ectance, Rrs(λ), over the spec-
tral range from about 435 nm to 510 nm. In the course of this study, in addition to
the second derivative spectra of a∗n,ph(λ) and Rrs(λ), other absorption and re�ectance
data have been examined but they generally show either more limited value or no
usefulness at all for discriminating phytoplankton pigment assemblages. For exam-
ple, the cluster analysis of the ordinary (non-di�erentiated) re�ectance spectra at 1
nm resolution or multispectal (13 wavebands) re�ectance data exhibited very poor
similarity with pigment-based clusters. Similar results were obtained for the ordinary
spectra of the total absorption coe�cient, a∗n(λ). However, the ordinary spectra of

83



3 Hyperspectral data for discriminating phyto. pigment assemblages in the open ocean

a∗n,ph(λ) were observed to be useful, especially within the spectral range 425�540 nm.
As it will be assessed in the next chapter (Chapter 4), further work is needed with

larger databases of measurements from various oceanic environments to determine the
generality of the presented approach and the speci�c set of optimal parameters. It is,
however, important to note that the proposed methodology is generally applicable to
other data sets or other types of data and a similar optimization analysis can also be
used to provide the best performance for a given data set. It is also essential to point
out that this analysis is �exible and permits di�erent optimal values to be utilized in
the case of other optical data with di�ering spectral resolutions.
The results suggest that the minimum data necessary for application of the cluster

analysis is information regarding either the hyperspectral phytoplankton absorption
coe�cient or the remote-sensing re�ectance in the blue to green region of the spec-
trum, which will yield an initial classi�cation of stations based on similarities and
di�erences in the optical spectra. Without an independent reference as to what these
optical classes represent in terms of the phytoplankton assemblage (e.g., pigment in-
formation), however, these stations cannot be assigned to a descriptive class. One
possible scenario for the utilization of this approach is to apply it to optical data
set that includes a reference subset for which both the optical and pigment data are
available. First, the pairs of corresponding optical and pigment-based clusters can be
created from the reference subset. Then, the remaining optical data can be classi�ed
in relation to pigment-based clusters on the basis of similarity with optical data from
the reference subset. Another scenario is the application of this approach to optical
data sets which are collected with no concurrent determinations of phytoplankton
pigments. In this case, one can envision a similar procedure as the one described
above but reference information would have to be derived in advance from other
extensive concurrent pigment and optical data sets.
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The results from this chapter have mostly been published as:

Taylor, B. B., E. Torrecilla, A. Bernhardt, M. H. Taylor, I. Peeken, R.
Röttgers, J. Piera and A. Bracher (2011). Bio-optical provinces in the East-
ern Atlantic Ocean and their biogeographical relevance. Biogeosciences, 8,
3609-3629, www.biogeosciences.net/8/3609/2011/, doi:10.5194/bg-8-3609-
2011.

In the previous chapter, a small but carefully selected data set from the eastern
Atlantic Ocean was used to demonstrate the potential usefulness of hyperspectral data
of absorption coe�cient and remote-sensing re�ectance for discriminating di�erent
phytoplankton pigment assemblages in the open ocean under non-bloom conditions.
Moreover, di�erent analyses were conducted to demonstrate the important role in the
performance of the selected spectral range and parameters involved in the calculation
of derivative spectra. Nevertheless, one of the main conclusions drawn from this
study was that further work was needed with larger databases of measurements from
various oceanic environments. In this sense, this chapter is devoted to provide some
results demonstrating the potential of the methodology described in this thesis and
already proven useful (see Chapters 2 and 3) by examining a database composed of 48
stations. In particular, the results from the application of the cluster-based approach
are provided when considering a larger data set of hyperspectral observations collected
in the eastern Atlantic Ocean in 2008 (see Fig. 4.1 for station locations). In this case,
hyperspectrally-resolved measurements of remote-sensing re�ectance spectra, Rrs(λ),
were part of the initial database to analyze, making the use of radiative transfer
models not necessary in this study.
In this chapter, the pigment composition information from a total of 48 stations

is analyzed in combination with simultaneous hyperspectral optical measurements,
which were performed within the framework of a research initiative carried out by the
Phytooptics group (University of Bremen and the Alfred-Wegener-Institute for Polar
and Marine Research, AWI) led by Prof. Astrid Bracher. In Section 4.1, details on
the sample collection and analysis of pigments and measurements of absorption and
remote-sensing re�ectance spectra are provided. Section 4.2 is devoted to describe
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the results from the cluster analysis, which aim is to identify several phytoplankton
pigment assemblages spatially distributed along a transect in the eastern Atlantic
Ocean using hyperspectral observations. It is also discussed how such identi�ca-
tion has served to demonstrate the feasibility of this approach to de�ne di�erent
bio-optical provinces based on the phytoplankton community structure and their op-
tical properties. The establishment of di�erent bio-optical provinces, as one of the
potential applications of the proposed methodology, has led to examination of its
biogeographical relevance by comparison to ecological provinces previously proposed
in the literature by Longhurst (2006). Finally, in Section 4.3 the conclusions of this
study are presented by summarizing the achievements and pointing the direction of
future work.

Figure 4.1: Map of the investigated area depicting the 48 stations sampled during the
ANT XXV-1 cruise track during November 2008. Stations are identi�ed
by symbols corresponding to the groups de�ned based on the pigment
composition (see Section 4.2 for details) and shown superimposed the
oceanic provinces de�ned by Longhurst (2006) (see Section 4.2.1).
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4.1 Field measurements and data analysis

4.1.1 Sample collection

Field measurements and data analysis presented in the following sections have been
performed within the framework of a research initiative carried out by the Phytooptics
group (University of Bremen and the Alfred-Wegener-Institute for Polar and Marine
Research, AWI) led by Prof. Astrid Bracher. Water samples were collected at 48
stations during the ANT XXV-1 expedition of the R/V Polarstern along a north-to-
south transect through the eastern Atlantic Ocean in November 2008 (Fig. 4.1). The
transect spanned di�erent oceanic environments between Bremerhaven (Germany)
and Cape Town (South Africa). Typically, each station was performed daily in the
morning and at noon local time and involved as described below surface water sam-
pling and simultaneous radiometric measurements (i.e., remote-sensing re�ectance).
Nevertheless, when time constraints were found (i.e., for 21 stations), only surface
waters were sampled through the moonpool of the ship with no radiometric mea-
surements. Until analysis, water samples for pigment and absorption measurements
were �ltered on GF/F �lters, shock-frozen in liquid nitrogen and stored at -80ºC.
Additionally, measurements of surface salinity, temperature and �uorescence were
conducted continuously throughout the cruise.

4.1.2 Pigment analysis

Concentration of 23 pigments in phytoplankton were measured on surface water sam-
ples from each station using HPLC, following a method described in Ho�mann et al.
(2006) and adjusted to the instruments. Samples were measured using a Waters 600
controller combined with a photodiode array detector (PDA, Waters 2998) and an
auto sampler (Waters 717plus). Identi�cation and quanti�cation of concentration
of the di�erent pigments were carried out using the commercially available program
EMPOWER by Waters. The pigment data were quality controlled according to Aiken
et al. (2009). HPLC data provided information about the presence and contribution
of di�erent phytoplankton groups which coexisted in the mixed populations under
analysis.

4.1.3 Hyperspectral absorption measurements

The spectral absorption coe�cient of particles, ap(λ), was determined from high spec-
tral resolution measurements on discrete water samples with a dual-beam UV/VIS
spectrophotometer (Cary 4000, Varian Inc.), equipped with a 150 mm integrating
sphere (external DRA-900, Varian, Inc. and Labsphere Inc., made from Spectralon
(TM)). A modi�ed quantitative �lterpad technique (see e.g., Simis et al., 2005) was
used in which the �lters were placed in the center of the integrating sphere using a
center-mount �lter holder perpendicular to the light beam. A wavelength scan from
300 to 850 nm with a resolution of 1 nm (slit width 2 nm, scan rate 150 nm/min) was
performed when the re�ectance ports were covered with Spectralon(TM) re�ectance
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standards. The baseline was recorded beforehand with a clean, dry �lter, and a �lter
which was soaked for more than 30 min in puri�ed water which served as a reference.
Each absorption coe�cient was calculated from a optical density (OD) measurement
using a path length ampli�cation factor equal to 4.5 (i.e., β = 1/4.5, Röttgers, per-
sonal communication, 2011) as a [m−1] = −ln (T ·A·β/V ), where the transmittance is
equal to T = exp(−OD), V [m3] is the �ltrated sample volume and A [m2] is the �lter
clearance area. Results from the original �lter provided the ap(λ) measurements. In
order to determine the spectral absorption coe�cient of non-algal particles (anap(λ)),
the algal pigments were bleached with sodium hypochlorite [NaOCl] as described in
Tassan and Ferrari (1995) and Ferrari and Tassan (1999). The bleached samples were
also measured as described above and therefore, each spectral absorption coe�cient
of phytoplankton (aph(λ)) was obtained by substracting anap(λ)− ap(λ) .

4.1.4 Hyperspectral remote-sensing re�ectance measurements

Similarly to multispectral measurements of remote-sensing re�ectances described in
Section 3.1.1.3, hyperspectrally-resolved Rrs(λ) were determined at di�erent stations
along the cruise track by combining vertical pro�les of irradiance and radiance under-
water light �elds. When no time constraints or technical problems were found, these
pro�les were measured with hyperspectral radiometers (RAMSES, TriOS GmbH,
Germany), which cover a wavelength range from 320 nm to 950 nm with an optical
resolution of 3.3 nm and a spectral accuracy of 0.3 nm. All measurements were col-
lected with sensor-speci�c automatically adjusted integration times (i.e., between 4
ms and 8 s).
A total of 21 radiometric vertical pro�les were collected simultaneously to the

collection of water samples down to a maximum depth of 190 m. A radiance sensor
measuring upwelling radiance (Lu(λ)) and a irradiance sensor measuring downwelling
irradiance (Ed(λ)) were used. Furthermore, irradiance at the surface (E+

d (λ)) was
continously measured as a reference with a third sensor placed above-water, which
allowed normalization of the in-water measurements according to Stramski et al.
(2008). One of the in-water sensors was equipped with an inclination sensor and a
pressure sensor. In order to avoid ship's shadow, the ship was oriented in such a
way that the sun was illuminating the side where the radiometric measurements were
taking place.
All radiometric data were checked for minimum incoming solar light or precipi-

tation (Wernand, 2002). Regarding deck tilt of the ship, the pitch and roll data
measured did not exceed values larger than 5o. For the in-water data, the inclination
in either dimension had to be smaller than 14o (Matsuoka et al., 2007). The pro�le
data were averaged in discrete intervals of 2 m down to a depth of 48 m, intervals
of 4 m for depths between 48 and 80 m and intervals of 10 m for all measurements
below 80 m. As surface waves strongly a�ect measurements in the upper few me-
ters, deeper measurements that are more reliable had to be used and extrapolated to
the sea surface (Mueller et al., 2003b). Similarly to Stramski et al. (2008) a depth
interval was de�ned (i.e., z′ = 7 to 21 m) to calculate the vertical attenuation coef-
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�cients for downwelling irradiance and upwelling radiance, Kd(λ, z
′) and Ku(λ, z′),

respectively). With Kd(λ, z
′) and Ku(λ, z′), the subsurface irradiance E−d (λ, 0m)

and radiance L−u (λ, 0m) were extrapolated from the pro�les of Ed(λ, z) and Lu(λ, z).
For the calculation of the remote-sensing re�ectance, the subsurface L−u (λ, 0m) was
propagated through the water-air interface by applying a transfer coe�cient of 0.5425
as determined in Stramski et al. (2008) for the same geographical area. Each Rrs(λ)
in sr−1 was therefore calculated using the simultaneous above-water reference down-
welling irradiance E+

d (λ) using the following expression:

Rrs(λ) = (0.5425 · L−u (λ, 0m))/E+
d (λ) (4.1)

4.1.5 Derivative and cluster analysis

Similarly to results described in the previous chapter (see Section 3.3), the HCA
cluster-based approach and one of the two de�ned objective criteria of cluster sim-
ilarity (i.e., the cophenetic index) have been used in the analysis presented in this
chapter. The selected stations have been automatically classi�ed into di�erent groups
according to its phytoplankton pigment composition and optical properties, which in-
clude the use of ordinary spectra and its second derivative spectra.
It is noted, however, that an adjustment has been applied to that method as a

result of the analysis of a larger database. In order to improve our performance, an
Euclidean metric distance (d) has been utilized to generate the pigment-based cluster
partition, instead of the angular metric distance used for the spectral data:

d(x1, x2) =
√

(x1 − x2) · (x1 − x2)′ (4.2)

where x1 and x2 include the two considered input data objects. This type of dis-
tance has allowed to better point out di�erences between the 48 stations regarding
the magnitude of ratios of concentrations of individual pigments to TChla, and hence
has provided better results. It is noted that this issue was not critical in the study de-
scribed in the previous chapter given that the nine stations presented enough distinct
di�erences in the ratios of dominant accessory pigments to TChla.

4.2 Results and discussion

Through the use of an Euclidean metric distance in the cluster analysis of ratios
of accessory pigments to TChla, di�erences between the 48 stations in terms of the
relative roles of individual pigments (i.e., according to their phytoplanktonic compo-
sition) have been better emphasized (see Fig. 4.2).
The cluster analysis based on the pigment information resulted in six major clusters

as shown in Fig. 4.3. Each of the six clusters has been assigned a roman number
and a di�erent symbol, which will be also reproduced in the other cluster trees based
on hyperspectral information with the aim to facilitate discussion of results. A clear
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north-to-south structure can be distinguished when stations corresponding to each
cluster are depicted on the map (see Fig. 4.1).

Figure 4.2: Ratios of 23 dominant pigments to TChla corresponding to the 48 sta-
tions. Pigment abbreviations are: Chlc3 = chlorophyll-c3, Chlc1+c2
= chlorophyll-c1+c2, Peri = peridinin, But = 19' - butanoloxyfucoxan-
thin, Fuco = fucoxanthin, Neo = neoxanthin, Hex = 19' - hexanoyloxy-
fucoxanthin, Viola = violaxanthin, Asta = astaxanthin, Pra = prasinox-
anthin, Dia = diadinoxanthin, Allo = alloxanthin, Diato = diatoxan-
thin, Zea = zeaxanthin, Lut = lutein, DVChlb = divinyl chlorophyll-
b, Chlb = monovinyl chlorophyll-b, DVChla = divinyl chlorophyll-a,
Chla = monovinyl chlorophyll-a, Phyt-b = phaoephytin-b, Phyt-a =
phaoephytin-a, α - caro = α - carotene and β - caro = β - carotene.

The results of this pigment-based cluster analysis are quite consistent with the
classi�cation obtained by just considering the dominant pigments in each cluster of
stations, which main features are summarized in Table 4.1. For the 48 stations, there
exists a larger variability in the estimate of TChla concentration in comparison with
the previous study (see Section 3.3). It ranges from about 0.104 mgm−3 at the most
oligotrophic waters to 5.36 mg m−3 at stations corresponding to some bloom events.
Cluster I comprises just station 1, which predominant pigments are Fuco and Chlb.

It is clearly di�erent from all other stations and this predominance suggests that it
could be dominated by Fuco-rich diatoms, as well as Chlb-rich chlorophytes. It is
noted that Fuco can also be a precursor of pigments Hex and But (Je�rey and Vesk,
1997), which are speci�c for haptophytes and chrysophytes. Cluster II is also com-
posed of a single station (station 2) and is associated with a local algal bloom given
its high TChla concentration (2.06 mg m−3). As Chlb and Hex are the predomi-
nant pigments at this station, it could have been dominanted by chlorophytes and
Hex-rich haptophytes. However, a very high concentration of the pigment Peri, up
to 100 times larger than any other station, also suggests an important presence of
dinoglagellates.
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Figure 4.3: Cluster tree obtained for the 48 stations using pigment data determined
by HPLC. Main clusters are identi�ed with symbols and roman numbers.

Cluster III is geographically rather patchy but all stations are clearly dominated
by the pigment Hex. Therefore, the main phytoplankton group at these stations is
haptophytes, even a possible coexistence of other groups depending on the secondary
pigments present in each station belonging to this cluster. Cluster IV is the biggest
cluster and uni�es all stations with DVChla, Zea and Hex as dominant pigments. In
accordance with the results shown in Section 3.3.1, DVChla and Zea are diagnostic of
picophytoplankton that includes DVChla- and Zea-containing prochlorophytes and
Zea-containing cyanobacteria (mainly Synechococcus in the open ocean waters). The
abundance of picophytoplankton groups is also accompanied by the presence of hap-
tophytes due to that pigment Hex follows in the ranking. In Table 4.1, stations from
cluster IV are indicated separately into a northern and a southern sub-clusters. This
geographic division can be explained by considering the levels of TChla and other
environmental factors (e.g., temperature and salinity pro�les). Nevertheless, the rea-
sons are beyond the scope of this study (further details can be found in Taylor et al.,
2011). Cluster V comprises the �bloom stations� (i.e., stations 21, 24 and 25) with
Fuco as the dominant diagnostic pigment and very high TChla concentrations, which
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range from 1.3 to 5.36 mg m−3. The blooms mainly consist of Fuco-rich diatoms,
haptophytes and chrysophytes. The stations belonging to cluster VI (i.e., 41-48) are
clearly separated from other stations due to the predominance of the marker pig-
ments Zea and Hex. It suggests a dominance of Synechococcus-type cyanobacteria
and haptophytes. Due to their distinct pigment composition, stations 11, 12, 13, 19,
20 and 38 have been clustered away from their geographical neighbours. Stations
19 and 20 are dominated by the pigment Fuco but in a less proportion than the
�bloom stations� in cluster V. Stations 11, 12, 13 and 38 present a dominant role of
picoplankton, in particular of prochlorophytes in comparison with their geographical
neighbours. This is due to the dominance of DVChla and DVChlb. Despite the dif-
ferences in pigment composition, all these six stations have been de�ned as �outliers�
given that, as described below, they do not show distinct optical features.

Table 4.1: Summary of cluster properties obtained for the 48 stations using the pig-
ment information. Properties and pigments abbreviations are: TChla =
Chla + DVChla (Mean±SD); Temp. = Surface temperature (Mean±SD);
Salinity = Surface salinity (Mean±SD); MVChla = monovinyl chlorophyll-
a, DVChla = divinyl chlorophyll-a, Fuco = fucoxanthin, Hex = 19'
- hexanoyloxyfucoxanthin, But = 19' - butanoloxyfucoxanthin, Chlb =
monovinyl chlorophyll-b, Chlc1 = chlorophyll-c1, Chlc2 = chlorophyll-c2,
Zea = zeaxanthin, and Dia = diadinoxanthin; � = signi�cantly di�erent
from sub-cluster IV-S (p<0.05). (Table adapted from Taylor et al., 2011).

The cluster analysis has also been performed based on aph(λ) spectra measured for
all 48 stations and shown in Fig. 4.4. Fig. 4.5 depicts the corresponding hierarchical
cluster tree, including the symbols of the pigment-based cluster tree for each station.
The partition provided by the cluster analysis based on the aph(λ) data is quite similar
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to the partition obtained using the pigment information. This is re�ected in the high
value of the cophenetic index (rC) obtained, which is equal to 0.70 considering all
48 stations and equal to 0.84 when the �outliers� were taken out in the analysis (i.e.,
stations 11, 12, 13, 19, 20 and 38). In order to optimize the performance, a sensitivity
test of the cluster analysis regarding the choice of the spectral range has been needed
and is discussed below (see Fig. 4.8a). In accordance with the results shown in
the previous chapter (Section 3.3), the best degree of similarity between these two
cluster trees (i.e. the highest cophenetic index) is obtained when the aph(λ) spectra
are analyzed over a restricted spectral range from 435 to 520 nm. This is the range in
which most relevant pigments show their main absorption characteristics. For aph(λ)
data, derivative computations do not improve the performance.

Figure 4.4: Spectral absorption of phytoplankton (aph(λ)) for all stations.

By taking into account the optimal spectral range, clusters I, II, V and VI are
exactly reproduced by the aph(λ) spectra, whereas clusters III and IV show a few
di�erences. In particular, stations 6 and 8, which belong to cluster IV in the pigment-
based tree, are classi�ed with cluster III in the aph(λ)-based tree. This may be
attributable to di�erences in the spectral shape of the aph(λ) spectrum of these two
stations around the wavelength 470 nm in comparison to other stations from group
IV. Probably because its proximity in space, their shape shows a greater similarity
with aph(λ) spectra from stations in cluster III. In addition, most of the �outliers�
described in the pigment-based cluster tree (i.e. stations 11, 12, 13 and 38) are
grouped in the aph(λ)-based tree together with stations assigned to cluster IV (i.e.,
stations indicated with a triangular symbol in Fig. 4.5). Apart from DVChla, which
is a principal pigment common to all stations in cluster IV and �outliers�, the main
reason for being singled out in the pigment-based tree is the abundance of pigment
DVChlb. This pigment has its main absorption peak around 480 nm (see Fig. 1.3).
However, since the pigments Zea and Hex (i.e., the dominant pigments in cluster IV)
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also absorb strongly at that wavelength range, it would explain the similarity of the
aph(λ) spectra despite the di�erent pigment composition. Stations 19 and 20 were
also considered �outliers� and grouped separately in the pigment-based tree due to
the dominance of the pigment Fuco in these two samples. Their location coincides
with the outer rim of the diatom bloom detected in stations 21, 24 and 25 and
characterized by a high concentration of the pigment Fuco. Nevertheless, stations
19 and 20 present a smaller percentage of Fuco compared to total pigment and are
also characterized by the presence of DVChla which delineated the stations before
and after the bloom. Due to such di�erences in pigment composition, it could be
expected that these stations also partition separately in the cluster tree based on the
absorption information. However, both stations 19 and 20 clustered together with
stations assigned to cluster IV, as the rest of �outliers�.

Figure 4.5: Results of cluster analysis applied to aph(λ) from the 48 stations. Symbols
correspond to pigment-based clusters (see Fig. 4.3).
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To explore the potential of remote sensing information in distinguishing di�erent
phytoplankton assemblages, the partition of the stations has also been carried out
based on available Rrs(λ) spectra measured for 21 of the stations and shown in Fig.
4.6. As for the absorption data analysis, the cluster analysis based on Rrs(λ) data also
yields satisfactory results (Figure 4.7). A cophenetic index equal to 0.62 is obtained
for all stations and equal to 0.90 when again the �outliers� stations have been ruled
out in the analysis. As discussed in great detail in Section 3.3, a good performance has
only been achieved when considering the second derivative of Rrs(λ) spectra in this
case over the spectral range of 435 to 580 nm. The ability to discriminate phytoplank-
ton pigment assemblages from the derivative of Rrs(λ) spectra has been optimized by
selecting the most suitable parameters used in the spectral derivative computations.
In particular, it has been determined that the optimal values for the smoothing �l-
ter window and band separation were 9 nm for remote-sensing re�ectance (results
from this sensitivity analysis are not shown). Due to time constraints at the start
of the cruise, no Rrs(λ) measurements were collected at the stations corresponding
to pigment-based clusters I and II. In any case, clusters III, V and VI are well re-
produced and cluster IV shows some discrepancies similar to the analysis based on
aph(λ) data. The �outliers� stations 12, 20 and 38 which clustered separately in the
pigment-based tree (due to their high concentration of DVChlb) are associated with
stations from cluster IV in the optical data, as happened in the aph(λ)-based cluster
analysis. Unexpectedly, station 6 (from cluster IV in the pigment-based tree) has
been singled out in the Rrs(λ)-based tree. Its distinct Rrs(λ) spectrum, with a much
lower in magnitude in comparison to other stations from cluster IV, might indicate
that some problems or errors occured during the acquisition.

Figure 4.6: Remote-sensing re�ectance spectra (Rrs(λ)) for the 21 stations measured.
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Figure 4.7: Cluster tree resulting from analysis of the 21 stations calculated using
second derivative of hyperspectral Rrs(λ) spectra (optimal values: WS =
BS = 9 nm). Symbols correspond to pigment-based clusters (Fig. 3.8).

In order to optimize the results, the degree of similarity between cluster trees has
been again evaluated for calculations involving di�erent spectral ranges of optical
data (Torrecilla et al., 2011a). Fig. 4.8a illustrates the degree of similarity between
the aph(λ)-based and pigment-based cluster trees for di�erent spectral ranges of ab-
sorption data.

Figure 4.8: Cophenetic indices between pigment-based and optical-based cluster trees
obtained using di�erent combinations of spectral range for (a) aph(λ) and
(b) second derivative spectra of Rrs(λ). Optimal values of WS = BS =
9 nm, were used for the calculation of derivative spectra. The y-axis
indicates the lower limit of the spectral range (λmin) and the x-axis the
upper limit of the spectral range (λmax) utilized.
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According to the results, the optimal region is clearly when the phytoplankton
absorption spectrum is analyzed over the spectral range approximately from λmin =
425 nm to λmax = 540 nm. Fig. 4.8b shows distributions of the cophenetic index for
the cluster analysis of the second derivative of Rrs(λ). The spectral region from 435
nm to 580 nm, which includes the narrower region from 435 nm to 475 nm, can be
considered as the optimal spectral range for the application of derivative approach
with potential for good similarity between the pigment-based and re�ectance-based
cluster trees. Both optimal spectral regions identi�ed, in particular the one based
on the analysis of phytoplankton absorption data, overlap with the wavelength range
where absorption characteristics of main accessory pigments appear (see Fig. 1.3).
As expected, the results from this sensitivity analysis are consistent with the results
shown in the previous study (Section 3.3). It is important to note that these results
are also in agreement with the ones shown in the chapter 2, where the optimal range
was from λmin = 470 nm to λmax = 500 nm. In that case, however, this range was
narrower given that the analysis was performed considering simpli�ed underwater
optical scenarios, in which only a single phytoplankton group was present.
The results obtained with aph(λ) and Rrs(λ) spectra are summarized in Table 4.2,

including the improvement achieved with the optimal ranges and derivative settings.

Table 4.2: Summary of results including cophenetic indices between pigment-based
and optical-based cluster trees obtained using di�erent spectral ranges of
aph(λ), Rrs(λ) and second derivative spectra of Rrs(λ). In parenthesis,
the cophenetic indices obtained once the �outliers� stations (i.e., 11, 12,
13, 19, 20 and 38) were ruled out from the analysis.

4.2.1 Bio-optical provinces and its biogeographical relevance

On land, the distinction between di�erent ecosystems such as the edge of a forest or
the extent of a desert is generally easier compared to the marine environment. Due
to the highly dynamic nature of the oceans and the lack of knowledge about many
of those dynamics, these boundaries between ecological systems are much harder to
observe. They are, however, no less real (Platt and Sathyendranath, 1999; Hooker
et al., 2000; Devred et al., 2007; Longhurst, 2006). Areas in the world's oceans with
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similar physical and biological characteristics are generally referred to as ecological
or biogeochemical provinces or units (e.g. Platt et al., 2005).
Several studies have used TChla as one of the descriptors to de�ne marine ecolog-

ical provinces (e.g. Devred et al., 2007; Hardman-Mountford et al., 2008). In this
study, however, the global contribution of all pigment composition has been combined
with hyperspectral optical data to establish a bio-optical geography of the eastern
Atlantic Ocean. By applying an unsupervised HCA analysis to data from the eastern
Atlantic Ocean, the potential applicability of pigment composition, phytoplankton
absorption coe�cients and remote sensing re�ectances for identifying di�erent bio-
optical provinces in the ocean has been demonstrated (see a summary in Table 4.2).
The establishment of di�erent bio-optical provinces has led to examination of its

biogeographical relevance by comparison to ecological provinces previously proposed
in the literature. In order to assess the bio-optical approach with an established bio-
geography, the bio-optical provinces/clusters have been compared to the widely used
system de�ned by Longhurst (2006). Longhurst proposed a global partitioning into
4 biomes or basic vegetation types within the pelagic realm of the oceans: the Polar,
Westerlies, Trades and Coastal biome. Within the biomes, 51 provinces were de-
�ned on the basis of a global data set including satellite images of surface chlorophyll
�elds, regional oceanography data and also considering many previous proposals for
partitioning the oceans. Although the boundaries of the provinces were forced into
a static grid as a matter of convenience, Longhurst pointed out that the position of
the borders is dynamic and varies on annual, seasonal or even shorter time scales.
In Figure 4.1, the 48 stations with their assigned cluster symbols are plotted

on a map, in which Longhurst's provinces are also depicted (shape�le from VLIZ,
2009). A wide discussion regarding the comparison between bio-optical provinces and
Longhurst's provinces can be found in Taylor et al. (2011). Nevertheless, the main
results with a summarized description of similarities observed are provided. Clusters
I and II belong to the continental shelf of Western Europe, described by Longhurst
as the Northeast Atlantic Shelves Province (NECS). This analysis separates the two
stations into two clusters probably due to the fact that station 2 (cluster II) is situ-
ated in a area where tidal forces dominate the English Channel. Stations joined in
cluster III do not all belong to the same geographical province. Stations 3-5 lie in the
south-east corner of Longhurst's North Atlantic Drift province (NADR) and show the
same bio-optical traits than stations 7 and 22. Nevertheless, oceanographic data and
geography show that these two stations belong to di�erent oceanic provinces. The
sub-cluster IV-N lies within Longhurst's North Atlantic Subtropical Gyral Province,
East (NAST(E)). However, this area is bio-optically not consistent and many outliers
lie alongside the stations in this sub-cluster. These inconsistencies might be explained
by typical physical processes in this region (e.g., eddy-driven vertical advection, inter-
nal waves, Mediterranean water eddies which �ow out of the Strait of Gibraltar and
move southwards once they have detached from the continental slope, etc.). Stations
19-25, including �bloom stations� (i.e., 21, 24 and 25), lie on the approximate bound-
ary between the North Atlantic Tropical Gyral Province (NATR) and the Canary
Current Coastal Province (CNRY), which comprises the southerly coastal �ow of the
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eastern boundary current of the North Atlantic from Cap Finisterre (Spain) to Cape
Verde (Senegal). The sub-cluster IV-S including stations 26-40 is geographically a
very consistent cluster and lies within Longhurst's Eastern Tropical Atlantic Province
(ETRA). The boundaries of this province are clearly de�ned and in correspondence
with the observed changes in the pigment composition and bio-optical traits from sta-
tions to the north and south. Perez et al. (2005) describe the typical phytoplankton
community structure for this region as rather constant with the contribution of pico-
phytoplankton to TChla always exceeding 45%, a description which is corroborated
by the results. Stations belonging to cluster VI are clearly separated through their
bio-optical traits from the other stations. They present distinct pigment composi-
tion, aph(λ) and Rrs(λ) spectra and are clearly located in Longhurst's South Atlantic
Gyral Province (SATL), which comprises the anticyclonic circulation of the South
Atlantic, excluding the coastal boundary currents. The northern boundary of this
province is clearly de�ned by the change in bio-optical data from stations 40 and 41.
This coincides fairly well with the boundary set by Longhurst for the SATL province.

The bio-optical provinces have been shown to agree well with the provinces estab-
lished by Longhurst and thus can be used to classify areas of similar biogeography.
However, in areas with high variability, the Longhurst's provinces do not harbour
consistent phytoplankton assemblages. In such areas, it would be advantageous to
use a more �exible and dynamic approach to describe the ecosystem, in which phys-
ical and optical information could be combined (Devred et al., 2007; Raitsos et al.,
2008). Figure 4.9 shows variability in the temperature and salinity regimes from sta-
tions selected for this study that combined with latitude and longitude information
could be used to improve the ability to describe ecological complex regions.

Figure 4.9: Temperature-salinity diagram for the north-south transect in the eastern
Atlantic Ocean (see Fig. 4.1). Points corresponding to stations are labeled
with their station number and their symbol according to the pigment-
based cluster partition (see Fig. 4.3).

99



4 Hyperspectral data to de�ne bio-optical provinces in the open ocean

4.3 Summary and conclusions

In this chapter, a study based on a larger number of stations and representing a
broader set of oceanic environments has successfully been described for discriminat-
ing di�erent phytoplankton assemblages in the eastern Atlantic Ocean. The HCA
cluster-based analysis has directly been applied to hyperspectral �eld measurements
of both: phytoplankton absorption coe�cient spectra and remote-sensing re�ectance
spectra (i.e., the use of radiative transfer models was not necessary). The 48 stations
corresponded to open ocean waters and covered bloom and non-bloom conditions.
In this study, the pigment-based cluster partition has also been used as the reference

in terms of the phytoplankton composition of the selected stations (the �sea truth�).
However, an Euclidean metric distance has been utilized to generate this cluster
partition, instead of the angular metric distance used for the analysis of the spectral
data. Given that the 48 stations were representative of a broader set of ecological
conditions, di�erences between the stations in terms of the relative roles of individual
pigments (i.e., according to its phytoplanktonic community compostion) have been
better emphasized using this type of distance. In accordance with the resulting cluster
analysis described in the previous chapter (see Section 3.3), the most promising results
have been obtained for phytoplankton absorption coe�cient over the spectral range
435-520 nm and the second derivative spectra of the remote-sensing re�ectance over
the spectral range from 435-580 nm.
The proposed unsupervisded cluster algorithm applied to the measured optical pa-

rameters has allowed to de�ne di�erent bio-optical provinces. In this sense, since
pigment composition corresponded well with the remotely observable hyperspectral
aph(λ) and Rrs(λ) spectra, this method has potential to become an automated ap-
proach for the future to classify areas of similar biogeography. Partitioning the ocean
into provinces can assist us in understanding complex patterns in the oceans and help
us to extrapolate province-speci�c parameters over large spatial scales for a better
estimation of global primary production and carbon budget. The approximation of
ecological parameters (e.g. in modeling or in the interpretation of satellite data) can
be more accurate if we know which areas exhibit similar dynamics. This novel ap-
proach, for instance, could be helpful to further assess the extension and dynamic of
ecological provinces in the ocean on a large spatial and temporal scale. In this sense,
hyperspectral sensors mounted on platforms such as buoys, gliders or satellites could
provide essential data to identify shifting boundaries of established provinces or to
track exceptions from the rule to improve our understanding of the biogeochemical
cycles in the ocean. In terms of globally signi�cant issues such as carbon export and
primary production, the hyperspectral-based approach represents a possibility for a
faster and detailed assessment of the state of a temporally and spatially variable
marine environment.
Di�erent approaches based on bio-optical data have been proposed to de�ne dif-

ferent ecological environments or provinces, such as the classi�cation by Hardman-
Mountford et al. (2008) based on satellite-derived chlorophyll data or the cluster
algorithm by Moore et al. (2009b) where optical water types are classi�ed using
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multispectral Rrs(λ) observations. It is noted, however, that in light of the recent
advances in hyperspectral technology on the remote sensing observing platforms and
the results presented in this study, the possibility of characterizing marine ecological
units and phytoplankton communities through hyperspectral measurements becomes
increasingly interesting and important. For future applications, the use of a method-
ology based on hyperspectral resolution data sets is thus suggested. In fact, it seems
suitable to use that type of data sets in combination with other physical parameters
such as the sea-surface temperature (Devred et al., 2007). Several approaches have
already been proposed to detect Phytoplankton Functional Types (PFTs) from satel-
lite sensors (e.g., Alvain et al., 2008), but only Bracher et al. (2009) used hyperspec-
tral data. However, dominant PFT identi�cation is a slightly di�erent concept than
identifying di�erent spatially distributed phytoplankton assemblages. In this sense,
the novel methodology proposed in this thesis allowed to de�ne di�erent bio-optical
provinces on the basis of phytoplankton community structure and their bio-optical
traits, instead of a small set of functional groups.
Given signi�cant interest in the development of the capabilities for large-scale

characterization of phytoplankton biodiversity from optical measurements includ-
ing remote-sensing observations, one may expect further expansion of comprehensive
databases consisting of concurrent pigment and optical information in the near future.
It is expected that the availability of such a larger data sets will support further work
and optimization of this novel cluster-based approach and other techniques, such as
neural networks (Aymerich et al., 2009; Raitsos et al., 2008), which exploit hyperspec-
tral optical measurements as a source of information on phytoplankton community
composition.
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5 Hyperspectral data for a remote
sensing assessment of phytoplankton
communities in estuarine waters by
means of model simulations

In the previous chapters, a new approach based on the analysis of hyperspectral
optical data has been demonstrated useful to successfully discriminate di�erent phy-
toplankton communities in open ocean environments. The main goal of this chapter is
to evaluate the feasibility of this approach when considering shallow estuarine waters.

Coastal and estuarine areas are among the most biologically productive, dynamic
and vulnerable areas of the world oceans. Due to the complexity of physical-biological
interactions along these regions, near shore areas have traditionally been intensely
studied (Turner et al., 1998; Crossland et al., 2005). In comparison to land areas or
open ocean waters, systematic monitoring of coastal environments involves speci�c
challenges due to the common presence of suspended sediments and its high turbidity
and dynamics. Improved understanding of coastal ocean physical processes and their
e�ects on biology is especially important because the majority of the world's pri-
mary production occurs on continental shelves. In addition, improved management
of interactions between human-induced and natural processes within these regions
is needed. Several interdisciplinary coastal research and monitoring programs are
being carried out conceived to improve our understanding of how coastal ecosys-
tems function. For instance, the Global Ecology and Oceanography of Harmful Algal
Blooms (GEOHAB) program of the Intergovernmental Oceanographic Commission
of UNESCO (Gilbert and Pitcher, 2001) is focused on the study of harmful algal
blooms (HABs) population dynamics. These mass occurrences typically attributable
to single species of phytoplankton often appear in coastal waters under favorable
conditions like when sunlight and nutrients become available. HABs cause problems
due to their toxicity or in other ways (Kutser, 2009) and are a sensitive indicator for
marine ecosystem changes. Another research initiative carried out by an interdisci-
plinar and multi-institutional team is the Layered Organization in the Coastal Ocean
(LOCO) project (Sullivan et al., 2010; Rines et al., 2010), which aim is to investigate
the highly-concentrated patches of plankton known as �thin layers�. These structures
range in thickness from few centimeters to few meters, can extend horizontally for
many kilometers and persist for hours to weeks (Dekshenieks et al., 2001; Cowles,
2003). Their understanding could be critical to HABs research.
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The development of new optical-based observing platforms and algorithms to ob-
tain previously unavalaible information on the phytoplankton communities in coastal
waters has demonstrated to yield signi�cant bene�ts for HABs monitoring (Dickey,
2004; Babin et al., 2005; Scho�eld et al., 2008). They represent a valuable com-
plement to other more conventional approaches utilized by biologists working in
coastal ecosystems. Several optical-based approaches have recently been developed
to provide information on the abundance and dynamics of dissolved and particulate
matter in coastal waters, some of them based on multispectral data or band-ratios
obtained in discrete spectral bands (Doxaran et al., 2006; Gitelson et al., 2007; As-
toreca et al., 2009; Hommersom et al., 2011). In the same direction, new approaches
that fully exploit the hyperspectral capabilities of the new generation of in situ and
spaceborne spectrometers are becoming an alternative in order to better characterize
phytoplankton-dominated Case 2 waters (Lubac et al., 2008; Hunter et al., 2010).
The contribution of hyperspectral sensors mounted on new autonomous, continuous
and real-time ocean observing platforms to a better understanding of the biological
productivity in coastal waters, even to the development of early-warning monitoring
and prediction of HABs, needs further investigation, though.
In recent years, e�orts to assess the e�ect of the vertical structure of seawater

constituents on the optical property of remote-sensing re�ectance have also increased.
For example, numerical simulations of radiative transfer have been used to examine
the e�ect of a nonuniform vertical pro�le of phytoplankton on the remote-sensing
re�ectance corresponding to open ocean environments (Frette et al., 2001; Stramska
and Stramski, 2005; Xiu et al., 2008; Torrecilla et al., 2010) or to more complex Case
2 waters dominated by cyanobacteria (Kutser et al., 2008). In contrast to all these
studies, the e�ect of a vertical inhomogeneity of phytoplankton in shallow estuarine
waters on the remote-sensing signal still needs to be explored.
The aim of this chapter is to examine the feasibility of a hyperspectral-based ap-

proach for monitoring taxonomic composition of phytoplankton communities in shal-
low estuarine waters. As a proof-of-concept study and by means of model simulations,
a set of hyperspectrally-resolved remote-sensing re�ectances characterizing di�erent
shallow water scenarios is analyzed by using the dissimilarity-based cluster method
described in Chapter 2. First, in Section 5.2.1, the sensitivity of remote-sensing re-
�ectance spectra, Rrs(λ), to phytoplankton taxa is assessed given di�erent bottom
type conditions and abundances of suspended matter. Second, in Section 5.2.2, a
sensitivity analysis is also performed to evaluate if di�erent shallow estuarine sce-
narios with distinct vertical structures in terms of phytoplankton distribution and
abundance can be detected through the analysis of the Rrs(λ) signal. The depth and
amplitude of an idealized thin layer were varied in order to estimate their in�uence.
In order to acomplish the main goal of this chapter, a speci�c coastal �eld site has

been taken as a case study area. The Alfacs Bay, an estuarine embayment of the
Ebro Delta (NW Mediterranean Sea), is roughly 11 km long and 4 km wide, with
a maximum depth of 6.5 m (Fig. 5.1a). It harbors an active �n�sh and shell�sh
aquaculture industry (mainly mussel and oister). Because of this, it is regularly
and intensively monitored for environmental parameters, harmful microalgae and
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marine toxins in molluscs, microbiology parameters, heavy metals and dioxins in
molluscs. The monitoring programme, which is carried out by the Catalan Institute
for Food and Agricultural Research and Technology (IRTA) since 1991, has reported
the presence of several harmful algal species responsible for Diarrheic (DSP) and
Paralytic Shell�sh (PSP) Poisoning toxins in bivalves (Fig. 5.1b). Two toxic bloom-
forming groups of phytoplankton reported in this area are dino�agellates and diatoms
(Fernández-Tejedor et al., 2010), in which this study focuses. Speci�c absorption
coe�cient spectra of these two phytoplankton groups are depicted in Fig. 5.1c. This
monitoring programme, which has evolved in parallel to international programmes
on HABs and Spanish and European Union regulations in shell�sh production areas,
is strongly linked to ongoing research projects on harmful microalgae dynamics in
which transport processes play a key role. Di�erent studies have been developed in
this area due to its scienti�c interest (Garcés et al., 1999; Vila et al., 2001; Llebot
et al., 2011), including the analysis of the growth and the spatio-temporal distribution
of potentially harmful group of dino�agellates.

Figure 5.1: (a) Map depicting the location of the Alfacs Bay. (b) Di�erent toxic
algal blooms recorded during a weekly sampling in 2007 performed by
the IRTA. (c) Chlorophyll-a speci�c absorption coe�cient of two groups
of phytoplankton: diatoms and dino�agellates (Kim and Philpot, 2006),
reported to be present in the Alfacs Bay. These groups show distinct
optical features, in particular in the spectral region from 435 to 580 nm
where absorption characteristics of main accessory pigments appear.
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5.1 Optical modeling and data analysis

5.1.1 Modeled hyperspectral remote-sensing re�ectance

In order to examine the sensitivity of the remote-sensing re�ectance corresponding to
shallow waters to the phytoplankton taxa, several secenarios have been simulated with
the Hydrolight/Ecolight version 5.0 radiative transfer (RT) model (Mobley and Sund-
man, 2008). A Case 2 waters model representing a shallow estuarine environment
have been parameterised by de�ning the number of optically active substances and
providing their speci�c optical properties. The pure water absorption and scattering
coe�cients have been derived from Pope and Fry (1997). The speci�c absorption and
scattering spectral coe�cients corresponding to two phytoplankton groups represen-
tative for the considered area (i.e., diatoms and dino�agellates, see Fig. 5.1c) have
been taken from Kim and Philpot (2006). Due to the lack of knowledge about the col-
ored dissolved organic matter (CDOM) in the Alfacs Bay, the absorption coe�cient
of CDOM has been calculated using a common exponential relationship included in
the Hydrolight code, based on a model from Morel and Maritorena (2001):

acdom(z, λ) = 0.2 · aph(z, 440) exp[−0.014(λ− 440)] (5.1)

where aph(z, 440) is the absorption coe�cient of the chlorophyll-bearing particles
(i.e., phytoplankton) at 440 nm. The concentration of suspended sediments, SS, has
been taken to vary from 0 to 6 mg/L based on �eld observations (M. L. Artigas,
unpublised data). The mass-speci�c absorption and scattering coe�cients of SS have
been derived from a composite of data in Bukata et al. (1995) and Gallie et al. (1992),
also included in the Hydrolight code. The modeling of the remote-sensing re�ectances
was carried out over the spectral region of 375-725 nm with 1 nm resolution and in-
cluded the inelastic Raman scattering and �uorescence by chlorophyll and CDOM
within the ocean. The sea surface boundary conditions have been con�gured using
the default settings in Hydrolight (i.e., wind speed equal to 5 m/s in accordance to
real conditions in the area, solar zenith angle equal to 30o and clear sky condition).
In order to emulate similar conditions to those found in the Alfacs Bay, the ocean
has been assumed to be a �nite-depth water body with a zmax equal to 6.5 m and
examined at intervals 4z equal to 0.05 m. Di�erent bottom types have been consid-
ered corresponding to various sediments and benthic biota, among them those ones
similar to the ones found in the studied area (de Pedro Puente, 2007). Each bottom
type, characterized by a speci�c irradiance re�ectance (see Fig. 5.2), was provided
by the Hydrolight code.
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Figure 5.2: Bottom irradiance re�ectances provided by the Hydrolight code and con-
sidered for the present study.

Two di�erent vertical pro�les of chlorophyll concentration have been used in the
model simulations. On the one hand, several uniform vertical pro�les of chorophyll
concentration equal to 0.5, 1, 3, 5 and 7 mg/m3 have been used to test the sensi-
tivity of Rrs(λ) to the phytoplankton taxa, bottom type and presence of suspended
sediments (see Section 5.2.1). On the other hand, in order to examine their e�ect
on the Rrs(λ), di�erent nonuniform vertical pro�les of the chlorophyll concentration
have been generated (see Section 5.2.2). These vertical pro�les, which simulate the
condition characterized by the presence of a subsurface chlorophyll maximum at a
speci�c depth (i.e., a thin layer condition, see Fig. 5.3), have been approximated by
a Gaussian function superimposed upon a constant background (Lewis et al., 1983):

Chl(z) = Chl0 + Chlmax exp[−(z − zmax)2/2σ2] (5.2)

where Chl0 is the background value of chlorophyll, zmax is the depth of the chloro-
phyll maximum, σ is the standard deviation that controls the thickness of the cholor-
phyll peak (i.e., 95% of the integrated biomass is located within a water layer of
thickness equal to 4σ) and Chlmax is the amplitude of the chlorophyll maximum
above the value of Chl0. According to values derived from the analysis of water sam-
ples taken in the Alfacs Bay (Artigas et al., submitted), the calculations were made
for two values of Chl0 (1 and 3 mg/m3), three values of zmax (3, 4, and 5 m), one
value of σ (0.25 m) and three values of Chlmax (6, 9 and 12 mg/m3).
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Figure 5.3: Diagram of the nonuniform vertical chlorophyll pro�le expressed in equa-
tion (5.2) and utilized in part of the RT simulations.

The role of each optically active component for the type of environments simu-
lated in this chapter di�ers from the cases simulated in the previous chapters (i.e.,
Case 1 waters). Figure 5.4 shows an example of the most signi�cant IOPs (i.e., ab-
sorption and backscattering spectral coe�cients) considered as the input information
to calculate one of the modeled remote-sensing re�ectances. It is noted that the
suspended matter has a higher in�uence on the total absorption and backscattering
coe�cient spectra, and hence also expected on the Rrs(λ) signal, even becoming the
most dominant component when increasing its concentration.

Figure 5.4: Examples of absorption (a) and backscattering (b) spectra utilized in
one of the simulations for selected values of: Chl0 (1 mg/m3, uniform
vertical pro�le) and SS (2 mg/L). In this case, the underwater scenario
was characterized by the presence of the algal group of diatoms.
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5.1.2 Cluster analysis and Multi-dimensional Scaling

A hierarchical cluster analysis (HCA) has been applied to the optical datasets of
Rrs(λ) generated for the study presented in this chapter. The assessment of the
impact of having di�erent underwater scenarios given di�erent bottom types, vertical
structures of phytoplankton and abundance of suspended sediments has been carried
out by analyzing the similarity between each simulated hyperspectral Rrs(λ). In
this sense, similarly to previous chapters, the HCA analysis has allowed to examine
our ability to distinguish Rrs(λ) corresponding to di�erent underwater conditions.
The cosine distance has also been chosen as measure of similarity between spectra in
order to give priority to di�erences in the spectral shape of optical data rather than
magnitude.
It is noted in this study, however, that once a hierarchical cluster tree has been ob-

tained corresponding to a set of underwater scenarios, a new graphical representation
instead of a tree has been used to more easily examine our ability to distinguish one
scenario from another. Multi-dimensional Scaling (MDS) is an ordination technique
that, similar to cluster techniques, ranks objects according to their relative similarity
(Shepard, 1980). In this study, it has been used as a complement of the cluster anal-
ysis for graphically representing dissimilarities in the Rrs(λ) data set. It provides an
alternative visualization of the complex relations among the Rrs(λ) spectra obtained
with the cluster analysis. MDS is based on the dissimilarity matrix obtained in the
HCA analysis (using the cosine distance) but displays the inter-relations between
each pair of objects (i.e., each pair of spectra) on a low dimensional plot (2D). The
distance between objects on this biplot is an indicator of the similarity in the Rrs(λ)
spectra. The MDS representation provides a reliability measure, which indicates how
well the 2D-ordination plot depicts the relationships in the similarity between objects.
This is indicated by the minimized stress value.

5.2 Results and discussion

5.2.1 E�ect of the bottom type on the remote sensing signal

The variability in remote-sensing re�ectance spectra due to di�erent characteristics
of the bottom type is signi�cant in optically shallow waters. In fact, it has been
demonstrated useful to map bottom properties in coastal environments, in particular
if observations at hyperspectral resolution are available. Figure 5.5 illustrates the
in�uence of the di�erent bottom types considered in this study (i.e., brown algae,
coral sand, green algae, red algae and seagrass) on the Rrs(λ) spectra when only
pure water is assumed to be present in the modeled water body. Coral sand provides
a higher Rrs(λ) spectra than algae due to its higher re�ectance over the visible part
of the spectrum. Rrs(λ) spectra corresponding to green algae is higher than those
for other algae, in accordance with its re�ectance spectrum (see Fig. 5.2). Rrs(λ)
spectra from red, brown algae and seagrass are more similar but show signi�cant
di�erences in shape.
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Figure 5.5: Remote-sensing re�ectance, Rrs(λ), of �ve di�erent bottom types seen
through clear water with a maximum depth equal to 6.5 m.

Our ability to discriminate di�erent algal communities and bottom types from
Rrs(λ) information, however, can be complicated by the presence of high concentra-
tions of phytoplankton biomass, for example in the case of existing bloom-forming
or thin layer processes. The optical water clarity is degraded as the abundance of
phytoplankton along the water column increases. Figure 5.6a shows the e�ects on
Rrs(λ) spectra caused by di�erent parameters of the bottom type and the level of
chlorophyll concentration (i.e., 0.5, 1, 3, 5 and 7 mg/m3) corresponding to scenarios
characterized by the presence of two algal groups: diatoms and dino�agellates. In
this case, it corresponds to uniform vertical pro�les of chorophyll concentration. In
general, the e�ect of increasing the chlorophyll concentration is to decrease Rrs(λ)
spectra in the blue spectral region and to increase it in the green and red spectral
regions. The highest Rrs(λ) spectra occur for scenarios characterized by the pres-
ence of diatoms, regardless the bottom type. Nevertheless, it is noted that bottom
type has no impact on the Rrs(λ) spectra for high concentrations of chlorophyll (> 3
mg/m3). In this cases, the Rrs(λ) spectra corresponding to a �xed chlorophyll con-
centration and all bottom types are seen in cyan color, since they have been plotted
superimposed (i.e., it is just seen the Rrs(λ) corresponding to the last bottom type).
In order to assess if di�erent shallow water scenarios can still be dintinguished

despite the presence of di�erent algal groups and bottom type con�gurations (see
Fig. 5.6a), the HCA cluster analysis has been applied to the dataset of hyperspectral
Rrs(λ) spectra. Figure 5.6b depicts by means of Multi-dimensional scaling (MDS)
all cases according to their relative similarity found in the cluster analysis. It is note-
worthy that scenarios dominated by either diatoms and dino�agellates are clearly
distinguished regardless the chlorophyll concentration of the uniform vertical pro�le
(i.e., for concentrations from 0.5 to 7 mg/m3). In addition, for chlorophyll concen-
trations up to 1 mg/m3, the analysis of hyperspectral Rrs(λ) spectra also allows to
discriminate scenarios with di�erent bottom characteristics. On the contrary, when
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the chlorophyll increases, the information of the bottom type is re�ected neither in
the Rrs(λ) spectra nor in the MDS plot.

Figure 5.6: (a) Examples results of radiative transfer simulations of optically shal-
low waters, showing the Rrs(λ) spectra corresponding to uniform vertical
pro�les of two phytoplankton groups at di�erent concentrations and given
di�erent bottom types. (b) MDS plot visualizing similarities between the
Rrs(λ) spectra shown in (a). Symbols and colors represent each algal
group and bottom type, respectively. Labels indicate the chlorophyll con-
centration considered in each modeled underwater scenario.

Monitoring of changes in phytoplankton taxa under di�erent bottom conditions by
remote sensing can also be complicated by the e�ect of another optically signi�cant
component found in estuarine waters: the suspended matter. Figure 5.7a shows the
e�ects on Rrs(λ) spectra caused by di�erent parameters of the bottom type and the
level of suspended sediment (i.e., 0, 2, 4 and 6 mg/L). The scenarios correspond
to water bodies with diatoms or dino�agellates at a �xed concentration equal to
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0.5 mg/m3 along the water column. The e�ect of increasing the concentration of
the suspended matter is to increase absorption spectra in the blue spectral region
and hence decrease Rrs(λ) spectra in this region. Again, the highest Rrs(λ) spectra
occur for the group of diatoms regardless the bottom type and the concentration of
suspended matter. Nevertheless, it is noted that bottom type has no impact on the
Rrs(λ) spectra for high levels of suspended sediments, cases in which Rrs(λ) spectra
are seen in cyan color as occured in spectra shown in Fig. 5.6a.

Figure 5.7: (a) Examples results of radiative transfer simulations of optically shallow
waters, showing the Rrs(λ) spectra corresponding to uniform vertical pro-
�les of two phytoplankton groups at a concentration of 0.5 mg/m3 and
given di�erent concentrations of suspended matter and bottom types. (b)
MDS plot visualizing similarities between the Rrs(λ) spectra shown in (a).
Symbols and colors represent each algal group and bottom type, respec-
tively. Labels indicate the concentration suspended sediment considered
in each modeled underwater scenario.
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The MDS plot shown in Fig. 5.7b better illustrates the dissimilarities between the
Rrs(λ) spectra of respective phytoplankton groups and bottom types, given di�erent
concentrations of suspended matter. By analyzing the dissimilarities in the whole
spectral range, all scenarios corresponding to di�erent phytoplankton taxa and dif-
ferent concentrations of suspended matter have been distinguished. In addition, it is
noted that for concentrations of suspended matter smaller than 2 mg/L, scenarios
characterized by di�erent bottom types have also been clearly discriminated.

5.2.2 E�ect of the vertical structure of phytoplankton on the remote
sensing signal

After having assessed the in�uence on Rrs(λ) spectra by the presence of di�erent
algal groups, levels of phytoplankton biomass, suspended matter and di�erent bot-
tom types, this section is aimed at evaluating how well di�erent shallow estuarine
scenarios with distinct vertical structures in terms of phytoplankton distribution and
abundance can be detected through the analysis of the Rrs(λ) signal.
Several underwater scenarios were generated simulating a thin layer condition tak-

ing place in a shallow estuarine area like the Alfacs Bay (see Fig. 5.3). Figure 5.8a
shows the Rrs(λ) spectra modeled by considering the presence of one algal group, di-
atoms or dino�agellates and di�erent combinations for the values of the background
chlorophyll, Chl0 (1 and 3 mg/m3), depth of the chlorophyll maximum, zmax (3, 4,
and 5 m), amplitude of the chlorophyll maximum, Chlmax (6, 9 and 12 mg/m3) and
a �xed value of the parameter related to the thickness of the chlorophyll peak, σ
(0.25 m) . The level of suspended sediments was �xed (i.e., 2 mg/L for all scenar-
ios), likewise the bottom type. It is also plotted the Rrs(λ) spectra corresponding
to uniform chlorophyll pro�les when the concentration was equal to 1 and 3 mg/m3.
It can be easily seen that uniform and nonuniform vertical pro�les of phytoplankton
for each combination of parameters (indicated in black symbols and red lines, respec-
tively) provide very similar, sometimes identical, Rrs(λ) spectra. The corresponding
MDS plot obtained after the application of the similarity-based cluster analysis (see
Fig. 5.8b) also con�rms that the contribution of the thin layer to the overall Rrs(λ)
spectra (red symbols) is nearly negligible when compared to the Rrs(λ) obtained for
uniform vertical pro�les (black symbols). Only for two scenarios, corresponding to
the case of having a background chlorophyll, Chl0, equal to 1 mg/m3 and a thin
layer of Chlmax equal to 9 and 12 mg/m3 at the upper level (i.e., zmax equal to 3 m),
spectral discrepances allow to distinguish the nonuniform from the uniform situation.
The discrimination of di�erent nonuniform vertical pro�les of the chlorophyll con-

centration in shallow estuarine waters based on the analysis of hyperspectral Rrs(λ)
spectra has been unsuccessful. Scenarios characterized by two algal groups at dif-
ferent concentrations have been discriminated. Nevertheless, the analysis of the
hyperspectrally-resolved Rrs(λ) data set has not allowed to distinguish di�erent ver-
tical structures along the water column of these phytoplankton groups. Attempting
to improve our results by applying derivative spectroscopy or limiting the analysis to
speci�c spectral regions has not provided either a good performance (not shown).
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Figure 5.8: (a) Examples results of radiative transfer simulations of optically shallow
waters, showing the Rrs(λ) spectra corresponding to uniform (indicated
in black symbols and lines) and nonuniform vertical pro�les (in red) of
two phytoplankton groups. (b) MDS plot visualizing similarities between
the Rrs(λ) spectra shown in (a).

The results of the here presented optical modeling exercise show that the vertical
structure of the distribution of the phytoplankton biomass in the water column of
shallow estuarine environments has little impact on the remote-sensing re�ectance
spectra. In this sense, as suggested by other authors (see several contributions in
Babin et al., 2008), a multidisciplinary approach based on highly resolved vertical
pro�ling systems could provide �ne-scale optical and hydrographic measurements so
as to complement remote-sensing capabilities. A better monitoring of coastal blooms
dynamics is among the advantages of obtaining a high resolution in the vertical dis-
tribution of phytoplankton. Ideally, these observation systems should resolve vertical
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distributions of phytoplankton in relationship to temperature, salinity and currents.
Additionally, nutrient availability should also be part of the monitoring strategy.
In case of using highly resolved vertical pro�lers including hyperspectral measure-

ments, it is important to note that the proposed dissimilarity-based methodology
could also be applicable. The underlying idea would be to investigate the suitability
of this approach applied to periodical hyperspectral measurements along the water
column in order to retrieve information about the temporal and spatial variability of
the distribution of phytoplankton and other optically signi�cant substances present in
the area under study. Figure 5.9 illustrates an example in which the vertical structure
of phytoplankton distribution corresponding to one modeled scenario is assessed by
using the cluster-based approach. In particular, the dissimilarity analysis has been
applied to a set of irradiance re�ectance spectra obtained along the water column
(i.e., every 0.05 m), allowing to detect the idealized thin layer of phytoplankton lo-
cated at 4 m depth. In this example, the level of suspended sediments was equal to
2 mg/L and the bottom type was brown algae.

Figure 5.9: Results of cluster analysis based on the irradiance re�ectance along the
water column corresponding to a very shallow area characterized by the
presence of a thin layer of phytoplankton at 4 m depth, obtained by means
of radiative transfer simulation.

5.3 Summary and conclusions

In this chapter, hyperspectral optical signatures of shallow estuarine environments
in relation to di�erent phytoplankton comunities have been evaluated. In particular,
the Alfacs Bay, an estuarine embayment of the Ebro Delta (NW Mediterranean Sea)
with a maximum depth of 6.5 m, has been considered as a case study area. The
presence of several harmful algal species responsible for di�erent types of toxicity in
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bivalves, mainly belonging to the groups of dino�agellates and diatoms, have made
it one of the most studied coastal sites in Catalonia.

As a proof-of-concept study and �rst approach to optically more complex underwa-
ter scenarios, the feasibility of a hyperspectral-based approach for monitoring di�erent
phytoplankton communities in shallow waters has been examined using an adapted
simulation-based framework and the dissimilarity cluster-based approach described
in Chapter 2. A set of remote-sensing re�ectance spectra characterizing di�erent
shallow water scenarios have been simulated using the Hydrolight/Ecolight 5.0 radia-
tive transfer model. The sensitivity of remote-sensing re�ectance, Rrs(λ), to di�erent
phytoplankton taxa has been assessed under di�erent conditions in terms of bottom
type and abundance of suspended matter (i.e., another optically signi�cant water con-
stituent in coastal waters besides phytoplankton). Additionally, a sensitivity analysis
of remote-sensing re�ectance spectra has also been performed under di�erent condi-
tions in terms of vertical structure of phytoplankton along the water colum. In this
sense, a thin layer condition characterized by the presence of a subsurface chlorophyll
maximum at a speci�c depth has been simulated based on �eld observations and
theoretical estimates. The depth and amplitude of the idealized thin layer emulat-
ing similar conditions to those found in the Alfacs Bay have been varied in order to
estimate their in�uence on the remote-sensing re�ectance.

The results of these optical modeling exercises for shallow estuarine waters show
that scenarios dominated by either diatoms and dino�agellates have clearly been
discriminated regardless the chlorophyll content, abundance of suspended matter,
bottom type and vertical structure of the phytoplankton along the water column. In
fact, the analysis of Rrs(λ) spectra has also permitted to derive information about the
bottom properties of each simulated underwater scenario as long as the chlorophyll
concentration was not larger than 1 mg/m3 or the concentration of suspended matter
was smaller than 2mg/L. On the contrary, the contribution of a idealized thin layer in
the water column to the remote-sensing signal has been shown to be nearly negligible
when compared to Rrs(λ) spectra obtained for analogous uniform vertical pro�les.
Based on these results, the use of vertical pro�lers to observe �ne-scale characteristics
along the water column in terms of phytoplankton diversity is suggested in order to
complement the remote-sensing approach, which has been proved unsuccessfull for
this purpose. In this sense, the Marine Technology Unit (UTM, CSIC) is carrying
out the project ANERIS1, conceived to develop a new oceanographic pro�ler with
high resolution autonomous sampling capabilities. In particular, it is being designed
to gather �ne-scale pro�les of biological activity during the free-fall descent by using
hyperspectral optical sensors, among others. As a preliminary calibration task and
in parallel to the work presented in this thesis, the in�uence of the spectral stray-
light radiation to the measured output signals of the integrated hyperspectral sensors
has been characterized and corrected (see more details in the Appendix C). The

1 Project ANERIS: ANálisis y desarrollo de una sonda ocEanogRá�ca Inteligente con capaci-
dad autónoma de obtención de muestraS, supported by the Spanish National Research Council
(CSIC), PIF08-015.
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spectral stray-light radiation is described as the background radiation that has been
scattered due to imperfections in the dispersive element and other optical elements
of the instrument.
Current uncertainties in the knowledge of marine optical characteristics and the

ability to model the underwater radiation �elds in a complex estuarine region like the
Alfacs Bay indicate that much additional research is still needed. In this sense, de-
spite the results indicate that hyperspectral observations might play a key role in the
characterization of shallow estuarine environments, there is a strong need for more
in situ data to have a better knowledge of the optical variability of phytoplankton
and other signi�cant constituents in this area. Several research projects (i.e., MES-
TRAL2 and PHYTOSCOPE3) have recently been initiated within the framework of
the Marine Technology Unit (UTM, CSIC), in order to address this issue. The char-
acterization of the extremely high spatial and vertical variability in biomass during
bloom events through the observation of its impact on the in situ and remote sens-
ing optical properties will be one of the main goals. Additionally, new methods to
maximize the potential of using hyperspectral data to e�ectively retrieve important
marine properties in coastal environments will also be explored.
A combination of optical and hydrographic measurements will be essential for a

better understanding of the factors regulating phytoplankton community composition
in the Alfacs Bay. However, based on a previous �eld experience in this area in 20114

and other past initiatives performed by other research groups (Tzortziou et al., 2006;
Rhea et al., 2007; Hommersom et al., 2009) in other areas, it is expected that these
new monitoring initiatives will involve many speci�c challenges in terms of instrument
calibration and data processing, specially due to the shallowness, high dynamics and
turbidity of this type of water environments.
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Over the last decades, the open and coastal ocean science community has expressed
the urgent need to improve the observation of marine ecosystems for receiving a better
knowledge about the space-time distribution and dynamics of ecological parameters
such as phytoplankton communities, including critical bloom-forming algal groups. In
attempting to address this question, in situ and remotely-sensed spectrometric opti-
cal observations of ocean waters have demonstrated to provide information regarding
the concentrations of optically signi�cant constituents in seawater, in particular, re-
garding phytoplankton community structure. The optical-based approach represents
a suitable, fast and non-intrusive method currently available for measuring properties
of ocean ecosystems at local and global scales. Moreover, it is noted that technolog-
ical advances and especially the advent of high spectral resolution (hyperspectral)
sensors have raised new expectations about the possibilities of discriminating phyto-
plankton community composition in the ocean. The advantage of hyperspectral data
stems from the fact that more subtle di�erences in targets are captured, opening the
possibility to achieve a species-level discrimination, beyond the estimation of only
chlorophyll-a that is common to all taxonomic groups.
This PhD thesis has been carried out with the aim of improving our ability to

extract information regarding phytoplankton community structure in the ocean by
developing and evaluating a novel processing approach based on hyperspectral data.
The work has been organized along several case studies, conducted to address sev-
eral speci�c questions and elucidate the feasibility of hyperspectral oceanographic
observations to discriminate di�erent phytoplankton communities in open ocean and
coastal environments:

� Answer to the question: what role can the shape of hyperspectral data play in
the assessment of phytoplankton composition of a seawater sample? is provided
in Chapter 2.

A successful identi�cation of di�erent phytoplankton communities in the ocean
has been achieved by applying a novel methodology to a hyperspectral data
set of remote-sensing re�ectance spectra corresponding to di�erent underwater
scenarios in terms of phytoplankton composition. In order to do so, a key is-
sue has been the application of a dissimilarity-based cluster technique, which
accounts for complete spectral behaviour of hyperspectral data, in combination
with derivative spectroscopy, which exploits the spectral shape features of hy-
perspectral data. As a �rst approach, the suitability of this methodology has
been demonstrated based on a simulation-based framework, implying the use
of a synthetic hyperspectral data set obtained by radiative transfer modeling.
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� Answer to the question: how e�ective can a hyperspectral-based approach be
at discriminating di�erent oceanic environments in which various phytoplank-
ton groups co-exist under non-bloom or non-dominant conditions? is given in
Chapter 3.

In this case, the methodology described in the previous chapter has been applied
to more realistic environmental scenarios based on �eld optical data determined
at 9 stations along a north-to-south transect in the eastern Atlantic Ocean
in 2005. Di�erent real open ocean environments corresponding to non-bloom
conditions have successfully been classi�ed by applying the cluster analysis to
second derivative spectra of di�erent hyperspectral data sets (i.e., absorption
and remote-sensing re�ectance spectra). As part of this study, a new validat-
ing tool has been proposed and proven useful to illustrate the e�ectiveness of
the optical-based classi�cation. This novel approach is based on the pigment
composition analyzed in conjuction with concurrently obtained optical data,
information which has been commonly used by the scienti�c community as a
proxy for the phytoplankton composition. In particular, two indices have proven
valid to quantify the degree of similarity between the optical-based clusters and
the pigment-based clusters (the �sea truth�).

� Answer to the question: how feasible is the global identi�cation of di�erent
types of water masses in terms of phytoplankton composition by assessing their
hyperspectral optical signatures? is provided in Chapter 4.

The potential of the methodology described in the previous chapters has been
demonstrated by analyzing a larger database of hyperspectral observations col-
lected at 48 stations in the eastern Atlantic Ocean in 2008. The identi�cation of
several phytoplankton assemblages has served to demonstrate the feasibility of
this approach to classify oceanic areas of similar biogeography based on the phy-
toplankton community structure and their hyperspectral optical signatures (i.e.,
absorption and remote-sensing re�ectance spectra). In this sense, a potential
application of the proposed methodology has been identi�ed: the establishment
of di�erent bio-optical provinces from the dissimilarity-based analysis applied
to in situ and remotely-sensed hyperspectral oceanographic observations and
their second derivative spectra.

� Answer to the question: what e�ect does a hyperspectral-based approach have
on the analysis of phytoplankton community structure of both types of environ-
ments: open ocean or coastal waters? is provided in Chapter 5.

The role of hyperspectrally-resolved optical observations and the dissimilarity-
based methodology, successfully applied in open ocean environments, has also
been examined in optically more complex underwater scenarios. As a proof-
of-concept study and �rst approach to shallow estuarine environments, several
underwater optical scenarios have been generated by means of model simu-
lations, emulating similar conditions to those found in a selected case study
area: the Alfacs Bay (Ebro Delta, NW Mediterranean Sea). Remote-sensing
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re�ectance spectra corresponding to di�erent scenarios dominated by two phy-
toplankton groups (i.e., dino�agellates and diatoms) at di�erent concentrations
have been discriminated given several assumptions, i.e., di�erent bottom types,
concentrations of suspended matter and vertical structures of phytoplankton
along the water column.

The following paragraphs provide a summary of the key �ndings:

An optimal application of the proposed cluster-based methodology for estimating
variability of marine phytoplankton communities from the analysis of hyperspectral
data has implied the selection of an appropriate distance as a measure to determine
the degree of similarity between each pair of input objects. For the pigment-based
cluster partition, an Euclidean metric distance has been utilized. However, for the
analysis of spectral data, an angular distance has been found more e�ective to rec-
ognize similar or dissimilar optical patterns from their shape features. Shape sin-
gularities in hyperspectral oceanographic data are relevant since they are related to
absorption features of pigments present in the samples and hence, to their phyto-
planktonic composition. Regarding this issue, the previous application of derivative
spectroscopy has proven to be essential to enhance subtle features in hyperspectral
data. A good performance has been possible after the suitable selection of the in-
volved smoothing and derivative parameters (i.e., �lter size and band separation).
As a novelty in this thesis, a validation approach has been proposed with the aim to

automatically evaluate the usefulness of optical data for discriminating phytoplankton
pigment assemblages. This validation approach is based on two similarity indices:
cophenetic and Rand, which quantify the similarity between di�erent optical-based
cluster partitions and the pigment-based cluster partition. The de�ned reference
based on the pigment composition (the �sea truth�) has proven valid as a proxy for
phytoplankton community composition. It is noted that the use of these indices has
provided a valuable methodology for performing sensitivity tests in order to identify
optical variables and the spectral ranges most suitable for characterizing di�erent
phytoplankton assemblages.
The most promising results from the cluster analysis applied to open ocean stations

were obtained with the second derivative spectra of the phytoplankton absorption co-
e�cient, a∗n,ph(λ), over the spectral range 370-725 nm (or narrower spectral regions
from within that range, e.g., 435-520 nm), and the second derivative spectra of the
remote-sensing re�ectance, Rrs(λ), over the spectral range from about 435 nm to
580 nm. In addition, other absorption and re�ectance data were examined but they
generally showed either more limited value or no usefulness at all for discriminat-
ing phytoplankton pigment assemblages (e.g., ordinary re�ectance spectra at 1 nm
resolution or multispectal re�ectance data).
The results from the model-data �closure exercise� required for the reconstruction

of hyperspectral Rrs(λ) corresponding to stations from the eastern Atlantic Ocean in
2005 (Chapter 3) compared reasonably well with �eld multispectral Rrs(λ) measure-
ments. The level of consistency between model and measurements indicates that the
suite of parameters used as input to the radiative transfer simulations realistically
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represented the actual �eld conditions. It is noteworthy that the ability to de�ne
realistic inputs derived, in turn, from a comprehensive suite of IOP measurements
carried out in situ and in the laboratory. These results serve to demonstrate that
the conditions under which theoretical radiative transfer calculations of hyperspectral
Rrs(λ) were performed produced a close agreement with the experimental multispec-
tral measurements of Rrs(λ).

The identi�cation of di�erent bio-optical provinces from the analysis of 48 open
ocean stations in the eastern Atlantic Ocean (Chapter 4), as one of the potential ap-
plications of the proposed methodology, has led to examination of its biogeographical
relevance by comparison to ecological provinces previously proposed in the litera-
ture (Longhurst, 2006). The bio-optical provinces showed to agree well with these
provinces and thus could be used to classify areas of similar biogeography. In fact, the
use of hyperspectral observations in combination with other physical parameters (e.g.,
the sea-surface temperature) is suggested. In terms of globally signi�cant issues such
as carbon export and primary production, the hyperspectral-based approach repre-
sents a possibility for a faster and detailed assessment of the state of a temporally
and spatially variable marine environment. At the moment, other approaches have
already been proposed to detect simultaneously Phytoplankton Functional Types
(PFTs) from satellite hyperspectral data (Bracher et al., 2009). However, PFT iden-
ti�cation is a slightly di�erent concept than identifying di�erent spatially distributed
phytoplankton assemblages. The novel methodology proposed in this thesis allows
to de�ne di�erent bio-optical provinces on the basis of phytoplankton community
structure and their bio-optical traits, instead of a small set of functional groups.

The results from the optical modeling exercises for shallow estuarine waters have
shown that scenarios dominated by either diatoms and dino�agellates were clearly
discriminated regardless of the chlorophyll content, abundance of suspended matter,
bottom type and vertical structure of the phytoplankton along the water column. In
fact, the analysis of Rrs(λ) spectra also permitted to derive information about the
bottom properties of each simulated underwater scenario as long as the chlorophyll
concentration was not larger than 1 mg/m3 or the concentration of suspended matter
was smaller than 2 mg/L. On the contrary, the contribution of a idealized thin layer
in the water column to the remote-sensing signal showed to be nearly negligible when
compared to Rrs(λ) spectra obtained for analogous uniform vertical pro�les.

Overall, this thesis demonstrate how hyperspectral oceanographic observations can
be used to better assess phytoplankton biodiversity and dynamics, furthering the
understanding of the role of each algal group at a local scale or in the global marine
ecosystem and biogeochemical cycles. It is noteworthy that the proposed approach is
generally applicable to di�erent data sets (i.e., in situ and remotely-sensed Inherent
or Apparent Optical Properties) or other types of data (e.g., combination of optical
and hydrographic data), gathered at the sea surface or along the water column. A
similar optimization analysis can also be used to provide the best performance for a
given data set. Moreover, this analysis is �exible and permits di�erent optimal values
to be utilized in the case of other optical data with di�ering spectral resolutions.
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In terms of future work, the following points seem worthwhile to pursue as part
of further investigations:

- The results from the assessment of phytoplankton communities in open ocean
environments, even encouraging, are far from de�nitive. In fact, further investigation
is needed with larger databases of measurements from various oceanic environments
in order to determine the generality of the presented approach and the speci�c set of
optimal parameters. The minimum data necessary for application of the dissimilarity-
based proposed methodology is information regarding either the hyperspectral phy-
toplankton absorption coe�cient or the remote-sensing re�ectance in the blue to
green region of the spectrum, which would yield an initial classi�cation of stations
based on similarities and di�erences in the optical spectra or their derivative spec-
tra. Given signi�cant interest in the development of the capabilities for large-scale
characterization of phytoplankton biodiversity from optical measurements includ-
ing remote-sensing observations, one may expect further expansion of comprehensive
databases consisting of concurrent pigment and hyperspectral optical information in
the near future. The availability of such a larger data sets will support validation and
optimization of this dissimilarity-based approach and other classi�cation techniques,
such as unmixing or neural networks, which may exploit hyperspectral optical mea-
surements as a source of information on phytoplankton community composition. In
order to address these issues, the research project PHYTOSCOPE (PHYToplankton
biOdiversity multiScale Characterization using advanced OPtical technologiEs) has
recently been initiated within the framework of the Marine Technology Unit (UTM,
CSIC) and in coordination with the Phytooptics Group (Alfred-Wegener Institute
for Polar and Marine Research, AWI, and Institute for Environmental Physics of the
University Bremen).

- Concerning the characterization of more complex shallow estuarine waters, there
are some important aspects that may be interesting to explore. In particular to
Alfacs Bay, current uncertainties in the knowledge of marine optical characteristics
and the ability to model the underwater radiation �elds in such a complex region
indicate that more additional research is still needed. Despite the results from the
performed modeling exercise indicate that hyperspectral observations might play an
important role in the characterization of optically signi�cant water constituents (i.e.,
phytoplankton, suspended matter and CDOM), there is a strong need for more in
situ optical and hydrographic data. This observational e�ort will provide important
insights into the factors regulating phytoplankton community composition in this area
and will help to explore the full potential of hyperspectral observations. To overcome
this challenge, the research projects: PHYTOSCOPE and MESTRAL (Modelling
and advanced observational tEchnologies to link tranSport processes, opTically-active
constituents, and wateR light-�eld vAriability in a coastaL ecosystem) have recently
been initiated within the framework of the Marine Technology Unit (UTM, CSIC).
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Appendix A

Radiative transfer equation in the ocean1

Radiative transfer (RT) theory aims to describe the interaction of light with matter
and to quantify all the processes that a�ect the direction and the quantity of photons.
In particular, the change of the light �eld under water is due to several processes and
is described by the so called Radiative Transfer Equation (RTE). This appendix is
devoted to explain in detail the derivation of this unique fundamental equation, which
enables to link the two categories of optical properties (i.e., inherent and apparent
optical properties) de�ned for a water body as it has been shown in Fig. 1.8. The
description of these two categories (i.e., IOPs and AOPs) and the involved properties
can be found in Section 1.1.
The path of the radiance L(z, θ, ϕ, λ) through a thin layer of water of thickness dz =

z2−z1 is shown schematically in Fig. A.1. The zenith and azimuthal angles θ′, ϕ′ and
θ, ϕ denote the direction of the incoming and outgoing light beam, respectively. The
processes responsible for the variation of L(z, θ, ϕ, λ) in a water body are primarily
extinction processes (i.e., absorption or scattering of photons out of the light beam)
and intensivation by scattering into the direction of light propagation or by emission.
In this sense, it can be considered as a process of balance of light loss and gain.

Figure A.1: Path of the radiance and in�uences of absorbing and scattering parti-
cles in a thin layer of water (Source: Albert, 2004).

1 The description of the basic processes provided in this appendix are described in the following
textbooks: Mobley, 1994 and Kirk, 1994.
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The RTE is de�ned by the following integro-di�erential equation2:

cos θ dL(z,θ,ϕ,λ)
dz = −c (z, λ)L (z, θ, ϕ, λ)

+
´

4π L (z, θ′, ϕ′, λ) · β (z; θ′, ϕ′ → θ, ϕ;λ) dΩ′ + S (z, θ, ϕ, λ) (1.12)

This equation expresses that the change of a speci�c radiance L(z, θ, ϕ, λ) along
an elementary distance dz/ cos θ results from:

� the attenuation (i.e., a loss) along the elementary slant path. It, thus, involves
the beam attenuation coe�cient c(z, λ).

� the gain by elastic scattering into the direction of interest (θ, ϕ) from all oth-
er directions about the element. It depends on the scattering phase function
β (z; θ′, ϕ′ → θ, ϕ;λ)3, which represents the scattering probability into a speci�c
direction of the solid angle dΩ′.

� the gain by inelastic scattering from other wavelengths and internal light sources
into the direction of interest (θ, ϕ). It is indicated as a source term S (z, θ, ϕ, λ).

Among all the processes involved in the RTE equation, the process of scattering can
be described as the deviation of a photon from a straight trajectory in the medium
through which it passes. It takes place in natural water due to the interaction of
photons with water molecules and water constituents. The in�uence of each con-
stituent on the scattering process depends on wavelength, particle size, concentration
and refractive index. When the total energy of the scattered photon is conserved,
(i.e., it is scattered at the same wavelength, λ, as the incoming photon), it is called
elastic scattering. However, when the energy is not conserved (i.e., it is scatterd
at another wavelength, λ′), it is called inelastic scattering. In this last process,
the scattered wavelength is longer than the absorbed (λ′ > λ) and therefore some
energy is transformed in contrast to elastic scattering, where only the direction of the
incident radiation is changed.

Regarding the source term, S (z, θ, ϕ, λ), the �rst component is related to two
types of inelastic processes: Raman scattering and �uorescence. The result of
both processes is in essence the same: a photon with the wavelength (or frequency)
di�erent from that of the incident photon is produced and the molecule is brought
to a higher or lower energy level. Nevertheless, the Raman e�ect di�ers from the
process of �uorescence. For the latter, the incident light is completely absorbed and

2 It is considered the situation of horizontally homogeneous water and time independence.
The dependence on θ and ϕ is noted and combined by the symbol Ω.

3 The angle between any direction from the surrounding space and the direction of interest is
denoted (θ′, ϕ′ → θ.ϕ).
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the system is transferred to an excited state from which it can go to various lower
states only after a certain resonance lifetime. Another di�erence is that the Raman
e�ect can take place for any wavelength of the incident light. In contrast to the
�uorescence e�ect, the Raman e�ect is therefore not a resonant e�ect. In practice,
this means that a �uorescence peak is anchored at a speci�c excitation wavelength,
whereas a Raman peak maintains a constant separation from the excitation wave-
length. Raman scattering in natural water is mainly caused by the water molecules.
In contrast, �uorescence is the inelastic process ocurring in pigments contained in the
water constituents such as phytoplankton and CDOM.

The second component of the source term S (z, θ, ϕ, λ) corresponds to the process
of bioluminiscence. It is a internal light source where light is emitted by organisms
in the water. The quantity of light emitted, and produced by chemical reactions of
bacteria, phytoplankton and �sh, is very small compared to the incident sun light.
Therefore, its impact on radiance is neglected at the surface level but considered as
the only natural source of light for deep waters.

It is important to note that despite the compactness of the RTE equation, its
solution is not straightforward. Nevertheless, mathematical and numerical techniques
have been developed to derive quasi-exact solutions, which in fact have been revealed
extremely accurate. For instance, the RT model Hydrolight/Ecolight version 5.0,
which is described in Section 1.4 and utilized within the framework of this thesis,
employs invariant imbedding techniques to solve the RTE equation.
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Independent corroboration for the pigment analysis

The Center for Hydro-Optics and Remote Sensing (CHORS) at San Diego State Uni-
versity in California was the designated HPLC analytical facility for NASA-sponsored
investigations during the period encompassing the ANT-XXIII/1 cruise from 2005.
It was subsequently determined that the measurements performed by CHORS during
this time were plagued with a number of methodological problems, which potentially
led to errors in the determinations of some pigments. Because these problems and
associated uncertainties changed with time, the NASA team tasked with investigat-
ing these data quality problems at CHORS deemed that retrospective corrections for
the entire span of several years is not feasible (Hooker and Heukelem, 2009). Their
�nal recommendation to investigators was that use of the data be accompanied by
a statement that �These data are not validated and should not be used as sole basis
for scienti�c results or conclusions. Independent corroborating evidence is required�.
Because all of the samples were analyzed as part of a single run, ad hoc correc-

tions were developed for a subset of speci�c individual pigments using a combination
of �eld data and laboratory standards measured during the SeaHARRE-3 intercali-
bration experiment (C. Trees, personal communication; Hooker et al., 2009). These
pigments included both the monovinyl and divinyl forms of chlorophyll-a (MVChla,
DVChla) which are used in the calculation of total chlorophyll-a (TChla), monovinyl
chlorophyll-b (MVChlb), and the accessory pigments β - carotene and alloxanthin:

MVChlacorr = 0.598 ·MVChlauncorr + 0.0073

DV Chlacorr = 0.655 ·DV Chlauncorr + 0.0003

MVChlbcorr = 0.5682 ·MVChlbuncorr + 0.001

β − carotenecorr = 0.7 · β − caroteneuncorr

alloxanthincorr = 0.8 · alloxanthinuncorr

where the superscripts corr and uncorr refer to corrected and uncorrected data,
respectively, and concentrations are in units of mg m−3. Other pigments did not
show consistent relationships in the intercalibration results, and no corrections were
attempted for them. It is cautioned that the corrections should not be used indis-
criminately with other data sets a�ected by the CHORS data quality problems.
The values of TChla calculated using the corrected concentrations of MVChla

and DVChla exhibit reasonable agreement with �uorometrically-derived chlorophyll
measurements, and provide realistic estimates of chlorophyll-speci�c phytoplankton
absorption coe�cients within the red peak of chlorophyll-a. In a comparison of the
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corrected CHORS results with independent pigment determinations done by GKSS,
some di�erences were observed in the concentrations of individual pigments between
the two data sets. For example, the sum of MVChla and DVChla was generally
higher (on average by 20% with a standard deviation of 23%, number of samples
25) for CHORS compared with GKSS. However, the CHORS data yielded more
reasonable estimates of chlorophyll-speci�c phytoplankton absorption within the red
peak of chlorophyll-a.
Despite such di�erences in the estimates of some individual pigment concentrations,

with regard to the present application it is important to note that both laboratories
provided similar characterization of samples in terms of the relative pigment com-
position as described by ratios of various individual pigments to TChla. Both sets
of HPLC analyses generally yielded the same dominant accessory pigments present
at any given station, and similar trends in the pigment ratios among the stations.
This is an essential result for the present study because in the cluster analysis only
pigment ratios were utilized, and not individual pigment concentrations.
A series of analyses were performed to test for any di�erences in the results when

either the CHORS or GKSS pigment data sets were used to generate the reference
pigment dendrogram. For the nine stations selected in this part of the analysis, the
cluster techniques described in Section 3.2 applied independently to the CHORS and
GKSS sets of HPLC pigment ratios yielded a very similar partitioning of stations into
clusters. This high degree of similarity between the two pigment-derived dendrograms
exhibits a cophenetic index value of 0.92, indicating that overall pairwise distances
between the data objects are well-preserved. This observation is further supported
by additional cluster analyses comparing both pigment data sets with optical data
such as the normalized phytoplankton spectral absorption coe�cient (see Fig. B.1).

Figure B.1: Scatter plot of the cophenetic indices between the second derivative
spectra of a∗n,ph(λ)-based and the pigment-based cluster trees. The x- and y-axis indi-
cate the indices obtained using the CHORS and GKSS HPLC analysis, respectively.
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Comparisons of these absorption-based clusters with pigment-based clusters were
found to be similar when either the CHORS or GKSS pigment data were used. In
particular, Figure B.1 depicts how the values of the cophenetic index obtained from
the analysis of similarity between the cluster trees of pigments and the second deriva-
tive spectra of normalized phytoplankton absorption are closely correlated between
the two pigment data sets. The correlation coe�cient is 0.97. The results include
the cophenetic indices evaluated for all combinations of spectral ranges of the second
derivative spectra of a∗n,ph(λ) as shown in Fig. 3.12.
In summary, the comparisons of two independent HPLC pigment data sets indicate

that the results and conclusions of this study are robust and independent of the
choice of pigment data used in the creation of the reference pigment dendrogram for
the cluster-based similarity analysis of pigment and optical data. Therefore, it was
chosen the one set of pigment results from CHORS for all subsequent analyses in the
study.
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Stray-light correction of in-water array spectroradiometers

In order to improve our understanding of phytoplankton biodiversity and dynamics
in the ocean, the Marine Technology Unit (UTM, CSIC) is carrying out the multi-
disciplinary project ANERIS4, in which this thesis has been developed. The project
involves the development of a new observational device, i.e., an intelligent oceano-
graphic pro�ler with high resolution autonomous sampling capabilities. In particular,
it is being designed to gather �ne-scale pro�les of biological activity during the free-fall
descent by using hyperspectral sensors, among others. This instrument is intended
to be useful for studying di�erent oceanic environments, covering a wide range of
temporal and spatial scales where di�erent events may happen and for validating
remotely-sensed hyperspectral ocean data collected by airborne imagers.

Within the framework of the project ANERIS, when hyperspectral measurements
will be used for further analysis, one of the most relevant issues to take into account
is the uncertainty of the measurement system. Appropriate calibration strategies
should be followed, since the accuracy of the measurements relies on the associated
uncertainties of the measurement system. A well-calibrated spectroradiometer in-
cludes a characterization process, describing the instrument behavior in terms of the
spectral sensitivity, the signal-to-noise ratio, the dark current, the wavelength cali-
bration, the nonlinearity, the temperature dependence of the measurements and the
spectral scattering, or what is called the spectral stray-light which will be described
in detail below. In particular to ocean optics applications, in which light conditions
can be extremely low, special attention should be paid to corrections for the inherent
distortions of the hyperspectral sensors because the errors in the measured radiance
distributions may be potentially signi�cant and lead to inaccurate retrievals of water
properties. This issue becomes even more important when the commonly derivative
spectroscopy is used, which explores subtle features in shape of hyperspectral data
(see Chapters 2, 3 and 4).

Another reason to conduct an accurate characterization of hyperspectral sensors
is when a radiative transfer simulation-based approach is to be used as a basis for
further validation of some processing technique (see the Hydrolight-based approach
in Chapter 2). With the goal of exploring the potential of any processing technique,
the response of the sensor with which the optical measurements would be acquired

4 Project ANERIS: ANálisis y desarrollo de una sonda ocEanogRá�ca Inteligente con capaci-
dad autónoma de obtención de muestraS, supported by the Spanish National Research Council
(CSIC), PIF08-015.
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should be taken into account. More realistic retrievals could be carried out from hy-
perspectral oceanographic data if the e�ect of the sensor in terms of noise, sensitivity,
spectral resolution or stray-light would be included in the simulation-based approach.

Hyperspectral sensors

Hyperspectral sensors generally use di�raction gratings or linear variable optical
�lters as a dispersive element to separate light into speci�c wave bands centered
on desired wavelengths, and di�erent scanning mechanisms to generate high resolu-
tion spectra or images. Mechanical-scanning spectrometers have been traditionally
employed to obtain a spectrum by using a single photo-detector and rotating the dis-
persive element over a given speci�c spectral region after passing through the sample.
However, more recent spectrometers known as spectrographs use a �xed grating and
multi-element array detectors that allow an entire spectrum to be acquired over some
�nite spectral region simultaneously.

Array spectrometers are being widely used as a tool for rapid measurements of
spectral distributions in oceanographic applications, in which acquisition speed is
an important issue. Spectra can be measured using three types of arrays: photo-
diode, charge-coupled device (CCD) or complementary metal-oxide semiconductor
(CMOS). High performance is available in all technologies today when they are de-
signed properly, and each have their own strengths and weaknesses. For instance,
CCD arrays show a slightly higher dynamic range (sensitivity) and a lower system
noise than CMOS ones, whereas CMOS ones o�er more integration, smaller sys-
tem sizes and higher speeds. The proper selection of the type of array depends on
many parameters (e.g. pixel dimensions, sensitivity, spectral range coverage, dynamic
range, saturation exposure, integration time) and on the speci�c application. Other
important advantages of array spectrometers are the non moving parts, the robust-
ness and the low production costs. A key challenge has also been to construct small
size array spectrometers without compromising performance. However, they involve
several drawbacks compared with mechanical-scanning spectrometers, such as the
�xed wavelength resolution, the lower sensitivity and the higher stray-light radiation
(described in more detail below), due to the lack of an output slit and the integral
illumination over the full wavelength range.

New technologies and the miniaturization of electro-optical components have per-
mitted the development of accurate, low-cost and energy-e�cient hyperspectral sen-
sors designed to measure oceanic optical properties. In the design and development of
an instrument for hyperspectral measurements in the ocean, it is necessary to consider
several optimal characteristics required of its detection system. The wavelength cov-
erage should be broad, ideally from 400 to 700 nm, but occasionally slightly extended
towards the near infrared and near ultraviolet regions. A low-light-level detector
should be selected with a large dynamic range. Therefore, its responsivity should
be high over the whole spectral region covered, especially in the blue and red spec-
tral portions, and the dark signal should be low. Furthermore, in order to minimize
a variety of external perturbations during measurement (e.g. changing sky condi-
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tions, surface wave noise producing high-frequency �uctuations in irradiance, ship
shadow e�ect), the scan time of the system should be fast. The fastest devices are
multi-element array spectrometers with a �xed grating system (i.e., spectrographs).

Two commercially available miniature hyperspectral spectrographs were initially
considered to become part of the instrument developed in the project ANERIS (see
Fig. C.1). The �rst is the Ocean Optics USB4000 Spectrometer, a new device
commonly used for precise measurements and calibration tasks. The USB4000 uses a
Toshiba TCD1304AP 3648-element one-dimensional CCD-array detector, has a pixel-
to-pixel spacing of approximately 0.24 nm and a FWHM bandwidth of approximately
6 nm. The second considered spectrograph is the Boehringer Ingelheim MicroParts
GmbH UV/VIS Microspectrometer, a lower cost and energy-consuming device. The
MicroParts uses a Hamamatsu S8378 256-element one-dimensional CMOS-array de-
tector, has a pixel spacing of 3.5 nm and a FWHM bandwidth smaller than 10 nm.
The analog-to-digital conversion resolution of both instruments is 16 bits.

Figure C.1: Miniature hyperspectral sensors. (left) Ocean Optics USB4000 Spectrom-
eter (CCD-array detector, dimensions 89.1 × 63.3 × 34.4mm). (right) Boehringer Ingel-
heim MicroParts GmbH UV/VIS Microspectrometer (CMOS-array detector, dimensions
54× 32× 9.5mm).

Data quality assurance and stray-light correction

When hyperspectral measurements must be performed and are to be used for fur-
ther analysis, appropriate calibration and pre-processing strategies must be under-
taken, since the accuracy of the measurements relies on the associated uncertainties
of the measurement system. The clearest example in optical oceanography is per-
haps the in situ radiometric measurements carried out during several �eld campaigns,
which are currently essential to provide a proper calibration and validation of remote
sensing measurements collected by ocean color satellites and airborne platforms (see
more details from some existing initiatives in Zibordi et al., 2002 and Clark et al.,
2003). A well-calibrated high spectral resolution array-based spectrometer, for both
in situ and remote sensing applications, should include likewise its characterization
and an evaluation of all meaningful sources of uncertainty (Voss et al., 2008). It is
therefore always necessary to describe the instrument's behavior in terms of responsiv-
ity, signal-to-noise ratio (SNR), dark current, nonlinearity, temperature dependence
of measurements and spectral scattering, or what is called the spectral stray-light of
an instrument.
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With regard to the project ANERIS, the two considered spectrographs have mul-
tielement array detectors and its dispersive element is a single grating which is �xed
(Palmer and Loewen, 2005). This fact makes the spectral selection to be determined
by the image of the entrance slit onto a reference plane where the multi-element array
detector is placed, as well as by the size of the individual elements in the detector
array. Ideally, an image element on a pixel of the detector array for a particular
wavelength is composed only of the spectral components of the source element within
the instrument's bandpass at the particular wavelength. In practice, the image is
modi�ed by the presence of stray or scattered light. The spectral stray-light is de-
scribed as the background radiation that has been scattered due to imperfections in
the dispersive element and other optical elements of the instrument (surfaces, internal
ba�es, higher-order di�raction, etc.).

In ocean optics research, this unwanted radiation called stray-light can cause po-
tentially signi�cant errors in the measured radiances given that light conditions can
be extremely low. These errors can be specially large when measuring spectral regions
(e.g. blue or UV regions) where the spectrograph's response and the signal-to-noise
ratio are small. In order to reduce measurement uncertainties when using the pro-
posed spectrographs, correction of the instrument's response for measurement errors
arising from the instrument's spectral stray-light must be considered. A key aspect
when correcting the spectral stray-light is the spectral shape of the lamp-based cal-
ibration source used. For underwater light �eld measurements, di�erences between
the spectral distribution of the calibration source and the test source (e.g. the Sun)
should be avoided in spectral stray-light calibration.

With the aim to study and correct the e�ect of stray-light radiation on the response
of the two array-based spectroradiometers considered in the project ANERIS for un-
derwater radiometric measurement purposes, the spectroradiometer's response due
to stray-light was assessed and characterized. In particular, a modi�ed version of the
method developed at the National Institute of Standards and Technology (NIST) by
Zong et al. (2006) was performed to estimate the spectral stray-light on the response
of the two spectrographs considered. The method is based on computing the ratio
of the spectral stray-light signal to the total signal within the bandpass of a spec-
trograph and any response measured outside the instrument's bandpass is assumed
to be spectral stray-light signal. In the original methodology, the ratios were com-
puted using 80 laser lines with wavelengths spaced approximately 8 pixels apart and
ratios at the intermediate pixels were obtained by interpolation. In our case, a set of
monochromatic spectral line sources was used for calculating the ratio for each pixel
of the array detectors, therefore, no interpolation was necessary. Furthermore, us-
ing a narrowband source covering all instrument's operational spectral range enabled
to characterize the stray-light signal regardless of the source utilized during future
measurements.

The relative response at every element i of the array detector to a �xed monochro-
matic excitation wavelength λj falling on the element j was called the spectral line-
spread function (fLSF i,j). Therefore, the spectrograph's response was divided into
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two regions. The narrow peak region about element j was the instrument's band-
pass containing the in-band response (IB) and the remaining broad region of low
response that arose from spectral stray-light. The spectral stray-light signal distri-
bution (SDFi,j) was derived by normalizing the fLSF i,j to the IB area and setting
values of array elements within the IB area to zero:

SDFi,j =
fLSF i,j∑

i∈IB
fLSF i,j

i /∈ IB (pixels outside IB) (1)

SDFi,j = 0 i ∈ IB (pixels inside IB) (2)

i = 1, 2, ......., n (total number of instrument's pixels)

To obtain the spectral stray-light response function for each element i in the array,
one computed SDFi,j for every excitation element j. Then a spectral stray-light dis-
tribution matrix, denoted D, was generated by �lling the columns of an n×n matrix
with each of the computed SDFi,j . Once matrix D was obtained, the measurement
equation had the general expression:

Ymeas = YIB +DYIB (3)

where Ymeas was the total measured signal and YIB was the IB signals. Note that
there was a Ymeas component at each pixel that arose from the spectral stray-light
distribution matrix (D). That matrix measurement expression was rewritten as fol-
lows:

Ymeas = [I +D]YIB = AYIB (4)

where I was the n × n identity matrix and A = I + D. Finally, one could obtain
each unknown YIB by simply inverting matrix A:

YIB = A−1Ymeas = C Ymeas (5)

where C was called the spectral stray-light correction matrix.

The main advantages of applying that method are that the development of matrix
C is only required once and real-time corrections of spectral stray-light are enabled
by simply multiplying the measured spectra and the corresponding correction matrix.
Note that light collection conditions determine each computed correction matrix C,
which is inherent to each individual device. In that process, it is also important
to consider the instrument's signal dynamic range and sensitivity within the total
operational spectral range.
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The magnitude of the spectral stray-light signal within both spectroradiometers
considered was experimentally quanti�ed measuring the response to a set of monochro-
matic line sources5. A Digikrom 240 Monochromator with a slit width of 25um was
used. The system was also composed of an adjustable halogen lamp (Philips 15V
150W) attached to a stabilized DC power supply (Hewlett Packard 6642A) and a
focusing lens, which allowed to light the monochromator's entrance slit with a rather
uniform luminous �eld. As it has been de�ned, the stray-light radiation for each
element of the array detector was estimated as the response measured outside the
instrument's bandpass. Fig. C.2a shows several spectra obtained when the CCD-
array detector instrument's input optics was illuminated by uniform monochromatic
radiation at many wavelengths. By successive measurements of the response of both
spectrographs to the wavelength tunable single monochromatic lines over the entire
operational spectral range (370-725nm), each device's stray-light correction matrix
C was implemented. Each measurement was collected as an average of 15 readings
to reduce signal noise and dark current signal was also extracted before measuring.

Figure C.2: (a) Spectral responses as the incident monochromatic wavelength was tuned

over the spectral coverage of the CCD array-based spectrograph. (b) Corresponding ratio

of spectral stray-light response to the total signal within the bandpass (BP) shown in (a).

Y-axis are a logarithmic scale.

5 All measurements were performed at the Centre for Sensors, Instruments and Systems Develop-
ment (CD6), Universitat Politècnica de Catalunya.
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For each spectrograph, each column of the correction matrix C was �lled with the
ratio, shown in Fig. C.2b, of the spectral stray-light signal to the total signal within
the bandpass (BP) of the spectrograph to the corresponding �xed monochromatic
excitation j (i.e. each spectral stray-light signal distribution, SDFi,j). The diagonal
elements of the matrix and surrounding elements within the instrument's bandpass
were then all set to zero.

The e�ectiveness of the spectral stray-light correction method was validated using
di�erent entrance spectral stimuli, obtained with di�erent sources and �lters. Fig.
C.3a depicts the result of applying the spectral stray-light correction method to the
CCD-array spectrograph when a broadband source (an halogen lamp) and a green
absorption bandpass �lter were used. As it can be seen, the stray-light signals outside
the �lter's bandpass region was clearly reduced after applying the correction (dashed
signal). Similar results were obtained using other bandpass �lters with di�erent
spectral features (not shown).

Figure C.3: (a) Spectral stray-light correction for a broadband source with a band-
pass �lter. (b) Spectral stray-light correction for a spectral wavelength calibration
source. Normalized measured and corrected signals from the CCD-array spectro-
graph. Y-axis are a logarithmic scale.

A spectral wavelength calibration source, which produces low-pressure Mercury-
Argon atomic emission lines from 253-1700nm, was also used to validate the e�ec-
tiveness of applying the spectral stray-light correction method to the CCD-array
spectrograph. Fig. C.3b shows the results obtained when using this other source.
The stray-light errors were reduced as it can be noticed, specially in the spectral
regions between the emission lines of the calibration source.

The spectral stray-light correction method was applied and validated as well for
the CMOS-array spectrograph using a broadband source (an halogen lamp) and a
green absorption bandpass �lter. In that case, the relative spectral stray-light signals
were reduced more than two orders of magnitude, to a level of 10−4, as it can be seen
in the right panel of Fig. C.4 where the reduction is shown in logarithmic scale.

An alternative method to correct the spectral stray-light radiation based on the use
of cut-o� �lters (e.g. GG495) was proposed by the manufacturer of the CMOS-array
spectrograph. A comparison between the results of spectral stray-light correction
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obtained using that manufacturer's compensation algorithm and the method imple-
mented in this study was made. Fig. C.5 shows how better stray-light corrections
were achieved with the implemented method. The use of a set of monochromatic line
sources allowed to accurately cover the entire instrument's operational spectral range
and perform a better spectral stray-light correction.

Figure C.4: Spectral stray-light correction for a broadband source with a bandpass
�lter. Normalized measured and corrected signals from the CMOS-array spectro-
graph. Y-axis are a linear scale (left panel) and a logarithmic scale (right panel).

Figure C.5: Spectral stray-light correction using cut-o� �lters (dashed line) and
monochromatic line sources with a correction matrix (dash-dot line). Measured and
corrected signals from the CMOS-array spectrograph.

The implemented spectral stray-light correction method has been proved e�ec-
tive for both considered miniature hyperspectral sensors. The spectral stray-light
contributions to the measured output signals of these spectrometers have been cor-
rected using the spectral stray-light correction matrix and a simple matrix multi-
plication. Similarly to other recent initiatives (Feinholz et al., 2009), application of
this stray-light correction method will be essential to evaluate the in�uence of this
unwanted scattered radiation on underwater hyperspectral measurements provided
by the ANERIS instrument and on its later spectral analysis.
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