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Derivation of analytical refraction, propagation and reflection equations for Higher Order Aberrations of wavefronts

Abstract

Derivation of analytical refraction, propagation and reflection equations for Higher Order Aberrations of
wavefronts

From literature the analytical calculation of Lower Order Aberrations (LOA) of a wavefront after refraction,
propagation and reflection is well-known, it is for local Power and Astigmatism performed by the Coddington
equation for refraction and reflection and the classical vertex correction formula for propagation. However,
equivalent analytical equations for Higher Order aberrations (HOA) do not exist. Since HOA play an increasingly
important role in many fields of optics, e.g. ophthalmic optics, it is the purpose of this study to extend the analytical
Generalized Coddington Equation and the analytical Transfer Equation, which deals with second order aberration, to
the case of HOA (e.g. Coma and Spherical Aberration). This is achieved by local power series expansions.

The purpose of this PhD was to extend the analytical Generalized Coddington Equation and the analytical

Transfer Equation, which deals with Lower Order Aberrations (power and astigmatism), to the case of

Higher Order Aberrations (e.9. Coma and Spherical Aberration).

In summary, with the novel results presented here, it is now possible to calculate analytically the aberrations of an
outgoing wavefront directly from the aberrations of the incoming wavefront and the refractive or reflective surface
and the aberrations of a propagated wavefront directly from the aberrations of the original wavefront containing both
low-order and high-order aberrations.

Keywords: wavefront - Higher Order Aberration - Refraction Coddington Equation - Coma - spherical Aberration

Propagation Reflection
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Prologue

Aberrations play a decisive role in optics. They describe the deviation from the perfect image.
Wavefront aberrations are usually described by a power series expansion or by Zernike polynomials [1,2
,3]. The wavefront aberrations describe the differences in optical path length between the ideal and the
actual wavefront. From literature the calculation of Lower Order Aberrations (LOA) as Power and
Astigmatism of a local wavefront after refraction and reflection at a given surface is known. In the case of
orthogonal incidence this relation is described by the “Vergence Equation [1,2,3], and in the case of
oblique incidence by the “Coddington Equation” [3,4,5,6,7,8,9]. For Higher Order Aberrations (HOA)
equivalent analytical equations do not exist.

An imagery will be said to be free from aberrations if every point of an object is imaged perfectly.
Aberrations are deviations from this situation. A wavefront based description of these aberrations can
either refer to the geometrical shape of the real wavefronts in space or by a wave aberration function
which measures the optical path differences (OPD) between the real wavefronts and the reference sphere
along the real occurring rays. The aberration function can be written as a power series expansion in both
the image coordinates and the pupil coordinates or some combinations of these. It is a very interesting
subtopic to consider the aberration function for fixed image point and consequently as a function of the
pupil coordinates only [2]. In this case, which is the focus of the present PhD study, the aberration
function is often called a wavefront aberration.

The awareness of the role of Higher Order Aberrations (HOA) has significantly increased also in
optometry and ophthalmology [10,11,12,13,15,16,17,18]. Hitherto for determining HOA, the wavefront
in the pupil was calculated by ray-tracing [1,2,3,19,20,21,28,29,30] a precise method when a large
number of rays are used. In the field of spectacle optics the use of local wavefronts (determined by their
local derivatives) to calculate the Lower Order Aberrations (Power and Astigmatism) is well established
[3,4,5,6,7,22,23]. Wavefront tracing is a very fast semi-analytical method because it is only necessary to
calculate the chief ray by numerical ray tracing. The coefficients of the wavefront itself, determined by
their local derivatives, are calculated analytically.

In terms of rays, the ideal image point serves as a reference point which any ray starting from the
object point through the aperture has to hit. In terms of waves, the ideal image point serves as center of a
reference sphere, usually through the center of the exit pupil. The point will be imaged without
aberrations if the wavefront originating from the object point coincides with this reference sphere.

For calculating the wavefront aberrations of an entire lens, especially of a spectacle lens, it is
necessary to propagate the wavefront from the intersection point of the chief ray at the front surface along
the chief ray to the intersection point at the rear surface and further to the vertex sphere or the entrance
pupil of the eye. Because the refracting plane (plane of incidence) at the front and rear surface are not

congruent, it is also necessary to rotate the coefficients of the wavefront. For second order aberrations

4 Prologue



Derivation of analytical refraction, propagation and reflection equations for Higher Order Aberrations of wavefronts

(Power and Astigmatism) the propagation and rotation of the coefficients of the wavefront is known and
described by the analytical Transfer equation [7,24].
In this context, the purpose of this PhD was to extend the analytical Generalized Coddington

Equation and the analytical Transfer Equation, which deals with second order aberration (power

and astigmatism), to the case of Higher Order Aberrations (HOA) (e.g. Coma and Spherical

Aberration). Therefore, it is now possible for the first time to calculate analytically the wavefront Higher
Order Aberrations of a spectacle lens or in general of an optical system by wavefront tracing. This new
approach has significant advantages with respect to the state of the art methods. First, the analytical
nature of the solution yields more detailed insight into the underlying optical process. Second, the
dramatic reduction of computational time in comparison to humerical methods opens new possibilities for
the solution of practical problems in optics. Although the method is based on local techniques, it yields
results which are by no means restricted to small apertures, as it is been shown theoretically as well as in
two examples as described in the J. Opt. Soc. Am. A “Derivation of the refraction equations for higher
order aberrations of local wavefronts by oblique incidence” by Esser et al [25], in J. Opt. Soc. Am. A
“Derivation of the propagation equations for higher order aberrations of local wavefronts” by Esser et al
[26] and in Advances in Imaging and Electron Physics “Derivation of the reflection equations for higher
order aberrations of local wavefronts by oblique incidence” by Esser et al [27].

The main advantage of the approach is that it is based exclusively on analytical formulas. This
saves much computation time compared to numerical iteration routines which would otherwise be
necessary for determining the higher order aberrations. The thesis is structured in four principal objectives
as described in the proposal and two additional objectives. Every principal objective describes a process,
which is necessary to calculate the wavefront Higher Order aberration of a spectacle lens or an entire
optical system [see Figure 1]. The principal objective 1 deals with the derivation of the analytical
refraction equations, which is the first basic process. This objective is described in chapter 3 “Derivation
of the Refraction Equations”. The principal objective 2 deals with the relation between the coefficients of
Zernike series polynomials and the coefficients of power series polynomials and is demonstrated in
chapter 4.4 “Relation between Zernike series and power series”. The principal objective 3 deals with the
rotation of the coordinate system. This is only a support process because the wavefront is not changing;
only the coordinate system is rotated. This objective is shown in chapter 4 “Description of a Wavefront in
a rotated Coordinate System”. The principal objective 4 deals with the derivation of the analytical
propagation equations, which is the second basic process and is described in chapter 5 “Derivation of the
Propagation Equations”. The additional principal objective 5 deals with the derivation of the analytical
reflection equations and is demonstrated in chapter 6 “Derivation of the Reflection Equations”. The
derived equations in the chapters 3, 5 and 6 are based on wavefront (sagittal) aberrations. In Appendix A:
Relation between sagitta derivatives and OPD derivatives are equations provided for transforming

wavefront (sagitta) aberrations to OPD aberrations. The method, used in this thesis, has also the capability
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to derive directly the equations for OPD aberrations. This is done exemplarily in the case of propagation

in chapter 7 “Propagation of OPD Aberrations”.

Propagation
Rotation

Refraction
Rear Surface

Propagation
Rotation

Figure 1: Calculating the wavefront aberrations of a spectacle lens for one viewing direction for given
chief (or principle) ray. This calculation process includes the refraction at the front surface (in this
example a progressive surface), then the propagation from the front to the rear surface and the description
of the wavefront in a rotated cordinate system, because regarding the asymmetrie of the refractive
surfaces do the reflecting planes not conciide. The next step is the refraction at the rear surface and then
the propgation to the entrance pupil of the eye and desribing the wavefront in the coordinate system of the

eye.
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List of abbreviations and symbols

LOA: Lower Order Aberrations

HOA: Higher Order Aberrations

OPD: Optical Path Difference

PSF: Point-Spread-Function

RMS: Root-Mean-Square

LASIK: Laser-in-situ-Keratomileusis

X, V,Z: Local coordinate system of the refractive or reflective surface

X, ¥,Z: Local coordinate system of the incoming wavefront or global coordinates system in the

case of propagation

Local coordinate system of the outgoing or reflected wavefront
R: Spatial rotations matrix about the common X axis
fOX), FOX), FOM,... 9%y, FO(xy), f%2(x,y),

Derivatives of the function f(x) and f(Xx,y)

n: Refractive index of the medium in front of the refractive or reflective surface

n': Refractive index of the medium behind the refractive surface

£ Angle of incidence, angle between the incoming ray and the surface normal

o Emergent angle, angle between the emerging ray and the surface normal

n,: Directional vector of the incoming ray resp. normal of the incoming wavefront in the

coordinate system of the incoming wavefront
oy Directional vector of the emerging ray resp. normal of the outgoing or reflected

wavefront in the coordinate system of the outgoing wavefront

Ng: Normal of the refractive or reflective surface in the coordinate system of the surface
w(X,y): Wavefront
S: Vertex distance at the object side (Axial distance from the refractive or reflective surface

to the object point), which is equivalent to the radius of curvature of the incoming
wavefront
Vertex distance at the image side (Axial distance from the refractive or reflective surface
to the image point), which is equivalent to the radius of curvature of the outgoing or
reflected wavefront
r: Radius of curvature of the refractive or reflective surface (distance from the surface to

the center point of the surface)

S: Vergence at the object side
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Sph:

Cyl :

€,..,8 .6

E.E E:

Vergence at the image side
Surface Power

Equivalent the vergences in the plane perpendicular to the refracting plane

Vergences in the refracting plane

Power vector at the object side (incoming wavefront)

Power vector at the image side (outgoing wavefront)

Power vector of the surface

Spherical Power of the incoming wavefront, outgoing wavefront or refractive/reflective
surface

Cylindrical Power of the incoming wavefront, outgoing wavefront or refractive/reflecting

surface
Axis of the cylindrical Power of the incoming wavefront, outgoing wavefront or
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Vergence matrix of the original wavefront

Vergence matrix of the propagated wavefront

Incidence matrix and emergent matrix

Error vectors for aberrations of higher order, analogously to the definition of

the Power vectors

Generally aberrations of the incoming and outgoing wavefront and the

refractive/reflective surface.
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1. Introduction

Aberrations play a decisive role in optics. In this PhD study, it is dealt with them in the

framework of geometrical optics in which the wavelength is neglected (A1 — 0) with respect to

diffraction effects [1,2]. Also in this case, still the notions of both rays and wavefronts do exist. A
wavefront, in general defined as a surface of constant phase, is in this limit a surface of constant optical
path length. A ray is a virtual infinitesimally small bundle of light, the direction of which is defined by the
normal of the wavefront.

With the help of the Coddington equation and the vertex correction formula the analytical
calculation of local Power and Astigmatism of a wavefront after reflection, refraction and also
propagation can be accomplished. In three recent publications the author extended the refraction,

propagation and reflection equations to HOA [25,26,27].

1.1. Rays, Wavefronts and Aberrations

An imagery will be said to be free from aberrations if every point of an object is imaged perfectly.
For a given object point this will be the case if it is imaged to its paraxial conjugate image point. In terms
of rays, this image point serves as a reference point which any ray starting from the object point through
the aperture has to hit. In terms of waves, the image point serves as center of a reference sphere, usually
through the center of the exit pupil. The point will be imaged without aberrations if the wavefront
originating from the object point coincides with this reference sphere.

14 1.1 Rays, Wavefronts and Aberrations
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reference-wavefront

real wavefront

1 aberration function

IA‘E ?\ W(hr:rag)

NS
=z

Figure 2: Caculation of the wavefront aberration function using numerical ray tracing. The aberration
function can be written as a power series expansion in both the image coordinates (h') and the pupil
coordinates (r, &) or some combinations of these. The wave aberration function is defined by the optical

path differences (OPD) between the real wavefronts and the reference sphere along the real occurring
rays.

Aberrations are deviations from this situation. They can be likewise described in the ray picture
or the wave picture, leading to ray or wave aberrations, respectively [3]. Both pictures, i.e. ray and wave
aberrations, are equivalent, and can be translated into each other.

Throughout the PhD thesis, it will be referred to wave aberrations. A wavefront based description
of these aberrations can either refer to the geometrical shape of the real wavefronts in space (as it will be
done in the PhD thesis), or by a wave aberration function which describes the optical path differences
(OPD) between the real wavefronts and the reference sphere along the real occurring rays [see Figure 2].

1.2. Classification of Aberrations

The aberration function can be written as a power series expansion in both the image coordinates
and the pupil coordinates or some combinations of these. Depending on symmetry and conventions, this
series expansion may have different appearances, but in either case the respective coefficients are used for
classifying the aberrations present. In the case of wave aberrations of rotationally symmetric systems, for
example, it is customary to consider Seidel (primary) Aberrations, Schwarzschild (secondary)
Aberrations, etc.. Synonymously, those are sometimes also called fourth-order, sixth-order, etc.
aberrations. In terms of ray aberrations, different expressions for the same aberrations would occur, which
in that picture are called third-order, fifth-order, etc. aberrations. Therefore, the ‘order’ of an aberration is

only meaningful in connection with the underlying aberration scheme.

1. Introduction 15
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While the treatment of rotationally symmetric systems is well established in literature [2,3], there
exist rather few publications about non-symmetric systems. Thompson has treated the third-order
aberrations [28] and the fifth-order aberrations [29] (in the picture of rays) of misaligned or generally
non-symmetric optical systems made of otherwise rotationally symmetric optical surfaces. Quite recently,
Thompson et al. established a real-ray-based method for calculating these aberrations [30].

It is a very interesting subtopic to consider the aberration function for fixed image point and con-
sequently as a function of the pupil coordinates only [2], but without any restrictions to the symmetries of
surfaces or wavefronts. In this case, which is the focus of the present PhD study, the aberration function is
often called a wavefront aberration. This aberration is often referred to a plane orthogonal to the chief ray
instead of the reference sphere, which is e.g. usual in aberrometry [10]. It will also be done so in this
work. The above-mentioned series expansion then reduces to an expansion in terms of the pupil coordi-

nates X and Yy only. The terms in this series give rise to define the order of an aberration as the highest
number of added powers of X and Yy [10,11]. It is well accepted that there is no one-to-one

correspondence between the order used in this work and the more general one described above [2]. This
arises since different orders concerning the image coordinates are summarized within one order of pupil
coordinates. Throughout the PhD thesis, we will summarize 1% order aberrations (tilt) and 2" order
aberrations (comprising Defocus and Astigmatism) as Lower Order Aberrations (LOA), and all
aberrations of 3™ order (Coma, Trefoil), 4™ order (e.g. Spherical Aberration) and higher will be

summarized as Higher Order Aberrations (HOA) [see Figure 3], as also done in Ref. [10,12].

16 1.2 Classification of Aberrations
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Figure 3: Illustration of the wavefront aberrations by Zernike-polynomials up to the radial order n =4
and the angular frequency m. Throughout the PhD thesis, aberrations of radial order n = 1 (tilt) and n = 2
(Defocus and Astigmatism) as Lower Order Aberrations (LOA), and all aberrations of radial order n =3
(Coma, Trefoil) and n = 4 (e.g. Spherical Aberration) and higher will be summarized as Higher Order
Aberrations (HOA). Figure from [13]

Wavefront aberrations are the starting point for computing the image quality. Although it is not in
the focus of this PhD thesis, the image quality is often represented by the Point-Spread-Function (PSF),
which is computed from the wave aberration in the exit pupil and from its interference pattern taking into
account the finite wavelength of light [1,31]. In particular there exist well-known features of the Point-
Spread-Functions (see Figure 4) assigned to the elementary aberrations shown in Figure 3. Until now the
aberrations in the exit pupil had to be calculated by ray tracing. The purpose of this PhD is to provide a
method for calculating the wavefront aberrations in the pupil plane by analytical wavefront tracing. The
higher the radial order of the aberration is the higher is the asymmetry of the PSF. Usually only the
aberrations of first order (prism) and second order (power and astigmatism) are corrected by contact

lenses and spectacle lenses.
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Figure 4: lllustration of the Point-Spread-Function (PSF) pattern taking into account the finite
wavelength of light and their influence on the image quality by Zernike-polynomials up to the radial order
n =5 and the angular frequency m. As higher the radial order of the aberration is as higher is the
asymmetry of the aberration. Figure from [14].

1.3. General context and scope of the work

The awareness of the role of HOA has increased in optometry and ophthalmology [10,11,12,13
,15,16,17,18]. Figure 5 shows the influence of each aberration with the same Root-Mean-Square (RMS)
on the imaging of an optotype. The quality of the image is worse at the center of the Zernike-Pyramid
than at the edges even though the RMS is equal. HOA are known to become important for large pupil
sizes only and are therefore associated with a wavefront description over the entire pupil. Despite this, it
is the aim of this work to establish a description of HOA based on local derivatives, but which is
nevertheless suitable for describing all effects of a large pupil. It will be shown that this description is
indeed fully equivalent to the usual approaches which are tailored for describing the entire pupil (e.g. by
means of Zernike polynomials). The local description has the advantage to permit the derivation of
analytical formulas for computing HOA, which represents a significant progress in the general

understanding and in a reduced numerical effort.
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Figure 5: Influence of each aberration (Zernike-coefficient) with the same Root-Mean-Square (RMS) on
the imaging of an optotype. The quality of the image is worse at the center of the Zernike-Pyramid than at
the edges even though the RMS is equal. Figure from [18].

Hitherto for determining HOA, the wavefront in the pupil was calculated by ray-tracing [1,8,20
,21,28,29,30] a precise method when a large number of rays are used but then being a very time-
consuming iterative numerical method. In the field of spectacle optics the use of local wavefronts to
calculate Power and Astigmatism is well established [3,4,5,6,7,22,23]. Wavefront tracing is a very fast
semi-analytical method [22,23]. Especially in spectacle lens optics local features of a wavefront are very
important, because the aperture stop is not stationary as in technical optics. Also magnification and
anamorphotic distortion previously have been calculated locally [32,33,34].

The importance of wavefront driven correction of ocular aberrations which are often measured by
an aberrometer has increased rapidly in recent years. The wavefront data are determined at some device-
specific plane and by the diameter of the evaluated ray bundle. Depending on the desired application, it is
usually necessary to transform these raw data to some other plane, e.g. the entrance pupil of the eye, the
cornea (as is relevant for LASIK or contact lenses) or the vertex plane of a spectacle lens. The ray
bundle’s diameter, in turn, is determined by the pupil size of the eye.

Figure 6 shows the mean value and standard deviation of the Root-Mean-Square (RMS) of the
wavefront aberration of 18 Zernike-coefficients. 109 subjects were measured by an aberrometer and the
Zernike-coefficients were determined at a pupil size of 5.7 mm [12]. The first three Zernike-coefficients
describe the aberrations of second order (power and astigmatism). It is obvious that these aberrations are

dominating but individually also the Higher Order Aberrations can reach high values. The small picture
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shows the Higher Order Aberrations magnified. The Zernike-coefficient Z f (spherical aberration) is

significant different from zero.
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Figure 6: Mean value and standard deviation of the Root-Mean-Square (RMS) of the wavefront
aberration of 18 Zernike-coefficients at a pupil size of 5.7 mm (109 subjects). The first three Zernike-
coefficients describe the aberrations of second order (power and astigmatism). It is obvious that these
aberrations are dominating but individually also the Higher Order Aberrations can reach high values. The
small picture shows the Higher Order Aberrations magnified. Figure from [12]

While there exist various publications dealing with analytical scaling transformations to a
different pupil size [35,36,37,38,39,40,41,42] rotating the pupil [36,41,42,43] displacing the pupil [35,36
,41,42,43] or deforming the pupil [42] only a few publications can be found which attempt to treat the
wavefront propagation in an analytical way. In [36,44] an analytical method is described to calculate the
propagation of a wavefront, but the method is still restricted by some approximations. As is written there,
further study is necessary to obtain a unified formulation for wavefronts containing both low-order and

high-order aberrations. In this PhD thesis we have developed such a novel unified analytical propagation

method in homogenous material.

It is known from literature how to calculate Power and Astigmatism of a local wavefront after the
refraction or reflection at a given surface. In the case of orthogonal incidence this relation is described by
the Vergence Equation [1,2], and in the case of oblique incidence by the Coddington Equation [1,4,5,8].

For calculating the wavefront aberrations of an entire lens, especially of a spectacle lens, it is
necessary to propagate the wavefront from the intersection point of the chief ray at the first surface along

the chief ray to the intersection point at the next surface and so on. In the special case of a spectacle lens
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this means the propagation from the front to the rear surface and further to the vertex point sphere or the
entrance pupil of the eye.

Further, it is necessary to describe the wavefront in different (rotated) coordinate systems,
because the refracting planes, e.g. the refracting plane at the front surface and at the rear surface of a
spectacle lens, are not identical. They are rotated around the chief ray. A rotation is also necessary to
describe the aberrations relating to the horizontal or vertical axis or the axis defined by Listing’s law.
Listing’s law describes the three dimensional eye movement when viewing in a diagonal gaze direction
(tertiary position). It says that the rotation takes place around an axis which is perpendicular to the plane
spanned by the vector in primary gaze direction and the vector in tertiary gaze direction [45,46]. The goal
and also the advantage of the method is that the derived equations allow calculating the coefficients of the
wavefront in the rotated coordinate system relating to the coefficients of the original wavefront directly
without a coordinate transformation.

For second order aberrations (Power and Astigmatism) the propagation and rotation of the
coefficients of the wavefront is known and described by the analytical transfer equation, which can be
described either in matrix form [7,24,32,47,48] or by power vectors [49].

The purpose of this PhD thesis is to extend the Generalized Coddington Equation [3,4,5,6,7,8,9]
and Transfer Equation [7,32,24,47,48,49] to the case of Higher Order Aberrations (e.g. Coma and
Spherical Aberration), in order to decrease the computational effort with the intrinsic accuracy of an

analytical method.
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2. Theoretical background

It turns out to be very practical to establish the treatment of refraction, propagation and reflection
including HOA on the basis of wavefront sagittas in space and not directly with OPD-based aberrations.
In the end, we provide a connection between those two pictures (see Appendix A: Relation between
sagitta derivatives and OPD derivatives). Refraction equations are a set of relations between the incoming
wavefront, the outgoing wavefront and the refractive surface. Regardless which two of those three
surfaces are given, the relations can always be rearranged in order to determine the third surface as a
function of the two other ones.

2.1. Coordinate Systems

In order to describe the incoming wavefront, the refractive or reflective surface and the outgoing
or reflected wavefront, three different local Cartesian coordinate systems (X, Y, z), (X,V,Z) and
(x',y',z") are used, respectively (see Figure 7 for refraction and Figure 8 for reflection). They are
determined by the chief ray corresponding to the fixed image point. The origins of these coordinate
systems coincide in the chief ray’s intersection point with the refractive or reflective surface. The systems
possess as common axis X = X'= X the normal of the refracting or reflecting plane, which is the plane
containing the normals of the incoming wavefront, the refractive or reflective surface and the outgoing or
reflected wavefront. Consequently, the Yy -z plane, the y'-z' plane and the ¥ -Z plane coincide with
each other and with the refracting or reflecting plane. The z axis points along the incoming chief ray, the
Z' axis points along the outgoing or reflected chief ray, and the Z axis points along the normal of the

refractive or reflecting surface. The orientations of the y axis, the y' axis and the y axis are such that

each system is right-handed.
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Figure 7: Local coordinates systems (X, Yy, Z) of the refractive surface {WS}, (X,Y,2) of the incoming

wavefront {W,n}and (x',y',z") of the outgoing wavefront {W'om} where the brackets {} shall denote

the entity of vectors. The origins of these coordinate systems coincide in the chief ray’s intersection point
with the refractive surface. The systems possess as common axis X = X'= X the normal of the refracting
plane, which is the plane containing the normals of the incoming wavefront, the refractive surface and the
outgoing wavefront. The z axis points along the incoming chief ray, the z' axis points along the
outgoing chief ray, and the Z axis points along the normal of the refractive surface. The orientations of
the y axis, the y' axis and the Yy axis are such that each system is right-handed.
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Figure 8: Local coordinates systems (X, Yy, Z) of the reflective surface {WS}, (X,Y,2) of the incoming

wavefront {W,n}and (X', y',z") of the reflected wavefront {W'om} where the brackets {} shall denote

the entity of vectors. The origins of these coordinate systems coincide in the chief ray’s intersection point
with the reflective surface. The origins are fictitious separated by d and 4’ for a better understanding of
the nomenclature. The systems possess as common axis X = X'= X the normal of the reflecting plane,
which is the plane containing the normals of the incoming wavefront, the reflective surface and the
reflected wavefront. The z axis points along the incoming chief ray, the z' axis points along the
reflected chief ray, and the Z axis points along the normal of the reflective surface. The orientations of
the y axis, the y' axis and the Yy axis are such that each system is right-handed.

In this work we use the following notation: scalars are written in plain letters, such as x, y, wor

S, for coordinates, wavefront aberrations or vergences, respectively. Vectors are written as bold lower-
case letters, such as r for position or n for normal vectors, and matrices are written as bold upper-case
letters, such as R for spatial rotations. Any object (i.e. quantity, space point or vector) which is specified

in the (x,y,z) frame is represented by an unprimed symbol (e.g. X, r, n,...), whereas the
representation of the same object in the primed frame (x',y',z") or in the frame (X, ¥, Z) is given by a

prime or a bar at its symbol, respectively. The above definitions imply that the representations of any

vector-like quantity v are connected to each other by the relations
v=R(e)V, V'=R(&")V (1)

where R stands for spatial rotations about the common X axis, defined by the three-dimensional rotation

matrix
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1 0 0
R(e)=|0 cose -sing|. )
0 sine cose

In order to avoid confusion between primes for coordinate systems and derivatives, we shall

denote the derivatives of a function f(x) as f @ (x), f@(x), f@(x), ... instead of f'(x), f"(X),
f @(x), ..., respectively. Analogously, we denote the derivatives of a function f(x,y) as f“?(x,y),
fO(x,y), T@9(x,y), ... instead of 8/x f(X,y), &/oy f(x,y), 0%/ox*f(X,Y), ..., respectively.

Consequently, for functions f'(x') or f(X), the symbolism f'® (x') or f®(X) refers to

alox' £'(x') and 816X f(X), respectively.
Additionally to the coordinate notation, we introduce a lower index notation for labeling whether
a quantity belongs to the incoming wavefront, the refractive or reflective surface or the outgoing or

reflected wavefront. Regardless which frame is used for mathematical description, the index “In” belongs

to the incoming wavefront (e.g. the normal vector is represented as n,, n',,, N, in the three frames,
respectively), the index “Out” stands for the outgoing or reflected wavefront (Ng,, N'oys Noys

respectively), and the index “S> stands for the refractive or reflective surface (Ng, N's, Ng, respectively).
Although all representations are used, the preferred frame of each quantity is the one in which the
corresponding normal vector has the components (0,0,1)T , Where the index T indicates the transpose.
Therefore, the preferred frame is the unprimed one for “In” quantities, the primed one for “Out”

quantities and the frame (X,¥,Z) for “S” quantities, i.e. the preferred representations for the normal

vectors are N, , N'y,, and Ng, and similarly for all other kinds of vectors.

In s
In contrast to refraction and reflection, where three coordinate systems are appropriate, in the case
of propagation where tilt is absent it is practical to use one common global Cartesian coordinate system
(X,y,2) inorder to describe the original wavefront and the propagated wavefront. The system is defined
by the intersection point of the chief ray with the original wavefront and by the direction of the chief ray

which defines the z axis. The orientation of the X axis can be freely selected. The orientation of the y

axis is such that the system is right-handed (see Figure 9).
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Figure 9: In the case of propagation where tilt is absent it is practical to use one common global
Cartesian coordinate system (X, y, z) in order to describe the original wavefront and the propagated
wavefront. The system is defined by the intersection point of the chief ray with the original wavefront and
by the direction of the chief ray which defines the z axis. The orientation of the X axis can be freely
selected. The orientation of the y axis is such that the system is right-handed
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2.2. Description of Wavefronts

Since the wavefronts and refractive surface are likewise described by their sagittas, here and in
the following the notion ‘surface’ refers to any of the refractive surface, the incoming or the outgoing
wavefront, unless those are distinguished explicitly.
Any surface sagitta, provided it is continuous and infinitely often differentiable within the pupil, can be

expanded with respect to any complete system of functions spanning the vector space of such functions
which is mathematically denoted by C”(P) where P — IR? is the subset of the pupil plane inside the
pupil.

For circular pupils it is common to use the orthogonal complete system of Zernike circle

polynomials [2,50]. Even for these polynomials there exist different conventions, indexing schemes and

normalizations [1,11]. We use the OSA standard of Zernike polynomials Z," (0,9) of Ref.[11] which
describes a surface w(X, y) within a pupil of radius I, as the expansion
K

>erzZiMpe, P, (m—k)even, (3)

o0
k=0 m=—k

w(x, y) =
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where p = r/ o, X= rsing, y=rcos$, and the c{(“ are the Zernike coefficients. Alternatively any
other complete system can be used for expansion, e.g. the infinite set of monomials of the variables, i.e. 1

X, Y, X2, xy, y?, etc., yielding

o k
W(X, y) = Zzam,k—mTkm (X' y) ! (4)
k=0 m=0
) 0 mek—m
with Tk (X, y) = m

which represents the power expansion in a Taylor series [1,2], and the coefficients are simply given by

derivatives of the surface:

k

a = w(x, =w(™™ (0,0 5
m,k—m 8Xm6yk‘m ( y) ( ) ( )

x=0,y=0

By the order of an aberration term we mean the number K , in either of the Egs. (3) and (4). As
long as the series expansion is infinite, i.e. the sum runs to k — oo, a transformation between any of the
representations in Eq. (3) and Eq. (4) is legitimate, well-defined and unique.

In practice, however, an expansion is always truncated at some finite order K, justified by the

observation that the major part of light information content is already sufficiently accurately described by
the truncated series. Instead of a series we then deal simply with a polynomial. This polynomial can then

be considered as a projection of the aberration function onto the vector subspace of C”(P) which is

spanned by the finite (incomplete) basis system of functions underlying the truncated series.

Before proceeding in the reasoning, we consider the first orders k =0,1,2 of Taylor and Zernike
basis sets of V =C”(P), respectively. We observe that also if the subspaces spanned by these basis
functions are identical, the basis vectors of order k =2 will be not identical. For example, in Eq. (3) the
Zernike aberration in the term Z2 = \/§(2p2 —1): \/§(2(x2 +y? )/ re —1) due to p =r/r, with order
k =2, usually called Defocus, contains also a constant term, whereas any k =2 term in Eq. (4) is a

monomial with pure value k =2 for added X and Yy powers or similar in the case of higher orders
k=4, in Eq (3 the Zernike aberration in the term Z2 =/5(6p* —6p2 +1)
=/5(6(x% +y2)2 /1) —6(x? +y?)/r2 +1) due to p=r/r, with order k=4, usually called
Spherical Aberration, contains also quadratic and constant terms, whereas any k =4 term in Eq. (4) is a

monomial with pure value k =4 for added X and y powers. An explicit transformation between the

Zernike basis and the monomial basis is provided in chapter 4.4 and in [51]. The following Table 1 shows
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both basis sets of Taylor and Zernike for the first orders k =0,1,2 where for simplicity we use I, =1 for

the Zernike terms.

# order K Taylor T," Zernike Z\
1o T2 =1 20 =1

2|1 T'=y Z;' =2y

3 1 T} =x Z} =2x

4 |2 T, =y*12 | 2,2 =26xy

5 |2 TH=xy 28 =3(2(x? +y?)-1)
6 |2 T/ =x212 | 22 =6(x2-y?)

Table 1: The first orders k =0,1,2 of Taylor and Zernike basis sets of V =C*(P), as defined in Eq. (3)
and Eq. (4), where for simplicity we use r, =1 for the Zernike terms

Let us now discuss how a function of order k =2, say f(x)=1+ax’, is represented in each

system. In Taylor representation, we would obtain (see Eq. (4))

F0=3" a1 (%) ©)

k=0 m=0
with
al=1 a’=2a, a,a,aj,a;=0

Whereas in Zernike representation, we would obtain (see Eg. (3))

2k
F)=2 Dz (7)
k=0 m=-k
with
0 0 o 2

:%, c,'c,c,2=0.

Now, if the space allowed for representation is truncated to contain only terms of order k, =0,
then the approximated Taylor representation would be f(x)~1 whereas the approximated Zernike
representation would be f(x) ~1+ «/4. Both approximations are not identical, and they are not very
good for a =1 either. However, for o =107%, they are more similar and also a good approximation to
f(x) in the inner parts of the pupil, and for & =10"°, they are almost identical and a very good

approximation to f(x) in the whole domain (i.e. the pupil), of course depending on the demanded

accuracy.
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On a more abstract level, we encounter the following situation. Given is a vector space V (of
functions) whose dimension is assumed to be n = 2 without loss of generality here. Formally we denote
the coordinates of vectors in V by X, and X,. Further two different basis systems {vl,vz} and
{Wl,Wz} of V are given. We can symbolize them as blue and red sets of vectors, as shown in Figure 10.
The basis systems are chosen according to our situation concerning the Zernike and the Taylor set in that

VvV, spans the same subspace V as W, does, i.e. both systems give rise to a common subspace

V,= <Vl> = <W1> of V . On the other hand, Vv, spans a different subspace of V than w, does.

Vs,

x2 A x2 A
a
w 2
a
Wl 4
X X
a) b) c)

Figure 10: Formally the coordinates of vectors in V are denoted by X, and X, . Further two different

basis systems {Vl,vz} and {Wl,wz} of V are given as shown in a). They are symbolized as blue and

red sets of vectors. We consider a given vector a shown as black arrow in b) and c). Then we obtain
different representations depending on if the red basis set or the blue one is used. If the basis set is

truncated, i.e. vV, and W, have to be omitted, then the representation of a in the subspace V,
corresponds to the blue horizontal arrow for the blue basis set and to the red one in the case of the red
one. The horizontal vectors can be interpreted as the projections of a onto V, or W, . In the blue case the

projection takes place along the direction of Vv, whereas in the red case it is performed along W, . Since
Vv, and W, are not parallel, those projections are different, which is directly dependent on the distance of

a in relation to V, or W, . b) Vector a far away from the subspace V, = <V1> = <Wl> spanned by Vv, or

W, c) Vector a close to the subspace spanned by v, or w,

Now, if we consider a given vector a (black arrow in Figure 10b,c), then we will obtain different

representations depending on if the red basis set or the blue one is used. If the basis set is truncated, i.e.
Vv, and W, have to be omitted, then the representation of a in the subspace V, will correspond to the
blue horizontal arrow for the blue basis set and to the red one in the case of the red one. The horizontal

vectors can be interpreted as the projections of a onto V,, and in the blue case the projection takes place
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along the direction of v, whereas in the red case it is performed along w,. Since v, and w, are not

parallel, those projections are different. In the case of Figure 10b), where a is far away from V,, the
projections are even very different, and both are no good approximation to a . On the other hand, if a is
lying close to V, (Figure 10c), then the projections are quite similar, and both are good approximations to

a itself.

Our conclusion is the following. In contrast to the Zernike polynomials, which are tailored for a
surface description over a finite pupil size, it seems only at first glance that a description of local
derivatives at the pupil might only be valid in an infinitesimal neighborhood of the pupil center. However,
the above vector space arguments show that a basis of local derivatives does not suffer for any loss of
information over the entire pupil size either, provided that the order of derivatives chosen is sufficiently
high.

For later application, we introduce

W, (X y) ZZ mII(nkm K rr]n])| yk—m

k=0 m=0 (8)
X Out,m,k—-m . 1k—m
Out( y) ;mzoml(k m)| y
and
W ()_( _) _ii am,k—m )—(m—k—m (9)
st _k:Om:Om!(k_m)! y

for describing the incoming wavefront, the outgoing or reflected wavefront and the refractive or reflective
surface, respectively.

Analogously we introduce for describing the original wavefront and the propagated wavefront

o,mk-m k—m
w, (X, y) = kZOmzom'(k m)' "y -

w, (X, y) = sz,gkmkrr:]), mykm

k=0 m=0
The central mathematical idea for the method given in this work is that the coefficients of the
unknown surface — it having been assumed to be describable by a finite polynomial function so that once
the coefficients are known the surface is known — may be found by taking derivatives and evaluating

them at (X, y) =(0,0) where it is known that the value of a derivative of order k equals the value of

coefficient k .
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2.3. Local Properties of Wavefronts and Surface
Considering the infinitesimal area around the optical axis or rather around the chief ray leads to

Gaussian optics (or paraxial optics)[1].

2.3.1. Refraction
For the aberrations of second order the refraction of a spherical wavefront with orthogonal

incidence onto a spherical surface with the Surface Power S (see Figure 11) is described by the vergence

equation [1,2]:
S'=5+S (11)

where
S =n/s isthe Vergence at the object side

S'=n'/s" is the Vergence at the image side
S =(n'-n)/r is the Surface Power

S is the vertex distance at the object side (Axial distance from the refractive surface to the object
point), which is equivalent to the radius of curvature of the incoming wavefront

s' is the vertex distance at the image side (Axial distance from the refractive surface to the image
point), which is equivalent to the radius of curvature of the outgoing wavefront

I is the radius of curvature of the refractive surface (distance from the refractive surface to the center
point of the refractive surface)

Nn is the refractive index of the medium at the object side

n' is the refractive index of the medium at the image side
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direction of light

object
point

< < P
S > s'

Figure 11: For the aberrations of second order the refraction of a spherical wavefront with vergence
S =n/s with orthogonal incidence onto a spherical surface with the Surface Power S = (n'—=n)/r is
described by the vergence equation. The vergence S'=n'/s' of the outgoing wavefront is equal to the
sum of the vergence of the incoming wavefront and the Surface Power S'=S +S .

In literature, the notion of vergences is usually extended to 3-dimensional space for describing the
sphero-cylindrical power of a surface by the following steps. First, the curvatures 1/s, 1/s' and 1/r in
Eq. (11) are identified with the second derivatives of the sagittas of the incoming wavefront, the outgoing
wavefront and the surface, respectively. Further, in 3-dimensional space the second derivatives

In

w0 = a2w, [ox?, Wi =0*w, /oxdy, w®? =o%w,, /oy?, are summarized in terms of 2x2

(2,0) ()}
W o
vergence matrices [8,24] in the shape N '(”ll) ("2‘ o |- and similarly for W, (X',y") and Ws(X, ),
Wln’ Wlny

for which the prefractors are n' and (n'—n) instead of n, and the derivatives are taken with respect to

X',¥' and X,y instead of X, Y, respectively.
Additionally to the description in terms of vergence matrices, an equivalent description is
common in the 3-dimensional vector space of power vectors [52,53,54], which we will apply throughout

the thesis. For the incoming and the outgoing wavefront, as well as the refractive surface we introduce the

power vectors
(2,0) 1 1(2,0) c —7(2,0)
Sxx WIn S XX WOut Sxx WS
1,1 ] ' ' (1,1 = c ] (11
s=[S, |=nwi? | s'=[S, |=n|ws? | §5=|S, |=(-n) W (12)
(0,2) 1 1(0,2) c +7(0,2)
Syy W, S W W' o Syy W
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The symbolism S, etc. is merely understood as component labeling of the vector S. Nevertheless, it

XX !
shall remind the reader to the fact that the value of S,, is proportional to the second derivative Wl(nz’o) of

the wavefront sagitta. It is well-known that the components of Eq. (12) are in ophthalmic terms given by

S, :(Sph+c—ylj—c—ylc032a
2 2
Cyl .
Sxy :—TS"] 2c (13)

Sy :(Sph+%ylj+%ylc052a

where

Sph is the spherical Power of the incoming wavefront

Cyl is the cylindrical Power of the incoming wavefront

a is the axis of the cylindrical Power of the incoming wavefront
and equivalently for s' and §S.

One well-established generalization of Eq. (11) relating the components of Eg. (12) to each other
is the “Coddington Equation”. It describes the case of a spherical wavefront hitting a spherical or
astigmatic surface under oblique incidence such that one principal curvature direction is lying in the
refracting plane [1,4,5,8].

The most general case is characterized by an astigmatic wavefront hitting an astigmatic surface
under oblique incidence, but such that no special orientation between the refracting plane, the directions
of principle Power of the incoming wavefront and those of the refractive surface has to be assumed at all.
This is the most complex case, described by the “Generalized Coddington Equation” [3,4,5,6,7,8,9], in

compact form written in terms of power vectors

C's'=Cs+15 (14)
where we have introduced the matrices
1 0 0 1 0 0
C'=|0 cose&' 0 | C=|0 cose 0 (15)
0 0 «cos’e 0 0 cos’e

and the factor

Nn'cos &'-ncos ¢
V= .
n'-n

(16)
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2.3.2. Propagation
For the aberrations of second order the propagation of a spherical wavefront with the Vergence

S, (see Figure 12) is described by the propagation or Transfer equation [7,24,32,47,48,49]

(17

where
S, =N/s, is the Vergence of the original wavefront

S, =n/s, is the Vergence of the propagated wavefront

S, is the vertex distance of the original wavefront (distance along the chief ray from the wavefront to
the image point), which is equivalent to the radius of curvature of the original wavefront

s, Is the vertex distance of the propagated wavefront (distance along the chief ray from the wavefront
to the image point), which is equivalent to the radius of curvature of the propagated wavefront

n is the refractive index

d is the propagation distance

direction of light Y
n
|
Object point
L ¢ —p- —-
n, n, z

Sp

Figure 12: Propagation of a spherical wavefront W with a vergence distance s, about the distance d to
the propagated wavefront w ; with a vergence distance s ;= s, - d. For the aberrations of second order the

propagation of a spherical wavefront with the Vergence S, =n/s, is described by the propagation or
1
S,.
1-48

n-o

Transfer equation S, =
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In literature, the notion of vergences is usually extended to 3-dimensional space for describing the
sphero-cylindrical power of a wavefront in terms of 2x2 vergence matrices [25,52,53] of the shape

(2,0) 1)
{Wo Wo

Wi W(Z’O)j’ for w, (x, y) and similarly for w, (x,y) .
o [¢]

(2,0 (1.1) (2,0) (1,1)
S _{sw SO,WJ_n(WO w! J . _(sw sp,ny_n[wp w j .
o - @ 02 |’ P = @) (0.2)
So,xy So,yy W, W, Sp,xy Sp,yy W W

The relation between the components of Eq. (18) and the ophthalmic terms sph, cyl, axis are well known
[25] and described in Chapter 2.3.1 by Eq. (13).

One well-established generalization of Eq. (11) relating the components of Eqg. (18) to each other
is the “Generalized Propagation Equation”. It describes the propagation of an astigmatic wavefront [7,24

,32,47,48] written in compact form in terms of vergence matrices,

S, = S, (19)

where we have introduced the unit matrix

T 20
“lo 1) (20)

Additionally to the description in terms of vergence matrices, an equivalent description is
common in the 3-dimensional vector space of power vectors [47,54]. In [49] also the “Generalized

Propagation Equation” in terms of power vectors is described.

2.3.3. Reflection

For the aberrations of second order the reflection of a spherical wavefront with orthogonal

incidence onto a spherical surface with the Surface Power S (see Figure 13) is described by the vergence

equation:
S'=S+S (21)
which is equivalent to
1 1 2
—t+—== (22)
S S r

where
S =n/s is the Vergence of the incoming wavefront

S'=-—n/s" is the Vergence of the reflected wavefront
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S =-2n/r is the Surface Power

S is the vertex distance at the object side (Axial distance from the reflective surface to the object
point), which is equivalent to the radius of curvature of the incoming wavefront

s' is the vertex distance at the image side (Axial distance from the reflective surface to the image
point), which is equivalent to the radius of curvature of the reflected wavefront

I is the radius of curvature of the reflective surface (distance from the reflective surface to the center
point of the reflective surface)

N is the refractive index

direction of light

—>
ﬁ-"'\-\v‘_
1 }"-.ﬁ
I I I “.“"-..
1 1 '
- —=l-g-id-..Lry
] [ "R B
fyp 1 LY - image-
ob!ect 1 \‘ e _gt
point JPE e poin

Y

Figure 13: For the aberrations of second order the reflection of a spherical wavefront with vergence

S =n/s with orthogonal incidence onto a spherical surface with the Surface Power S=-2n/ris
described by the vergence equation. The vergence S'=—n/s' of the reflected wavefront is equal to the
sum of the vergence of the incoming wavefront and the Surface Power S'=S + S.

For the incoming and the reflected wavefront, as well as the reflective surface we introduce the

power vectors

(2,0) 1 1(2,0) c —(2,0)
Sxx Wln S XX WOut Sxx WS
s=[S, [=n|wiP | s'=[S, |=-nws) | 5=|S, |=-2n WM (23)
(0,2) 1 1(0,2) c —(0,2)
Syy W, S W Wt S Wy

The relation between the components of Eq. (23) and the ophthalmic terms sph, cyl, axis are well known
[25] and described in Chapter 2.3.1 by Eq. (13).

One well-established generalization of Eq. (21) relating the components of Eq. (23) to each other
is the “Coddington Equation”. It describes the case of a spherical wavefront hitting a spherical or
astigmatic surface under oblique incidence such that one principal curvature direction is lying in the
refracting plane [1,4,5,8].

The most general case is characterized by an astigmatic wavefront hitting an astigmatic surface

under oblique incidence, but such that no special orientation between the refracting plane, the directions
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of principle Power of the incoming wavefront and those of the reflective surface has to be assumed at all.

This is the most complex case in compact form written in terms of power vectors
5=C(s' —9) (24)

where we have introduced the matrices

coste 0 O
C=l 0 1 0 (25)
0 0 coseg

2.3.4. Power Vectors
According to the definition of the Power vectors for aberrations of order k =2, we define for

aberrations of higher order k > 2 similar vectors e, ,€', ,€, of dimension k +1 by

k,0 ' 1(k,0 C —(k,0
Ex, XX W|(n ) E X.. . XX w EJut) Ex,_,xx Ws( )
E W(k—l,l) E' Wu(k—l,l) E — (k-1,1)
o I ot P B I e R e R Ed Ul IR
(0,k) ' 1(0,k) cC - (0,k)
EY~--W WIn E y...yy WOut EY~--W WS
in the case of refraction and
k,0 ! 1(k,0 C —(k,0
Ex XX W|(n ) E X...XX W(Out) Exxx Ws( )
E W(k—l,l) E' W-(k—l,l) E 7 (k-11)
e =| 7 =0 e = VT =onl T Be=l Y li=-2n B [ 27)
(0,k) ! 1(0,k) C 77 (0,k)
Ey . w Wi, S W out Ey .y Wg

in the case of reflection, such that in particular €, =S, €',=S" and €, =S. We use the vectors €, ,€', ,
€, merely as a device for a compact notation to be used later. Although they form a vector space (which

follows directly from the linearity of the derivative), we do not make explicit use of this fact.

Finally, Eqg. (15) can also be extended to all k > 2 by the definition

1 0 0 1 0 0
0 cos¢' : 0 cose :

Clk: . . . ) Ck =1 . . . . (28)
0 COSkE' 0 COSké‘

2. Theoretical background 37



Derivation of analytical refraction, propagation and reflection equations for Higher Order Aberrations of wavefronts

and Eq. (25) can also be extended to all k > 2 by the definition

coste 0 - 0
~ 0 1
C, = (29)
0 cos“te
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3. Derivation of the Refraction Equations

3.1. Mathematical Approach in the 2D Case

3.1.1. Coordinates in the 2D case

For giving insight into the method with smallest possible effort, we first treat in detail a fictitious
two-dimensional problem in which the third space dimension does not exist. Later we will transfer the
corresponding approach to the three-dimensional case, i.e. the case of interest, but now we will for an

instant drop the X degree of freedom and consider the three coordinate frames (y,z), (y',z') and

(Y,Z) spanning one common plane. Instead of a refractive surface in space there is now only a curve

(y,w(¥))" in that plane, and similarly the wavefronts are described by curves in that plane (which, for

simplicity, shall still be called ‘surface’). All rays and normal vectors then lie in that plane, too. We
summarize this situation in the term “2D”. If one likes to, one can imagine the problem to be posed as a
3D one with the symmetry of translational invariance in X -direction, but this is by no means necessary
since it is inherent to the mathematics of the two-component system that any ray deflection in a direction
other that in the given plane cannot occur.

The two-dimensional version of the rotation matrix takes the form

R(¢) = ( (30)

cose -Sing
sine  cose )

3.1.2. Description of Wavefronts in the 2D case
The surfaces themselves are each described by power series expansions specified in the

corresponding preferred coordinate frame. Any point on the incoming wavefront is given by the vector

w,, ()= [W y(y)] (31)

where in the 2D case w,, (y) is the curve defined by

y« (32)

0 an
Wi, (y)= Z le
k=0 K:

3. Derivation of the Refraction Equations 39



Derivation of analytical refraction, propagation and reflection equations for Higher Order Aberrations of wavefronts

which corresponds to Eq. (8) in the 3D case. Equivalently, we represent the outgoing wavefront and the

refractive surface in their preferred coordinate frames by the vectors

' | 1 — yI vl = _ y
Hon )= [w (y')j’ = (WS(V)] )
where
- IOut ' — (T . aS =
W'om(y')=2ak,'kyk, SN =2 (34)
k=0 : k=0 K:

As in Eq. (5), again the normalization factor k! is chosen such that the coefficients a,, , are given by the

derivatives of the wavefront at y =0,

ak
= oy e () =wy’(0) (35)

y=0

In the 2D case the vector €, in Eq. (26) reduces to a scalar E, =nw® =na,, , e.g. for second

and third-order aberrations, we have E, =nw!? =na,, E, =nw{ =na,, etc.. A similar reasoning

applies for the vectors €',, €, and yields the local aberrations E',, E,, connected to the coefficients
@'outi 0 Asy by multiplication with the refractive index n' for the outgoing wavefront and with the factor

n'—n for the refractive surface, respectively.
It is important to note that each surface has zero slope at its coordinate origin because by
construction the z axis points along the normal of its corresponding surface. Additionally, since all

surfaces are evaluated at the intersection point, each of them has zero offset, too. In terms of series

coefficients, this means that all the prism and offset coefficients vanish, i.e. a, =0, a0yt =0,

ag, =0fork<2.

3.1.3. Normal Vectors and their Derivatives

The normal vector n (y) of any surface w(y) (i.e. curve in the 2D case) is given by
nw(y)=(—w(1’(y),1)T/\/W where W® =06w/dy. In principle, we are interested in
derivatives of n,(y) with respect to Yy . Observing, however, that n,(y) depends on y only via the
slope w® (y), it is very practical to concentrate on this dependence nW(W(l)) first and to deal with the

inner dependence w® (y) later. To do this, we set v =w® and introduce the function
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n(v):= \/117 (_lvj . (36)

Since at the intersection point all slopes vanish, only the behavior of that function n(v) for
vanishing argument v =0 is of interest. It is now straightforward to provide the first few derivatives

n®(0)=alevn(v),_,. n®(0)=8*ov* n(v) _,etc:

0= 00 ) 00 5] 0000 3] no0)= g e @)

In application on the functions of interest, N, (y)=nWP(y)), n'g, (y)=nWo (v)),

N (Y) = (W (y)), this means that n, (0)=(0)", n'c, (0) = (017, N (0) = (0,)", where each

equation is valid in its local coordinate system. Further, the first derivatives are given by

%” (V) =0 =n?Ow?(0) = [ Jw@ 0)

i ' ' =n® _n® 1(2) = e

o' MWou (¥) o =n'6, (0) =n" (O)w's;, (0) = ( 0 J out (0) (38)
Lam| =@ -n"@u©-| w0
oy ’ 7=0 s s 0/ ,

and similarly for the higher derivatives.

3.1.4. Ansatz for Determining the Refraction Equations
Once the local aberrations of two of the surfaces are given, their corresponding @, coefficients
are directly determined, too, and equivalently the surface derivatives. It is our aim to calculate the third

surface in the sense that its derivatives and thus its a, coefficients (see Egs. (32)-(35)) are determined for

all orders 2<k <k, for the order K, of interest, and to assign values to its corresponding local

aberrations.
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W W)

Figure 14: Shown are the local coordinates systems of the refractive surface, of the incoming wavefront
and of the outgoing wavefront in the true situation in which the origins of all coordinate systems coincide.
While the chief ray and the coordinate systems are fixed, a neighboring ray scans the incoming wavefront

{W ,n} and hits it at an intercept y,, # 0, then hits the refractive surface {WS}, and finally propagates to
the outgoing wavefront {W'om}- Except for the limiting case y,, — O, the three points in space,

W, ,W'g, » Wg, do in general not coincide. Consistently with our notation, we denote as Y, the
projection of the neighboring ray’s intersection with {W n } onto the Yy axis. Analogously, the projection
of the intersection with {W'om} onto the y' axis is denoted as Y'q,, and the projection of the intersection
with {WS} onto the Y axis is called ;.

Our starting point is the following situation. While the chief ray and the coordinate systems are
fixed, a neighboring ray scans the incoming wavefront {Wln} and hits it at an intercept Y,, # 0, then hits
the refractive surface {WS}, and finally propagates to the outgoing wavefront {W'om} , Where the
brackets {} shall denote the entity of vectors described by Egs. (31),(33) (see Figure 14 and Figure 15).
Except for the limiting case y,, — 0, the three points in space, W, W'y, ,Wg, do in general not
coincide. As shown in Figure 14 and Figure 15, and consistently with our notation, we denote as Y,, the
projection of the neighboring ray’s intersection with {Wm} onto the Yy axis. Analogously, the projection
of the intersection with {W'om} onto the y' axis is denoted as Y'y,,, and the projection of the intersection
with {WS} onto the Y axis is called Ys.

The mutual position of the points and surfaces is shown in Figure 14. Although both wavefronts
in general penetrate the refractive surface, the definition of the intersection coordinates as projections will
be meaningful if we formally allow all parts of the rays and wavefronts to be extended into both half-

spaces (indicated as dashed curves in Figure 14).
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Figure 15: Shown is a fictitious situation of separated origins by d and 4’ for a better understanding of
the nomenclature. The surface normal vectors along the neighboring ray are also drawn, referred to as N,

, Ng, Ny, in the common global system (X, Y, Z) . It might appear helpful for the reader to imagine for a

short instant that the incoming wavefront is evaluated at a distance d > O before the refraction, and that
the outgoing wavefront is evaluated at a distance d'> O after the refraction, measured along the chief ray.
In this fictitious situation of separated intersections even along the chief ray (and therefore also separated
origins of the coordinate frames) it is much easier to identify the various coordinates.

It might appear helpful for the reader to imagine for a short instant that the incoming wavefront is
evaluated at a distance d >0 before the refraction, and that the outgoing wavefront is evaluated at a
distance d'> O after the refraction, measured along the chief ray. In this fictitious situation of separated
intersections even along the chief ray (and therefore also separated origins of the coordinate frames) it is
much easier to identify the various coordinates, as shown in Figure 15. The true situation is d =d'=0,

which is relevant throughout the thesis.
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Figure 16: The vector w,, =W, (Y,,) (see Eq. (31)) points to the neighboring ray’s intersection point
with the incoming wavefront, and the wavefront’s OPD referred to the refractive surface along the ray is
denoted by 7, correspondingly the vector from the wavefront to the surface is —z/nn,,. Hence, the

vector to the point on the surface itself, Wg, must be equal to the vector sum Wg=w, —7z/nn,.

Transforming W to its preferred frame by Wy =R(g)W (see Eq. (1)) yields the first one of the
fundamental equations in Eq. (39).

While in Figure 14 and Figure 15 all quantities are drawn in their preferred frames, Figure 16
shows the quantities concerning the incoming wavefront and the refractive surface in the common frame
(Y,2). The vector w,, =w,. (Y, ) (see Eq. (31)) points to the neighboring ray’s intersection point with
the incoming wavefront, and the wavefront’s OPD referred to the refractive surface along the ray is
denoted by 7, whereas the absolute value 7 is defined by the optical path distance between the
neighboring ray’s intersection point with the incoming wavefront and the refractive surface and the sign
of 7 is determined by the relative position of the these intersection points. If the intersection point of the
ray with the wavefront is before the intersection point of the ray with the refractive surface the OPD will

be negative (7 <0), and if the ray first intersects the refractive surface the OPD will be positive (7 >0).

Therefore the vector from the incoming wavefront to the surface is —z/nn,_, determined by the product

In?

of the OPD and the normal unit vector of the incoming wavefront. Hence, the vector to the point on the

surface itself, Wg, must be equal to the vector sum Wg =W, —z/nn, . Transforming Wy to its

preferred frame by W = R(&)Wg (see Eq. (1)) yields the first one of the fundamental equations in Eq.
(39).
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Figure 17: The vector W'y, = W', (Y'ou ) (s€€ Eq. (33)) points to the neighboring ray’s intersection
point with the outgoing wavefront, and the wavefront’s OPD referred to the refractive surface along the
ray is denoted by 7', correspondingly the vector from the wavefront to the surface is —z'/n'n'y,,. Hence,

the vector to the point on the surface itself, W'y, must be equal to the vector sum W's = W'y, —7'/n'n'y,,.

Transforming W' to its preferred frame by Wg = R(g')W (see Eqg. (1)) yields the second one of the
fundamental equations in Eq. (39).

Analogously we have W'y,,—7'/n'n'y,, = W' for the outgoing wavefront in the frame (y',z'),
yielding the second equation in Eq. (39) (see Figure 17). The sum of the OPD from the ray’s intersection
point with the incoming wavefront to the refractive surface (—z) and the OPD from the refractive surface
to the ray’s intersection point with the outgoing wavefront (z') has to be constant, and in the true

situation with d =d'=0 yields — 7+ z'=0. Therefore the condition for the outgoing wavefront to be
the surface of constant OPD is that = = z' for all neighboring rays. Inserting this condition, we establish

as starting point of our computations the fundamental equations.

( o J—an:R(e)(_yij
Wi, (Yi)) N W (¥s)

' : (39)
Y out T Ys
_n —R(&
(vv'mt(y'om )] o ou = RUE )[ws(vs)j

From Eq. (39), it is now possible to derive the desired relations order by order. For this purpose, it

turns out to be practical to consider formally both wavefronts as given and to ask for the refractive surface

W, (Y5) as the unknown function. Although only the surface is of interest, in Eq. (39) additionally the

3. Derivation of the Refraction Equations 45



Derivation of analytical refraction, propagation and reflection equations for Higher Order Aberrations of wavefronts

four quantities 7, Y,,, Y'ou Ys are also unknown. However, they are not independent from each other:
if any one of them is given, the other three ones can no longer be chosen independently. We use Y as

independent variable and to consider the three other unknowns 7, Y,,, ¥'o, as functions of it.
Eq. (39) represents a nonlinear system of four algebraic equations for the four unknown functions

Ws(Vs), Yin(Vs), You (Ys), 7(¥s). Even if we are only interested in a solution for the function

W; (Ys) , we cannot obtain it without simultaneously solving the equations for all four unknowns order by

order. Introducing the vector of unknown functions as

Yin (Vs)
Y'out (Vs)
T(ys)
Ws (Ys)

p(ys ) = (40)

and observing that the initial condition p(0) =0 has to be fulfilled, it is now straightforward to compute

all the derivatives of these Eq. (39) up to some order, which yields relations between the curvatures, third

derivatives etc. of the wavefronts and the refractive surface. Rewriting these relations in terms of series

coefficients a,,,, @'oy . ds, and solving them for the desired coefficients ag, yields the desired
result.

Before solving Eq. (39), we distinguish if the independent variable Yq enters into Eq. (39)
explicitly like in the first component of the vector (Vs,Ws(Ys))", or implicitly via one of the

components of Eq. (40). To this end, we define the function (IR* x IR)— IR : (p, J5) > f by

yln _%ny(wl(r? (yln )) - (yS Cos ¢ — WS sin ‘9)

Wy, (Yp) ——n, (W.(i) (v, )) — (Vs sine + W, cos &)
f(p,¥s)= n | , (41)
y|0ut_ﬁ r]Iy (WI(Oll)JI (yIOut ))_ (ys Cos 8'—V_VS Sin gl)

W|Out (ylom ) - % n, (W'gﬂt (yIOut ))_ (ys sin ‘9|+V_VS Cos 8I)

where (P1,P,,P3:P4) = (Yins Y'ou » 7 Ws) are the components of p. Setting now p =p(Ys), Eq. (41)

allows rewriting the fundamental system of Eq. (39) in a more compact way as

f(p(Vs), ¥s) =0 (42)

as can be verified explicitly by component wise comparison with Eq. (39).
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The key ingredient of our method is that the relations between the derivatives of wavefronts and
surfaces can be obtained by the first, second, etc. total derivative of Eq. (42) with respect to Y, evaluated

in the origin. The advantage of the form of Eq. (42) using Eq. (41) is that the various terms can be tracked

in a fairly compact manner.

The total derivative of f(p(ys), )75) in Eq. (42) is obtained by applying the principles from the

theory of implicit functions. Hence, the total derivative is given by the partial derivatives of f with

respect to the components p; of P, times the derivatives of p;(Vs), plus the partial derivative of f with

respect to the explicit dependence on Y. This transforms the system of algebraic equations in Eq. (39) to
the system of differential equations

igi P (35) + 2t =0

, i=1..4, (43)
j=1 pj 8ys

where the matrix with elements A; := of; /op; is the Jacobian matrix A of f with respect to its vector

argument P, evaluated for p = p(Y;). The Jacobian A reads

afl afl 8fl afl

. T a0 W@ 1
8yln 6y'Out ot aWS 1_Enln,ywln 0 —En,n'y o
ﬂ 61:2 % ﬂ @ T @ 1i(2)

A ayl 'Ot ot OWS Wip _Enln,zwln 0 —Enm’z 4 1
- af af af af - T (1 1(2 1 1 ] ( )
3 3. 23 3 0 1-Zq0 o 1, o
! YV Pouty YV out T Mouty

Y, ot 0T OWg n n
Ll 0 wh-TeB.wd oy, -y
In Out T S

where for convenience we have introduced o =sing, y =C0S¢, and similar for &'. In Eq. (44), the

occurring expressions are understood as W =w® (y, ), w? =w®(y, ), Ny = Ny WS (Vi)

n® —n®

my =Niny (W (y,.))., etc, and analogously for the ‘Out’ quantities, and additionally Y,,, Y oy %) Wy

In

are themselves functions of Y.

The derivative vector of; / 0y in Eq. (43) shall be summarized as

SR

b=-—= , (45)

2
QN
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Both A and b are deduced from f(p()_/s), VS) and must in general themselves have the same
kind of dependence, i.e. A(p(ys), Vs) and b(p(ys), VS). However, due to the special property of f to
be linear in Yq, b is constant. Additionally, A has no explicit dependence on Y besides the implicit

dependence via P(Ys). Hence we write b without argument and A = A(p(Ys)), and Eg. (43) can be

written in the form

AP(Ys)P® (¥s) =b. (46)

3.1.5. Solving techniques for the fundamental equation
Eqg. (46) is the derivative of the fundamental equation in Eq. (42), and therefore it is itself a

fundamental equation. But additionally, it allows a stepwise solution for the derivatives p (Y5 =0) for

increasing order k . Formally, Eq. (46) can be solved for p® (y;) by

P® (¥s) = A(P(¥s)) 'b. (47)

Eq. (47) holds as a function of Yg, but of course for arbitrary Yg both sides of Eq. (47) are unknown.
However, evaluating Eq. (47) for ys =0 exploits that then the right-hand side (rhs) is known because
p(0) =0 is known! In the same manner, Eq. (47) serves as starting point for a recursion scheme by

repeated total derivative and evaluation for Y5 = 0. Remembering that b is constant, we obtain

pP ) =A"D
2 (A1)
p?(0)=(A")"p 8)

p(k) (O) : .(A_l )(k—l) b,

where A'=AP@O)*=A0", and (A’l )(l) = %A(p(ys))_l ,

¥s=0

k-1
(A‘1 )(H) - %A(p(ys))l are total derivatives of the function A(p(Ys)) ™. The reason why Eq.
S ys=0

(48) really does provide solutions for p®(0), p®(0), ..., p® (0) is that in any row of Eq. (48) the

entries on the rhs are all known assuming that the equations above are already solved. Although on the rhs

48 3.1 Mathematical Approach in the 2D Case



Derivation of analytical refraction, propagation and reflection equations for Higher Order Aberrations of wavefronts

there occur implicit derivatives p(l) 0), p(z) (0), ... as well, they are always of an order less than on the

left-hand side (lhs). For example, the second row in Eq. (48) reads in explicit form
) o[ 0 1 1n® g
p*(0) = Z aA(p) p; ‘y . -b where Y5 =0 implies p=0, and where on the rhs the highest
i-1 i s=
occurring derivative of p is p(l) (0) which is already known due to the first row in Eq. (48). Generally,

k-1
the highest derivative of P occurring in (% A(p(ys))—lJ is p(k—l) (0), which is already known

S

¥s=0
at the stage when p®’ (0) is to be computed by Eq. (48).
Although looking attractive and formally simple, applying Eq. (48) in practice requires still some

algebra. One part of the effort arises because it is the inverse of A which has to be differentiated with
respect to P. The other part of the effort is due to the large number of terms, since the higher derivatives

will involve more and more cross derivatives like 02/0p,op ;- Both tasks are straightforward to be
executed by a computer algebra package but nevertheless lengthy and not the best way how to gain more
insight.

While cross-derivatives are inevitable, there exists an alternative recursion scheme for which it is
sufficient to differentiate the matrix A itself instead of its inverse A", which means an enormous
reduction of complexity! To this purpose, we start the recursion scheme from Eq. (46) instead of Eq. (47).
The first (k —1) total derivatives of Eq. (46) are

Ap®@(0)=b @
APp®(0)+Ap@(0)=0 (b)
APp®(0)+2AYp@(0)+ Ap®(0)=0 (©) (49)

(k-1 (k=1) 4 (J)
> AP =0, k22 (d)
-1

Lyoded _
y e A = —— A(p(Y,)) are

where A=A(pP(0)=A(0), and AY = ddTA(p()_/s ) dy/

S

¥s=0

total derivatives of the function A(p(Ys)) . For the last line of Eq. (49) we have applied the formula for
the P -th derivative of a product, (fg)®” =>" (p}f (=D g () Eq. (49) represents a recursion scheme

i=o| j

where in each equation containing p®(0), p®(0), ..., p*(0), only p®(0) (in the last term for
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j =k) is unknown provided that all previous equations for p® (0), p®(0), ..., p“™(0) are already

solved. A formal solution for p(k) (0), expressed in terms of its predecessors, is

pP @)= A7 o k=1

k1K -1 L 50
p‘k’(0)=—Alz[j JA(k‘)p(”(O), k>2. (50)
AN

Although quite different in appearance at first glance, Eq. (50) yields exactly the same solutions as Eq.
(48).

3.1.6. Solutions for the General Refraction Equations

In the result for p®(0), the first rows of both Egs. (48),(50) involve A(0)™. For obtaining

A(0)™, we evaluate Eq. (44) for p=0 and apply Egs. (37), yielding

10 0 o 1 -—-noln 0 noln
0 0 -1/n - 0 -no'/ 1 n'o'l
A(0) = « = A0)" = o T with n=ny-ny (51)
01 O o' 0 —nn'y'/n O nn'yln
0 0 -1/n" -y 0 nin 0 -n'/n

The last component of p(l)(O), which is the refractive surface slope, is obtained as

W (0) = —(n'c'-no) /77 This is formally correct since we have not yet made any assumption about the

angles &, &'. If, however, we claim that W.”(0)=0, we will obtain the refraction law

n'c'—no =n'sing'-nsin & = 0. Exploiting this in all further calculations, the final result for p(l) 0) is

V4

p®©)=| * (52)
—No

0

For the orders k > 2 we apply Egs. (50). The derivatives A® = dﬁA(p(Vs)) , etc. are directly

S ¥s=0
obtained by total derivative of Eq. (44) with respect to Y, evaluating for Y =0 and again applying
Eqgs. (37). For the orders k >2 only the results v_vs(k) (0) for the refractive surface are interesting,

therefore we directly provide those results. The resulting second-order law is (omitting the argument * (0)

)
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WY = 2 n'wg—x nwi) (53)

In

which is well-known as the Coddington equation and reveals to be a special case of our results. The
resulting novel higher-order laws can be written in a similar fashion

(3 _ 13 a1 (3) 3 3)
n-Ws™ =2 NWgo,—x NW,"~ + RS

w(4) _ 4 o (4) 4 4)
n-Ws” =" N'Woi—x nw,” +R,

(54)
n-W = 2 nwel—x nw + Ry
with the remainder terms R, which are given for orders k = 3,4 explicitly as
3n I 1 1, 1, 1
R, = —% (W& -nw? Ny w—w?) (55)
Ry = WS pu? WGl (W earwf? ) -
1 1 3 1 ] 2 1 2 3
+y (WS +8 (W f w + 5w (w f + y(w? )
with
2nql3
a= (n';('—6n;()
n
2noyy
p =2 (2n 430y
7 (57)
3n
— f (ZnIXZZln_O_Z(nZZZ +4n|2 Z'Z ))
3n'
s="4

s ((2n';('+n;()(n2;(2 + 2nn‘;(;('+2n'2 ;('2 )0'2—277(n;(;(')2)
nn

and o', B', y', &' are obtained from —a, — f, —y, — &, respectively, by interchanging n <> n',
yoy, o0, ne-n.
Eq. (54) holds likewise for the derivatives and for the coefficients a,, ,, @', as, due to Egs.

(32)-(35). In terms of local aberrations, Eq. (54) reads (after substituting y, y' by the cosines)

v-E, =E' cos* &'-E, cos* e+ R, (58)
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where in Rk all wavefront derivatives are expressed in terms of local aberrations, which describes for the

first time the relation between the local aberrations of the refracting surface and the incoming and

outgoing wavefront.

3.1.7. Generalization of the Coddington Equation

Although application of Eq. (48) or Eq. (50) provides a solution for Wé") (O) up to arbitrary order
k , it is very instructive to analyze the solutions more closely for one special case. We observe that the
expressions in Egs. (55),(56) for R, (or R,) will vanish if we set W =0 and w'J) =0 for all lower
orders j<k (for k=3 or k=4, respectively). This leads to the assumption that the following
statement is generally true: if only aberrations for one single given order k are present while for all lower
orders j<k we have w\’ =0 and w'¥) =0, then R, =0, which means for fixed order k that Eq.

(54) will be valid for vanishing remainder term. This assumption can in fact be shown to hold generally.

To this purpose, we start from the recursion scheme in Eq. (50) and show that only the term
containing p(l) can contribute to the sum if all aberrations vanish for order less than k . For doing so, it is
d m
necessary to exploit two basic properties of the derivatives A™ =——A(p(¥;))|  of the matrix A
d S ¥s=0
for the orders 1<m<k—1. As can be shown by element wise differentiation of the matrix A, the

highest wavefront derivatives present in A™ (p(Vs)) (see Eq. (44)) occur in the terms proportional to 7

, and those are proportional to either W™"? or w™? Evaluating A™ (p(¥s)) at the position ¥ =0

implies 7 =0, such that A™ cannot contain any higher wavefront derivatives than W,(,:"”) or w1t
follows that
i) The highest possible wavefront derivatives present in A™ are w™ or w'{"

ii) If all wavefront derivatives even up to order (m+1) vanish, then A™ itself will vanish. This is

in contrast to A itself which contains constants and therefore will be finite even if all wavefront

derivatives vanish.
Analyzing the terms in Eq. (50), we notice that the occurring derivatives of the matrix A are A*™?,
AC2D AP AD for j=12,...,(k—1), respectively. It follows from property i) that the highest
occurring wavefront derivatives in these terms are k,(k —1),...,3,2, respectively. Now, if all wavefront
derivatives up to order (k —1) vanish, it will follow from property ii) that all the matrix derivatives

A2 AP AD must vanish, leaving only A% Therefore all terms in Eq. (50) vanish,

excluding only the contribution for j =1. We directly conclude that
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W = _ALAKDH®
P P S k=22 (59)
=—(ATAEDAT).
For evaluating A®™ we set k —1='m, and it is straightforward to show by induction that if all

aberrations vanish for order less or equal to m, then

mpto? 0 A o

AM — 2w 0 . 0 0 , (60)
0 —mymotw D Low o
0 7™ wim 0 0

where yl(r?, y'D and 7 have been substituted by their solutions », »' and ns wherever they occur,

respectively (see Eq. (52)). Inserting A™ (0) for m=k —1 and A(0)™* from Eq. (51) into Eq. (59)
yields directly that

7-5%(0) = 2 WL, (0) - £ nwi (0) D

In

for all orders k > 2.

The resulting refraction equation in the situation of Eq. (61) in terms of local aberrations reads

v-E, =E' cos* &-E, cos* ¢, (62)

which is indeed Eq. (58) for R, =0.

3.2. Mathematical Approach in the 3D Case

3.2.1. Wavefronts and Normal Vectors

Although more lengthy to demonstrate than the 2D case, conceptually the 3D case can be treated
analogously to the 2D case. Therefore, we will only report the most important differences. Analogously to
Eg. (31), the incoming wavefront is now represented by the 3D vector

X
WIn (X' y) = y (63)
WIn (X, y)
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where w,, (X, Y) is given by Eq. (8), and the relation between the coefficients and the derivatives is now
given by a relation like Eq. (5). The connection between coefficients and local aberrations is now given

by €, = (Sxx ' Sxy ) Syy)T = n(aln,Z,O’aln,l,l’ aln,0,2)T ' €; = (Exxx’ Exxy’ Exyy’ Eyyy)T =

n(aln,3,0’aln,2,1’aln,l,z’aln,O,S)T' etc. (see Eq. (26) for €, ). The outgoing wavefront and the refractive

surface are treated similarly.

For treating the normal vectors, we introduce the analogous functions to Eg. (36) as

~u
n(u,v):= . (64)

N1+u? +v? ’
1

such that the normal vector to a surface W(X, y) = (X, y,W(X, y))" is given by

(1,0) (0,1)

wo xw 1

@0 O] 2 2 —w = n(W(LO)'W(OYl)): n(Vw), (65)
w xew ‘ \/1 L w0 0D

In the intersection point we have now n,, (0,0) = (0,01)", n'y, (0,0) = (0,01)", N (0,0) = (0,01)",

and the derivatives corresponding to Eg. (37) can directly be obtained from Eq. (64).

3.2.2. Ansatz for Determining the Refraction Equations
The starting point for establishing the relations between the wavefronts and the refractive surface

is now given by equations analogous to Eq. (39), with the only difference that X and Y components are

simultaneously present, and that the original 3D rotation matrix from Eq. (2) has to be used.

The vector of unknown functions is now given by

Xip (X5, Ys)
yln ()_(51 ys)
o o X' out (X5, ¥s)

Xs, = o 66
P%s. ¥s) Y'ou (X, ¥s) (©0)
T()_(Sv ys)
5(Xs, ¥s)

and the 3D analogue to Eqg. (39) leads now to

f(p()_(yys)’)_(s’ys)zo (67)
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where T is the 3D analogue to Eq. (41).

One important difference compared to the 2D case is that there are two arguments with respect to
which derivatives have to be taken. This implies that the dimension of the linear problems to solve grows
with increasing order: while there are only 6 different unknown functions, the first-order problem
possesses already 12 unknown first-order derivatives, then there are 18 second-order derivatives, etc.
Another implication of the existence of two independent variables is that from the very beginning there

are two different first-order equations

A(p(Xs, ¥5))p™* (X5, ¥s) =b,

o - o (68)
A(p(xs’ ys))p(o,l) (X, ¥s) = by
where the different inhomogeneities are given as column vectors
bx=—i=(1 0 010 0), by=—i=(o y o 0 4 o). (69)
OXg s

The structure of b, arises because there is no respective tilt in this coordinate direction between the
wavefronts and the refractive surface.

The Jacobian matrix A(p(Xs, Ys)) with elements A, := of; /op; is the same for both equations

and analogous to Eq. (44) but now of size 6x 6. It is practical to provide it in block structure notation

o o A 0 ~
Ap(Xs, ¥s)) = CA A (70)
O A Out
where 0 isa 3x 2 block with entry zero,
T T
(0.1)1,,(L1) (1,0)1,,(2,0) (0,1)1,,(0,2) (1,0)1,,(L,1)
1_H(nln,x Wln + r-]In,x WIn ) _E(nln,z WIn + r-]In,z Wln )
A = T( 0,2),,,(L1) (1,0) (2,0)) 1 T( (0,2),,,(0,2) (1,0) (1,1))
n — _H r]In,y W™ + r]In,y Wi, _H nIn,y Wy + nIn,y Wi (71)
00) _ T (00,1 | (L0),(2,0) 0.1 T( 04/ (0.2) | 4(10)y,, @D
WIn _E(nln,z WIn + r]In,z Wln ) WIn _H r]In,z WIn + r]In,z WIn )

and a similar block expression for A'g ;. The other two blocks are given as column vectors

3. Derivation of the Refraction Equations 55



Derivation of analytical refraction, propagation and reflection equations for Higher Order Aberrations of wavefronts

Ny /N 0
Ny /n o}
A —_ r,-]m’Z/n, ’ KS: —X (72)
! N'ouey /N 0
N oy /N o'
n'Out,z /n' - Zl

3.2.3. Solutions for the General Refraction Equations
The direct solutions analogously to Eg. (48) are now given by

p*? (00 =A"D,
p©(0,00=A"D,

p(2,0) (0,0) = (A—l)(lro) b,
p® (0,0) = (A—l)(ovl)bx _ (Afl)(m) b, (73)
, (a-1)OD
p©2(0,0) = (A*)"b,
(A p, , k, %0k, =0
00 = [l b, =(A7f* b,k 20k, 0
(A1) b, .k, =0k, =0
where  AT=AROO)T-AOY  wd (AT - S Ap®T)
s Xs=0,Ys=0
( k) d d 0\t . .
A ) =— A(p(xs, ys)) , etc. The fact that there are two starting equations (68)
dxg* dxg’ %4-0.32-0
@y

reflects itself in the existence of two formally different solutions for the mixed derivatives, e.g. p

However, since both starting equations originate from one common function f in Eq. (67), for each
p(k*'ky) both solutions must essentially be identical, as can also be verified e.g. for p(“) directly by some

algebra.

In analogy to Egs. (51),(52) for the 2D case, we provide here the explicit results
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1 00O 0 0 10 0 00 0
0100 O o 01 -no/p 0 0 noln
0 00 0 -1/n - 00 0 10 0
A(0) = £ = A@)* = (74)
0 010 0 0 0 0 —-no'/np 0 1 no'ln
0 0 01 0 o' 0 0 —nn'y'/n O O nn'yln
0 00 0 -1/n" —yp 00 nin 0 0 —-n'/n
and, after application of Egs. (69),(73) the solutions
1 0
0 X
1 0
p(l’o)(O,O)Z 0 , p(O,l)(O,o): . (75)
X
0 -nNo
0 0
The general result for the refraction equation can be written in the way
P = g w1 ©

It is interesting to note that only ky but not k, occurs in the exponents of the cosines. This is a
consequence of the fact that the refraction takes place in the ¥ —2Z plane whereas in X the direction no
tilting cosines occur at all. Summarizing all components of Eq. (76) for a fixed value of k =k, +k, and

applying Egs. (5),(28),(26) yields the refraction equation in terms of local aberrations,
v-g, =C\ e, —C.e +r, (77)

where I, is a vector collecting the remainder terms ka,ky in Eq. (76) analogously to R, in Eg. (58). Eq.

(77) is the general refraction equation for aberrations of any order in the 3D case.

3.2.4. Generalization of the Coddington Equation
Although Eqg. (73) represents the full solution, we provide here a more detailed result for

Ued) 6 Oen) gor all lower orders, i.e. for

p®“?(0,0) in the case of vanishing wavefront derivatives w,
j +J, <k, +k,. This works analogously to the treatment of Egs. (49)-(61), with the only difference

that the notation requires more effort.

Analogously to Eq. (50) we obtain as result that
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K l(k 1 _ _
p“2(0,0) = —A‘lz[_x JA“‘X"*‘O)p“*‘O), k,>22,k, =0 (a)
=1 | P
k. —1)(k o
p(kx,ky)(o’o) _ _A—1 Z (-x J[_yjA(kx—Jx,ky—Jy)p(Jx,Jy) (b)
]:x>:|_.,jy>0 Jx _1 Jy
Jx+iy<ky+ky k k 1 (78)
§x20,j,>1 L N\ Jy -1
jx+jy<kx+ky
p(ovky)(o O) _ _A\lkyz_1 ky -1 A(kay*jy)p(ovjy) k =0k >?2 (d)
, Jy= jy_l ’ " o

. Ky k
where again for p( #k)

two formally different solutions occur which are essentially identical. We
recognize that Eq. (78) (a) is a special case of Eq. (78) (b) for k, =0, j, =0, and similarly Eq. (78) (d)
is a special case of Eq. (78) (c) for k, =0, j, =0. By means of a similar reasoning as in the 2D case it
is found that if all lower order aberrations for j, + j, <k, +k, vanish, then Egs. (78) will reduce to the

lowest term, yielding

p“?00) = -ATAGTIPEO K >2k =0 (a)
(kxky) _ -1 p (kx=1ky) (1,0)
P00 = —ATASp (b) .
__ paa (koky-D) 1(0,2) ( )
= —A"A pv”, k,#0,k, =0 (c)
p(O,ky) (0’0) - _ A—lA(O,ky—l)p(O,l) ’ kx — O, ky > 2 (d)

For finally evaluating Egs. (78) we need the partial derivatives of the matrix A under the

assumption that all lower order aberrations for j, + j, <k, +Kk, vanish, which is given as

(m,,my)
amm [ A D A & (80)
0 AIOuXt’ ’
with the block
m,-1 (my+2,m,-1) m, -1 (my+1,m,)
_myZ ’ oW, ’ _myZ ’ oW, ’
(m,,m,) m, -1 (my+1,m,) m, -1 (m,,m, +1)
AL = -my "’ ow, y -my” ow, " (81)
m,  (mg+L,m,) my, (M, my+1)
X W ’ X W

(mxvmy)

and a similar expression for the block A',;" . The other two blocks are given as column vectors
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ZmyWI(r:nx+1,my) /n
ZmyWI(r:nx,myﬂ) /n

O _
A = , A. =0, (82)
2™ W Iy s
2™ wen ™ I’

0

(1,0)
In

0,1) 1,0) 0,1
In *JIn In

X )| etc. have been substituted by their solutions according to Eq. (75).

where X
Inserting AM™™) from Egs. (80)-(82) and A(0)™ from Eq. (74) into Egs. (79) yields one common

relation for v_vs(k*‘ky’ for the various subcases in Egs. (79) (omitting the argument  (0,0) *):

W = " awer S =y (83)
for all orders k > 2.
Eq. (83) can be summarized in a similar fashion as Eg. (76) to a vector equation in the very

appealing form

ve, =C' e, —C.e, (84)

which is Eq. (77) for r, = 0. Eqg. (84), an interesting result of the present thesis, is the refraction equation

for aberrations of fixed order k > 2 under the assumption that all aberrations with order lower than £

vanish.
3.3. Results and Discussion

The derived equations in the previous chapters 3.1 and 3.2 describe the solution for the refractive
surface if the incoming and outgoing wavefront is given. Although this is a very interesting topic, as will
be shown by example 3.4.1, another standard situation in optics is that a given wavefront hits a given
refractive surface, and that the outgoing wavefront is the unknown quantity. Therefore, we provide in the

following the derived refraction equations, solved for the outgoing wavefront’s aberration.

3.3.1. 2D Case

Eq. (62) describes the special case that for given order k the aberrations of the incoming and

outgoing wavefront for all orders less than k are zero (E; =0;E'; =0 for J < k). For calculation of

the aberrations of the outgoing wavefront, Eq. (62) can be transformed to
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E' cos*&'=E, cos* ¢ +v-E,. (85)

We could generally show this statement to hold for all orders k > 2 _includinq as a special case for k =2

the well-known Coddington and Vergence equation. Therefore Eq. (85) represents an interesting result of

the present thesis.
Also Eq. (58) for the general case can be transformed in such a way that E', of the outgoing

wavefront is the unknown quantity to be determined
E' cos* &'=E, cos* e+v-E, —R,. (86)

Eg. (86) is the general refraction equation for aberrations of any order in the 2D case. In R, only

aberrations E;,E’; of order J <k occur. These aberrations can be determined by successively solving

of Eq. (86) for lower orders.

E.g., assume that the aberrations E', of the outgoing wavefront up to order k =3 (E',=S', E';

) are the unknown quantities, and the aberrations E, of the incoming wavefront and Ek of the refractive

surface are given (see Figure 18). In a first step the aberrations of order k = 2 are calculated using Eq.

(86), which is in this case identical with the well-known Coddington equation

Nn'cos &'-ncos &

| 5. (87)
n-n

S'cos? &'=Scos’ & +

In a second step the aberrations of order k = 3 are calculated using Eq. (86) and the results of Eq. (87)

n'cose'—Ncose —

E',cos’ &'= E,cos® ¢ + ' E,-R, (88)
n'-n
. nsin "N n' cose&'
with R, _ 3 s SC'OSE,‘COSE,‘ (—'S'——Sj( ‘5 S,_COSSS)
n'cos&'-ncose \ n n n n

In Figure 18 is the relation described by Eq. (88) exemplified. The incoming wavefront {W,n } hits the
refractive surface {WS} by the angle of incidence ¢ and the outgoing wavefront {W'om} emerges with
the angle &'. The incoming wavefront, the refractive surface and the outgoing wavefront show
aberrations of second order (S, S_, S') and third order (E3E3, E'3). The origins of these coordinate

systems coincide in the chief ray’s intersection point with the refractive surface but they are fictitious

separated for a better understanding.
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W

Figure 18: The incoming wavefront {Wm} hits the refractive surface {WS} by the angle of incidence &

and the outgoing wavefront {W'om} emerges with the angle &'. The incoming wavefront, the refractive
surface and the outgoing wavefront show aberrations of second order (S, S , S') and third order

(E3 E,, E's). The origins of these coordinate systems coincide in the chief ray’s intersection point with
the refractive surface but they are fictitious separated in this figure for a better understanding.

3.3.2. 3D Case

Equivalently to the 2D case transforming Eq. (84) leads to C', €', =C, e, +v €, for the case that

e; =0;e';=0_for j<k, a statement which we could generally show to hold for all orders k > 2

including the special case of the Coddington equation.

In the general case Eq. (77) can as well be transformed in such a way that the unknown aberration

vector €', of the outgoing wavefront is determined by the incoming wavefront and the refractive surface.
Cie =Ce +v-g —r, (89)

where in I, only aberrations of order j <k occur. Therefore, I, can be determined by successively

solving of Eq. (89) for lower orders. Eq. (89) is the general refraction equation for aberrations of any

order in the 3D case.
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3.4. Examples and Applications

Two examples are provided, which demonstrate the advantage of the analytical nature of the
derived equations. The first example reflects the interesting topic that a refractive surface has to be
determined, which images an axial object point perfectly without any aberrations (up to the order k =6).

In this example a very big aperture-stop with a low f-number is chosen to demonstrate that the derived

equations are suitable for describing the effects of a large pupil. The second example deals with another

standard situation in optics that the incoming waverfront and the refractive surface are given and the
outgoing wavefront is the unknown quantity. In this example a big angle of incidence is chosen to

demonstrate that the derived equations can be used by obligue incidence.

3.4.1. Aspherical Surface Correction up to Sixth Order

One important application of the derived equations is that they allow determining a refractive

surface, which not only has a defined Power S, but also generates an outgoing wavefront which shows
no deviation from an ideal sphere up to the order k = 6.

Because of the analytical nature of the equations it is not necessary to use an iterative numerical

method. The task is to determine a rotationally symmetric aspherical surface S , which images an axial
object point with the distance S to the refractive surface to an axial image point with the distance s' to

the refractive surface (see Figure 19).
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Figure 19: One important application of the derived equations is that they allow determining a refractive

surface, which not only has a defined Power S , but also generates an outgoing wavefront which shows
no deviation from an ideal sphere up to the order k =6. The task is to determine a rotationally

symmetric aspherical surface S , which images an axial object point with the distance S to the refractive
surface to an axial image point with the distance s' to the refractive surface.
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The object side vergence and the image side vergence are given by S =n/s and by S'=n'/s’,
respectively, expressed in terms of the reciprocals of the object and image distance. Treating the

rotationally symmetric problem as 2D problem in the Yy -Z plane, a sphere with radius r is exactly

described by

f(y)= r(l—,/l— yzlrz), (90)

whose series expansion up to the order k =6 is

1 1 1
f(y)= —vyi+——vy*+ 64 91
(y) 2ry 8r3y 16Ir5y (91)

Applying Eqg. (91) once on f(y)=w,(y), r=s and secondly on f(y')=w,(y"), r=s

(including in both cases the sign of S or s") allows us to identify the wavefronts’ coefficients in the sense
of Egs. (32)-(35):

3 5
alnzzlzg’ a|n4=3i3=3(§j ' aln6=45i5=45(§j
s n ’ S n ‘ S n
1 s 1 s’ 1 sy’ 2
a|Out,2 = ; = F, a'Out,4 = 357 = (Wj ' alom,s = 458? = 45(?} .

The solution for the desired refractive surface, described by the series
= 55,2 2 aS,4 4 gS,G 6

S = + + +... 93

(y) 5 y o4 y 720 y (93)

as in Eq. (34), will be found up to the order k = 6 if we provide expression for the three coefficients as,

, g, and &g, (the odd coefficients for k =3,5,7,... are not present because of the rotational symmetry

of the problem).

Since the local aberrations of higher order have no influence on the local aberrations of lower

order, the coefficient of second order ag, can be directly determined by Eq. (53). In the present case of
orthogonal incidence we exploit that c=0'=0, y = y'=1 and 77 =n'-n , such that Eq. (53) reads as

(n'—-n)as , =n'a'y, ,—Nna,, , (equivalent to the vergence equation S =S'-S inEq. (11)), yielding

By, = (94)
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For finding a;, , we have to apply Eqgs. (54)-(57). Due to the orthogonal incidence Eg. (57) simplifies to

w=0,4=0y=M 5__ 000 (95)
n'-n n'-n
and consequently Eq. (56) simplifies to
onn' [ | 2(
R, = —— (W& -w? f (W +w?). (96)

n'-n

Inserting Eq. (96) into Eq. (54) and substituting w? WI(Ozu)t by the coefficients in Eq. (92) yields

In

1
_ (@) _ T (4) (4)
ag, =W~ =— (n W o —Nw,” + R4)

n'-n
1 enn’' 2
=——|na,,,—na, ,+——\a',.,—a a's, ,+a 97
n._n( Out,4 In,4 n._n( Out,2 In,2) ( Out,2 In,Z)} ( )
3 (n'+n)S3 B 2S2S" B 2582 N (n'+n)S“°’
(n'—n)? n? n n' n?

S (_ (n+n)?S°  3(n'+n)s’s' _(n'-3n)s’s”

.. = =
7 (n-n)® n’ n® n’n’
(98)

(n+n)S”®  3(n'+n)S's* (n-3n")S’S*
T n' " nn'2 '

Egs. (97), (98) complete the demanded solution, i.e. the coefficients a;,, a;, and a5 of the aspherical

refractive surface are determined such that an object point with the vergence S is imaged to a point with
the vergence S' without aberrations with order less or equal to k =6.

The results of Eqgs. (94), (97), (98) can be illustrated by a numerical example in which the
refractive index of the first medium is n =1, the one of the second medium is n'=1.5168, and the
object and image distance are given by s =-50.0mm and s'=60.0mm, respectively. Egs. (94), (97),
(98) then yield &g, =0.0876161mm™, &, =-0.00006550mm™>, &, =0.00002147 mm™=. By
means of a ray-tracing approach using the optical design package ZEMAX®, we have generated layout
plots showing rays corresponding to these values. As a comparison, we have first traced rays through a

spherical surface with radius r =1/a;, =11.4134mm (see Figure 20). Paraxial the imaging is perfect,

but the peripheral rays introduce large errors. Next, we have considered a parabolic surface with the same

paraxial curvature ag, (see Figure 21), but now we have chosen a stop with semi-diameter
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Iop =16.0mm which is considerably larger than the surface radius in Figure 20. Again, the peripheral

rays introduce large errors.

spherical

surface image plane

Figure 20: Numerical example in which the refractive index of the first medium is n =1, the one of the
second medium is Nn'=1.5168, and the object and image distance are given by s =-50.0mm and
s'=60.0mm . Ray-tracing generated by the optical design package ZEMAX® : Spherical surface with
radius r =1/3a;, =11.4134mm and a aperture stop with a semi-diameter r,,,, =16.0mm. Paraxial the

imaging is perfect, but the peripheral rays introduce large errors. The vertical lines in the drawings are
construction lines of ZEMAX® and have no relevance in our context.

parabolic

Figure 21: Numerical example in which the refractive index of the first medium is n =1, the one of the
second medium is Nn'=1.5168, and the object and image distance are given by s =-50.0mm and
s'=60.0mm . Ray-tracing generated by the optical design package ZEMAX® : Parabolic surface with
local curvature &g, and a aperture stop with a semi-diameter r,,,, =16.0mm. Paraxial the imaging is

perfect, but the peripheral rays introduce large errors. The vertical lines in the drawings are construction
lines of ZEMAX® and have no relevance in our context.

Although such a system has a very low f-number, it is now possible to reduce these errors

dramatically by choosing a sixth-order asphere based on the locally determined values ag,, as, and
ag - Figure 22 shows that the errors are reduced to a level which is no longer visible on the scale of the

plot.
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6th-order

image plane

Figure 22: Numerical example in which the refractive index of the first medium is n =1, the one of the
second medium is Nn'=1.5168, and the object and image distance are given by s =-50.0mm and
s'=60.0mm . Ray-tracing generated by the optical design package ZEMAX® : Strongly reduced
aberrations due to aspherical surface of 6" order with coefficients a;, =0.0876161mm™,

a; , =—0.00006550 mm~3, and a; s = 0.00002147 mm™ and a aperture stop with a semi-diameter

Iop =16.0mm. The errors are reduced to a level which is no longer visible on the scale of the plot. The
vertical lines in the drawings are construction lines of ZEMAX® and have no relevance in our context

3.4.2. A spherical incoming wavefront hits a spherical refractive surface by oblique incidence
In this example we use the derived equations to determine the aberrations of the outgoing
wavefront up to order k = 6 and compare them with the results calculated with ZEMAX®.

Given are the spherical incoming wavefront with a vergence S =10D and a spherical refractive

surface with power S =20D. The refractive index of the first medium is n =1, the one of the second

medium is n'=1.5168, and the angle of incidence is & =40°. Therefore, the vergence vector of the
incoming wavefront and the power vector of the refractive surface have the appearances s’ = (S,0,5)
and 5" =(S,0,S), respectively.

The aberrations of second order of the outgoing wavefront are determined by Eq. (14)

C's' =Cs+15, vyielding a vergence vector of the form s = (S', ,O,S'W). Numerical values for

S'XX’

S'y, are given in Table 2.

The third-order error vectors €, and €, are 0, because the incoming wavefront and the refractive
surface are spherical. Then Eq. (89) simplifies to C'; €', = —I, (the vector I, is shown in Appendix B as
a function of the given vergence S and the quantities S',, ,S'yy determined before). Numerical values

for €', are given in Table 2.
The error vectors of fourth order of the spherical incoming wavefront and refractive surface have

the appearances e, =(35%,0,5°%0,35°) and €," =(35°%,0,5°,0,35°), respectively. Using Eq. (89)
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leads to the resulting error vector of fourth order whose values are again given in Table 2. The 5" and 6"

order aberrations for the local wavefront aberrations are also numerically provided in Table 2.

order wavefront aberration (sagitta) wave aberration (OPD)
symbol value <1000 symbol value x1000
S'. 8.226176 mm™ | S'S° 8.226176 mm™
k=2 | S' 0SSy’ 0
S', 17.221464 mm™ | S'0° 17.221464 mm™
= 0| EYP 0
2 E'ey 0681892mm= | E° 0.681892 mm™
E'yy 0 [ ESP 0
E',y 2.076540 mm~ | E'5° 2.076540 mm™
E' o 0155799 mm= | E'O’? 0154347 mm™
E'xxxy O Elgxlj(? O
k=4 | E'%y 0.054537 mm™ | E'%0 0.052970 mm®
E'vy 0| ESy 0
E' Yy 0.148661mm™ | E'0° 0.135341 mm®
E'XXXXX 0 E'E()X?(IXDX 0
E' vy 0000713 mm™ | E'%y, 0.000010 mm™
E'xxxyy 0 E'sz)?y 0
k=5 ' 4 1OPD 4
E'vy | —0000946 mm™ | E'S0 —0.002170 mm
E' v 0| Eny 0
E' | —0013123mm™ | E —0.023830 mm™
E' v 0000339 mm™ | E'SS, | —0.000078 mm™®
E' oy 0 | E'y 0
E'vy | —0000294mm= | E'R0 | —0.000563 mm™
k=6 | E'uy 0 | Efey 0
E'y | —0000663mm™ | ECO | —0.001228 mm™®
E sy 0 | ES, 0
E'y | —0004746 mm™ | ETF0 | —0.009508 mm™®

Table 2: Numerical results for the local aberrations up to the radial order 6 of the outgoing wavefront
calculated by the analytical equation (89) derived in this PhD thesis. Left column: values based on the
wavefront sagitta; right column: OPD-based values, as defined by equation (96), and derived from the
wavefront sagitta results shown in the left column using equation (324).

As mentioned at the beginning of this thesis, our whole treatment is based on the description of

aberrations by their wavefront sagitta. For completeness, it is important to provide also aberration results
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in the OPD picture. In Appendix A: Relation between sagitta derivatives and OPD derivatives, we
provide relations between sagitta derivatives and OPD derivatives. Analogously to Eq. (26), we define

OPD-based vectors of aberrations for the wavefronts by

OPD k,0 10PD 1(k,0)
Ex...xx T|(n ) E X.. . XX Out
EOPD Z_(k—lll) EIOPD 1(k-1,1)
eSPD — xxy — In ) ’ eukOPD — xxy — Ol.Jt , (99)
OPD (0,k) 10PD 1(0,k)
Ey...yy Z-|n E y...yy T Out

where r,(nkx*kv),r'gggkv) are in this context OPD derivatives of the incoming and the outgoing wavefront

(ke ky)
w

which play the role of the generically used symbol 7 in Appendix A. The values of the aberrations

1OPD

e's ~ are listed in Table 1, too, together with their counterparts e', . In accordance with Appendix A,

e'>® is equal to €', up to the order k = 3. For k =4, the values of e'>"° and €', are slightly different,

and for k > 5, the deviations between the two pictures are considerable. We remark that this is the reason
why it was necessary to treat the relations between the different coordinates simultaneously with the

wavefront derivatives from the very beginning (see Egs. (40), (66)). This confirms that the vector of six

unknowns in Eq. (66) does not introduce additional complexity to the problem, but it is rather the only

consistent way how to treat carefully the inherent complexity in such a way that numbers like in Table 2

are meaningful.
Apart from yielding exact values for the local derivatives, our method will also be suitable for

computing Zernike coefficients over a full pupil size if local aberrations up to sufficiently high order are

involved, as argued in chapter. 2.2. In Table 3, we provide the Zernike coefficients up to order k =6 for
our example assuming a pupil with semi-diameter I, =3.0mm. The coefficients have been computed

using Egs. (115) and (116) for the order k =6.
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Symbol | Zernike coefficients | Zernike coefficients
order (OSA (our method) (ZEMAX®)
standard) value/ xm value/ ym
c,’ 0 —-24x10°°
k=2 |c] 16.672042 16.672048
c? —8.251706 —8.251718
c,’ —0.008734 —0.008746
;' 1.092135 1.092042
=3 e 0 —29x10°
c3 0 ~5.8x107°
c,’' 0 ~2.4x10°
c,’ 0 ~-1.8x10°°
k=4 | c; 0.036792 0.036794
c’ 0.003041 0.003034
C, —0.003785 —0.003780
c;° —0.000060 —0.000052
c.® 0.000723 0.000719
(5 c.' —0.001026 —0.001058
c 0 1.2x10°®
cs 0 1.2x10°8
c: 0 1.8x107°
c;® 0 ~-1.2x10°®
;' 0 0.000000
Cy’ 0 12x10°
k=6 | cl 0.000089 0.000089
c? 0.000085 0.000083
ce 0.000005 0.000004
ce —0.000005 —0.000005

Table 3: Zernike coefficients of the outgoing wavefront up to order k =6 assuming a pupil with semi-
diameter r, =3.0mm. Left column: values based on our analytical method computed using Egs. (115)

and (116); right column: values based on numerical ray-tracing (ZEMAX®). The agreement between both
results is obvious. Apart from yielding exact values for the local derivatives, the derived analytical
method is also be suitable for computing Zernike coefficients over a full pupil size if local aberrations up
to sufficiently high order are involved.

For comparison, we have also calculated the solution of the same problem with a ray-tracing
approach using ZEMAX® (see Figure 23) followed by a Zernike analysis. Those values are provided in

Table 3 as a reference. The consistency of the results is obvious. We would like to stress again that our

local aberration values are obtained by an analytical method and therefore by definition are exact. The
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transformation of our local coefficients to Zernike coefficients, on the other hand, yields only a (however

very good) approximation for their numerical values based on the assumption that the truncated subspaces

of order k =6 describe the aberrations sufficiently well. But still, within this approximation, the results

are analytical, such that a Zernike coefficient obtained as zero is exactly zero, whereas a ray-tracing value

is always numerical by its nature resulting in small deviations from zero (see Table 3).

surface

T

L. object

30 LAYOUT

OBLTQUE INCIDEMCE ONTO SPHERICAL EEFEACTIVE SURFRCE
WED DOCT ZB ZBB@9

sPHER _SURF_OBLIOUE_HB0EG. ZMX
CONFIGUREATION 1 OF 1

Figure 23: Ray-tracing plot for example B generated by the optical design package ZEMAX®. Given are
the spherical incoming wavefront with a vergence S =10D and a spherical refractive surface with
power S = 20D . The refractive index of the first medium is n =1, the one of the second medium is
n'=1.5168, and the angle of incidence is & = 40° .A spherical wavefront is refracted by a spherical

surface under oblique incidence, giving rise for Coma in the outgoing wavefront. The box drawn around
the refractive object are construction lines of ZEMAX® and have no relevance in our context.
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4.  Description of a Wavefront in a rotated Coordinate System

For calculating the aberrations of a spectacle lens or an entire optical system, it is necessary to
describe the wavefront in different (rotated) coordinate systems, because the refracting planes, e.g. the
refracting plane at the front surface and at the rear surface e.g. of a spectacle lens, are not identical. They
are rotated around the chief ray. A rotation is also necessary to describe the aberrations relating to the
horizontal or vertical axis or the axis defined by Listing’s law. Listing’s law describes the three
dimensional eye movement when viewing in a diagonal gaze direction (tertiary position). It says that the
rotation takes place around an axis which is perpendicular to the plane spanned by the vector in primary
gaze direction and the vector in tertiary gaze direction [45,46]. The goal and also the advantage of the
method is that the derived equations allow calculating the coefficients of the wavefront in the rotated
coordinate system relating to the coefficients of the original wavefront directly without a coordinate

transformation.

4.1. Rotated coordinate system

By rotating the coordinate system about the angle o (see Figure 24), the coordinate transformation is
described by

X =XCosa — ysina X X
~ . or [Jz R(a)( j (100)
y =Xxsina + ycos a y y

with the rotation matrix

R(a) = [ (101)

coSa —Sina
sinad cosa

4. Description of a Wavefront in a rotated Coordinate System 71



Derivation of analytical refraction, propagation and reflection equations for Higher Order Aberrations of wavefronts
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Figure 24: Relation between the coordinates X,y and X, y. By rotating the coordinate system about

X X
the angle a, the coordinate transformation is described by (_,j = R(a)( ] with the rotation matrix
y y

sina  cosa

R(a)=£

cosa  —sin aj

Therefore the wavefront W in the rotated coordinate system X,y is defined by
W(X,y) =w(x(X,y), Y(X,¥)) (102)
By taking the derivative of the wavefront W with respect to X,y , the new coefficients &, are
determined in relation to the coefficients a, , ..
k

- 0 _ _
A em = =i WIX(X, Y), Y(X, ) (103)
ey

4.2. Second order aberrations

For second order aberrations, it is known how to calculate directly the coefficients @, , ., of the

wavefront w(X, y) in the rotated coordinate system (X, Yy) [7,8].

The vector of second order aberrations is

s=|S (104)
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If the coordinate system is rotated by the angle a, the new second order aberrations S (in the rotated

coordinate system (X, y)) will be calculated by

5=R,(a)s (105)
with
cos? a —2cosasina sin a
R,(a)=|cosasina cos’a—sin“a —cosasina (106)
sin a 2c0s asina cos? a

4.3. Higher order aberrations

The dependence of the new coefficients a on the old coefficients a can be described

m,k—m m,k—m
by
a00 a00
aOl a01
a'-10 a‘10
é“02 02
MRy (N, (107)
a‘20 aZO
503 aOS
512 a12
521 a'21

The resulting rotation matrix has a block structure, which shows that the coefficients a of order k

m,k—m

depend only on the coefficients a,,_, also of order k. The rotation matrix for the first 15 coefficients

(N =15) up to order (k =4) is

1 0 0
0 R(«) :
Rp (15, ) = R,(a) (108)
: R,(@) 0
o - 0 R, ()

The matrix elements of the block structures R, (a) for the first order (k=L) is the known rotation

matrixes R, (@)
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cosa -sina
R, (@)=R(a)=| . (109)
sina cosa
and for the second order aberrations (k=2) the known rotation matrixes R, (&)
cos’a  —2cosasina sin’«
R,(a)=|cosasina cos’a—sin®a —cosasina (110)
sin’ o 2cosasina cos’ o

For third order (k=3), the rotation matrixes is given by R, (@)

cos® a —3cos’ asina 3cosasin’ a —sin*a
cos’asina —2cosasin?a+cos’a  sina—2cos?asina  cosasin® a

Rs(a): - 2 - 3 2 - 3 - 2 2 -
cosasin“a —sin® o+ 2c0s asma) cos’a—2cosasin“a —Ccos” asina
sin® o 3cosasin® a 3cos’ asina cos® o
(111)
and for fourth order (k=4), the rotation matrixes is given by R, (&)
cos4a —4COSSaSina
cosgasina cos4a—3coszsin2a
R4(05)= coszasinza 2(c053asina—005asin3a)
coswsin3a 3COSZSin2a—Sin4a
sin4a 4005asin3a
6coszasin2a —4003asin3a sin4a
—3(cos3asina—005asin3 a) SCOSZSinza—Sin4a —COSasin3a
cos4a—4coszasin2a+sin4a —2(cos3asina—c05asin3a) coszasinza
3(cosSasina—005asin3 a) cos4a—3coszsin2a —COSSasina
GCOSZaSinza 4cos3asina cos4a
(112)
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The equations (109) to (112) show that the block matrix elements e; j(ac) of the rotation matrixes
R («) have a point symmetry with e, ; (&) =€, ;.- (~@) -

With c=cosa, S=Sina the block matrixes can be simplified to
ka0 *
c's
R, (a) =
' clsk *

R,(e¢)=|cs c“—s° *
c%s*  kclst  *

CkSO * * *
R (a)_ Ck—lsl _(k 1)Cl k-1 * *
3 - clght (k—l)Ck gl _ gk * *
Cosk kcl k-1 kaflsl *
CkSO * * * *
Ckflsl Ck _(k _1)C2 2 * * *
R,(a)=| c?s® 2(c*'s? clsk M) ¢ —4cPs® +s" * o x
c's*t  (k-1c?s? —s*  (k =1)(c* st clsk hox o
cs* kst 2(k —1)c?s kck?tst *
cks? * *
Ck—lsl Ck —(k _1)Ck—2 2 *
R.(a) = ck2s?  2ck st —3c2s" 2 ¢ —2(k —2)c*?s? + 2(k — 2)c's* T
i c’s*? 3k ?s? 2cls“ (k 2)ct st - 2(k — 2)c’s* 2 + s
¢kt (k—=1c?s* 2 —s —(k-Dc's* ™ +2(k - 2)c*?s?)
COSk kCl k-1 2kc2 k-2
* * *
* * *
* * *
* * *
(k-Dc st —2(k ~2)c?s* 2 * *
2ka 252 kck—lsl * (113)
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4.4. Relation between Zernike series and power series

The Zernike coefficients corresponding to a wavefront W(X, y) are given by the integral

m 1 m X
S J’J’ Z) (E’%}N(X’ y)dxdy | (114)

7Z'I'0 pupil

where 1= /X’ +y® e, Xx= pcos¢, y = psing and 1, is the pupil size.
If the wavefront is given as a series like in Egs. (8), (9), then the integral in Eq. (114) will be itself
a series, i.e. a linear combination of coefficients &, ,_, . Summarizing up to given order k the coefficients

Cy and a,,_, as vectors, a transition matrix T(K) between the Zernike subspace and the Taylor series

subspace of order k can be defined by

0
Co E o0

-1
C; rOEx roalo

1

C; roEy Fodos

-2 2 2
C, o Ex Ty 85

0 2 2

c r'E r-a

2 l=Tw)) LY =0T 5T (115)
2 r2E rla

C, 0 =y 0 %02

_3 3 3
C, o E oo fo @30

1 3 3
Cs Fo Exxy Fo 854

k r*E r‘a

Cy 0 —yy..y 0 %ok

Also if representations of such a matrix are given in a similar form also in the literature [2,35,51],

the prefactors of the underlying power series in literature will not be in detail the same as in our case.

Therefore we provide an explicit expression for T here for order k = 3, given by
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100 0 -43 0 0 0 0 0
020 0 0 0 0 -4J2 0 0
002 0 0 0 0 0 -4/2 0
000 0 4/3 -26 0 0 0 0
T - 000 4/6 0 0 0 0 0 0 (116
000 0 4J/3 26 0 0 0 0
000 0O O 0 -12J2 36J2 0 0
000 0 O 0 0 0 122 -122
000 O 0 0 122 1242 0 0
000 0 0 0 0 0 362 1242

The rotation can also be executed in the Zernike space. Therefore the wavefront (Eq. (63)) has to
be expanded with Zernike polynomials (Eq. (117)) in polar coordinates.

Zyo(p, ) =1

Z,(p,p)=2pcosgp

Z,_(p,p)=2psing

Z,0(0.0) = 3(20? 1) (117)
Z,,(p.p) =/6p” cos 20
Z,5(p.9) =/6p°sin2¢p

with w(X,y) = i Zk:cf‘zkm (0,9, (Mm—kK)even (118)

k=0 m=—k
Because of the representation of the Zernike polynomials in polar coordinates, the rotation rule
for Zernike coefficients is very simple [35]. The vector of the Zernike coefficients is transformed by

rotation with

EO,O CO,O
ES’ZL,l Cl,l
E"‘l,—l Cl,—l
62,0 C2,0
60,22"22 =R,..i.(N,@) chzz , (119)
63,1 CSl
63,—1 C3, 1
EE—3,3 C33

4. Description of a Wavefront in a rotated Coordinate System 77



Derivation of analytical refraction, propagation and reflection equations for Higher Order Aberrations of wavefronts

The rotation matrix in block matrix description is directly based on the elementary rotation matrix in Eq.
(100). For N =15 the rotation matrix has the form:

1] - . 0
0 R(a) :
: 1
R(2c)
R zemie (15, @) = R(a) . (120)
R(3x)
1
: R(2a)
0o .. . 0 R(4a)

Every block in Eq. (120), which relates to the same radial order, has a frame.

To calculate the rotation matrix R, (N, @), itis necessary to transform R, ....(N, &) onto
the coefficient system of the power series expansion with Eq. (116)
a'dOO 6’0 0 C0,0 a00
aOl Cl,l Cl,l aOl
a10 Cl,—l Cl,fl a10
a02 C2,0 C2,O a02
ap _ A-lt C, _ -l C, _ 71 Ay
~ =n T (N) ~ =n T (N)RZernike(N'a) _T (N)RZernike(Nla)T(N) )
a‘20 C2,—2 C2 -2 a'20
a03 C3,1 C3 1 a03
a12 C3,—1 C3 1 a12
aZl C3,3 C3 3 a21
(121)
It follows, that
Rpoc (N, @) = TH(N)R g (N, @) T(N), (122)
with a block structure of the form
1 0 0
0 Ry(o) :
Rp,: (15) = R, (a) (123)
: R,(x) 0
0 0 R,(a)

where the block matrixes are identical with the ones of Eq. (113).
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5. Derivation of the Propagation Equations

5.1. Mathematical Approach in the 2D Case

5.1.1. Description of Wavefronts in the 2D case
The wavefronts themselves are each described by power series expansions. Any point on the

original wavefront is given by the vector

w, (y) = (W y(y)j (124)

where in the 2D case W, (Y) is the curve defined by

a'o,k k
oY (125)

Wo(y) :i

The normal vectors and their derivatives are described as in chapter 3.1.3 and obey the same relations as
Egs. (36)-(38). Since the normal vector of the original wavefront and the normal vector of the propagated

wavefront are equal, the normal vector will be labeled generally with n .

In application on the functions of interest, N, (y) =n(w® (y)), this means that n (0) =(0,1)".

Further, the first derivatives are given by

0 _ 00y = n® (0w (0 <| W@
aan(y) y:o_nw (0) =n™ (O)w; (0)—(0JW0 (0) (126)

and similarly for the higher derivatives.

5.1.2. Ansatz for Determining the Propagation Equations
Once the local aberrations of the original wavefront are given, its corresponding coefficients a,
are directly determined, too, and equivalently the wavefront’s derivatives. It is our aim to calculate the

propagated wavefront in the sense that its derivatives and thus its a, coefficients (see Egs. (124),(125))

are determined for all orders 2<Kk <Kk, for the order K, of interest, and to assign values to its

corresponding local aberrations.
In contrast to this general procedure, which is the same as in chapter 3, we consider now the

following situation as starting point for treating propagation. While the chief ray and the coordinate
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system are fixed, a neighboring ray scans the original wavefront {Wo} and hits it at an intercept y, #0,
then propagates to the propagated wavefront {Wp}, where the brackets {} shall denote the entity of
vectors described by Eq. (124). As shown Figure 25, and consistently with our notation, we denote as Y,

the projection of the neighboring ray’s intersection with {WO} onto the y axis and analogously, the

projection of the intersection with {w , | onto the Y axis is denoted as y, .

v

=
=

y
-y -

z
n

Figure 25: Propagation of a wavefront w, about the distance d = A to the propagated wavefront w, .

The chief ray and the coordinate system are fixed, a neighboring ray scans the original wavefront {WO}
and hits it at an intercept Yy, # 0, then propagates to the propagated wavefront {wp } where the brackets
{} shall denote the entity of vectors described by Eq. (124). Consistently with our notation, we denote as
Y, the projection of the neighboring ray’s intersection with {Wo} onto the Yy axis and analogously, the
projection of the intersection with {wp} onto the Yy axis is denoted as y,, .

The vector W, =W, (Y,) (see Eg. (124)) points to the neighboring ray’s intersection point with

the original wavefront, and the propagated wavefront’s OPD referred to the original wavefront measured

along the ray is denoted by z . Correspondingly the vector from the original wavefront to the propagated

wavefront is 7/nn,,. Hence, the vector to the point on the propagated wavefront itself, w,,, must be

equal to the vector sum W, =W, + 7/nn,, . This yields the fundamental equation:
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yo T _ yP
(wo(yo)}ﬁnw ‘[wp(yp)j (120

From Eq. (127), it is now possible to derive the desired relations order by order. Although only the
propagated wavefront is of interest, in Eq. (127) additionally the quantities Y, and Y, are also unknown.
However, those are not independent from each other: if any one of them is given, the other one can no
longer be chosen independently. The coordinate Y, is used as independent variable, and Y, is

considered as a function of it.
Eq. (127) represents a nonlinear system of two algebraic equations for the two unknown functions

w,(y,) and Y, (yp) . Even if we are only interested in a solution for the function w, (y,), we cannot

obtain it without simultaneously solving the equations for both unknowns order by order. Introducing the

vector of unknown functions as

(YY)
p(y,) = [Wp (yp)J (128)

0
and observing that the initial condition p(0) =(7} has to be fulfilled, it is now straightforward to
n

compute all the derivatives of Eq. (127) up to some order, which yields relations between the curvatures,

third derivatives etc. of the original and propagated wavefront. Rewriting these relations in terms of series

coefficients a,, and solving them for the desired coefficients a, , yields the desired result.

Rewriting Eq. (127) leads to

T
(OJ Yo +Hnw,y _yp
- (129)

Wo(yo)+£nw,z _Wp(yp)
n

Before solving Eq. (129), we distinguish if the independent variable Y, enters into Eq. (129) explicitly

like in the first component of the vector (yp,Wp(yp))T , or implicitly via one of the components of Eq.

(128). To this end, we follow the concept of chapter 3 and define in this case the function

(IRZxIR)— IRZ: (p,y,) > f by
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T
Yo +—n,, (WO (y,)) -y
f(p, yp): n p

, (130)
Wo (yo) +%n W,Z(W((Jl) (yo)> - WP

where (p,,p,)=(Y,,w,) are the components of p. Setting now p = p(yp) , Eg. (130) allows
rewriting the fundamental system of Eq. (129) in a more compact way as

f(p(y,).y,)=0

(131)
as can be verified explicitly by component wise comparison with Eq. (129).

Solving Eq. (130), (131) for the function p(yp) is formally identical to solving Eq. (42) in

chapter 3. The only difference is now the name of the independent variable is Yy, instead of yg in

chapter 3. Taking the total derivative of Eq. (131) with respect to Y, and applying the principles from the
theory of implicit functions leads to the system of differential equations

2 of of. .
—pW(y)+—-=0, i=12,
Jz;apl J p

(132)
p

where the matrix with elements A; = of; /0p; is the Jacobian matrix A of f with respect to its vector
argument P, evaluated for p =p(y,)

. The Jacobian A reads

i i T @) ,(2)
ayo ow 1+HnW’yWo 0
N A (133)
9y 2 w® £ E 00 @ 1
5)/0 8Wp 0 n w,z "o

In Eq. (133), the occurring expressions are understood as W® =w®(y.), w? =w?(y,),

Ny =Ny W (Y,)), NG, =08, (W (Y,)), etc., and additionally y,,w, are themselves functions of
Yo -

The derivative vector of; /5‘yp in Eq. (132) shall be summarized as

(134)
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Similarly as in chapter 3 we conclude that we can write A with argument A(p(yp)) only and b

without argument at all because b is constant.

EQ. (132) can then be written in the form

AP(y,))PY (y,) =b. (135)

5.1.3. Solving techniques for the fundamental equation

For solving Eqg. (135) for p(yp) , we can apply identically the same steps as in Egs. (47)-(50)) in

chapter 3, with the only difference that here the independent variable is named Y, instead of Y, and that

0
the initial condition reads here p(0) =(7J instead of P(0) =0 as it was the case in chapter 3. The
n

equations as a function of the independent variable Yy, are shown in Appendix C (Egs. (326)-(329)).

Hence in this chapter, we directly provide a formal solution for p(k) (0), expressed in terms of its

predecessors, by the equations
pP0)= A k=1

K1k — . 136
p(k)(O)z—AlZG ﬂA‘k”p“)(O), k>2. (136)
=\ )

where A™ = A(p(0)) ™ = A(0) .

5.1.4. Solutions for the General Propagation Equations
In the result for p(0), the first rows of Eq. (136) involve A(0)*. For obtaining A(0)*, we

evaluate Eq. (133) for p=0 and apply Eq. (37) in chapter 3, yielding

1
_Tw@ -
A0 7% O lsat - we O (137)
0 -1 0 -1
The final result for p® (0) is
_ 1
pY(0)=A"D=|1-yw® (138)
0
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The first derivative of the Y, -coordinate, which is the first component p, of p, is a dilation depending

on the curvature of the original wavefront and the propagated optical path length =, such that y((,l) 0)=

1 . -
W . The slope of the propagated wavefront vanishes, WS) (0) =0, as does the slope of the original
0

wavefront due tow'” (0) = 0.
ot w __d
For the orders K >2 we apply Eq. (136). The derivatives A :WA(p(yp)) , etc. are
p ¥,=0
directly obtained by total derivative of Eq. (133) with respect to Yy, , evaluating for y, = 0 and again

applying Eq. (37). For the orders K >2 only the results Wék)(O) for the propagated wavefront are of

interest, therefore we directly provide those result. The resulting second-order law is (omitting the

argument * (0) *)

w? = g (139)
. 1
with p= v (140)

which is well-known as the propagation equation and reveals to be a special case of the results. The novel

resulting higher-order laws can be written in a similar fashion

@) _ pa| @ v 32 (2)%
w, _ﬁ(wo +3H@WO - W,

(141)
w® = ﬂs(wf,s) +58-w® (wa,“) +38- WO —pw @’ j]
n n
Eq. (141) can be generalized for 2<k <6 to
wi = g (Wi +R,) (142)

where in R, the dependence of W' on all wavefront derivatives WS” of lower order (j<k) is

summarized.
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5.1.5. Special case
Although application of Eq. (136) provides a solution for (" (0) up to arbitrary order K, it is
very instructive to analyze the solutions more closely for one special case. We observe that the
expressions in Eq. (142) for R, will vanish if we set w'” =0 for all lower orders j <k (for k=3 or
k =4, respectively).
This leads to the assumption (for k >2) that the following statement is generally true: if only

aberrations of one single given order K are present while for all lower orders j <k we have Wc()” =0,

1
then [1/—(2)}:1 and R, =0, which means for fixed order K that Eq. (142) will be valid for
_Z'nWO

vanishing remainder term and the aberration of the propagated wavefront will be equal to the aberration
of the original wavefront independent of the propagation distance d .

To this purpose, we start from the recursion scheme in Eq. (136) and show that only the term

®

containing p"” can contribute to the sum if all aberrations vanish for order less than K . For doing so, it is

d—mA(p(yp)) of the matrix A

necessary to exploit two basic properties of the derivatives AM™ = dy

p ¥,=0

for the orders 1<m<k—1. As can be shown by element wise differentiation of the matrix A, the

highest wavefront derivatives present in A™(p(y,)) (see Eq. (133)) are proportional to W™?.
Evaluating A™ (p(y,)) at the position y, =0 shows that A™ cannot contain any higher wavefront
derivatives than Wé””z) . It follows that

i) The highest possible wavefront derivatives present in A™ are w(™? .

ii) If all wavefront derivatives even up to order (m+2) vanish, then A™ itself will vanish.

This is in contrast to A itself which contains constants and therefore will be finite even if all

wavefront derivatives vanish.
Analyzing the terms in Eq. (136), we notice that the occurring derivatives of the matrix A are A*™?,
AC2 0 AD AD for j=12,..,(k—1), respectively. It follows from property i) that the highest
occurring wavefront derivatives in these terms are (k+1),k,(k —1),...,3,2, respectively. Now, if all
wavefront derivatives up to order (k—1) vanish, it will follow from property ii) that all the matrix
derivatives A® | .., A®@ A® must vanish, leaving only A“™® gnq A% . Therefore all terms in

Eq. (136) vanish, excluding only the contribution for j =1 and j =2 . We directly conclude that
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p® = —ATAPATD , k=2
2 (k-1 o 143
p(k):_Alz[j JA(kJ)p(J) o k>3 (143)
i=\J~
This leads directly to
p@= —ATAPATp , k=2
&) _ A-1 _ k-2 pAL1A@D  AKDIpa-L (144)
p® =AY (K-DACDPATAD A€ IA Yy | k>3
In the term
® _%@) w0
A" = 1-7w, (145)
w? 0

only wavefront derivatives W' and W'® occur. Therefore A® =0 for k >3 because W and w'”

vanish. Eq. (144) can then be written in the form

p(3) _ Afl(ZA(l)AflA(l) _ A(Z))Aflb k=3
p® = —ATAKIAT , otherwise

(146)

To evaluate p® in Eq. (146) the second derivative of A has to be calculated. A® reads if all

derivatives of the wavefront vanish for order less or equal to m=2

/e (4)
A(z):[ A(AWO +Wo ) OJ (147)

w 0

For evaluating A®™® for k —1>2 we set k—1='m, and it is straightforward to show by induction

that if all aberrations vanish for order less or equal to m , then

r (m+2)
Am | 7V 0 (148)
W(()erl) O
. . . 1 . .
where yf)l) has been substituted by their solution 1/—(2) wherever it occurs, respectively (see
_Z'nWO

Eq.(138)). Inserting A™ (0) for m=k —1 and A(0)™ from Eq. (136) into Eq. (146) yields directly that
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k k
wi = w (149)
for all orders k > 2.

5.2. Mathematical Approach in the 3D Case

5.2.1. Wavefronts and Normal Vectors

Although more lengthy to demonstrate than the 2D case, conceptually the 3D case can be treated
analogously to the 2D case and analogously to Egs. (63)-(74) in chapter 3. Therefore, we will only report
the most important differences. Analogously to Eq. (124), the original wavefront is now represented by
the 3D vector

X
w,(x,y)=| Yy (150)
W, (X, Y)

where W, (X, y) and the relation between the coefficients and the derivatives is defined as described in

chapter 3. The connection between coefficients and local aberrations is now given by multiplying the
coefficient with the refractive index.

For treating the normal vectors, we use the same function

~u
n(u,v):= S S (151)

/ 2 2 '
1+u” +v 1
as in chapter 3 and make use of the fact that the normal vector n,(X,y) to a surface

w(X,y) = (X, y,W(x,y))" is given by n(VW). In the intersection point we have now

n,(0,0)=(0,01)", and the derivatives corresponding to Eq. (37) can directly be obtained from Eq.
(151).

5.2.2. Ansatz for Determining the Propagation Equations

The starting point for establishing the relations between the original and the propagated wavefront
is now given by equations analogous to Eq. (127), with the only difference that x and y components are
simultaneously present.

The vector of unknown functions is now given by
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Xo (X5 Yp)
P(Xp Yo) =| Yo (X5 Yy) (152)
and the 3D analogue to Eq. (127) leads now to
f(P(X,. ¥, ). %, ¥, ) =0 (153)

where f is the 3D analogue to Eq. (130).
Since Eqg. (153) is formally identical to Eq. (67) in chapter 3, the solving procedure from chapter
3 can be directly applied. In particular, we have to deal with two first-order equations

Alp(x,, y,))p (x,,Y,) =b,

(154)
AP, ¥,))p? (%, y,) =b,

which correspond exactly to Eq. (68) in chapter 3. Of course, the explicit expressions how f and p

depend on their arguments now lead to different expressions for the column vectors of the

inhomogeneities

b=——=@19 0 0), b =—ﬂ:(o 1 0). (155)

p p

and for the Jacobian matrix A(p(x,,y,)) with elements A; = of; /0p; which is now given by

T T
(0,1),,,(L1) (1,0),,(2,0) (0.1),,,(0.2) | 1 L0) LD
1+H(nW’X W, + Ny Wy ) H(nw‘x W, Ny W ) 0
T (000D | (10),,/(2,0) T (00 (0,2) | m(L0) y (L1)
A(p(xp, yp))z H(nw,y Wo ™+ Ny W) 1+ﬁ(nw'y W, 7 Ny W) 0 (156)
@oy , T o 0D,,,@D (L0),,,(2.0) 01 , T 1n(01,,,02) (L,0),,(L1)
W, +H(nwvZ W, Ny W ) W, +H(”w,z W, Ny W ) -1

5.2.3. Solutions for the General Propagation Equations

The formal analogy of Egs. (49) to Egs. (69) in chapter 3 can be exploited by making use of the
solving techniques developed in chapter 3. Equivalently either Egs. (73) or Egs. (78) from chapter 3 can
be directly applied. The only difference to chapter 3 is now that again the explicit expressions for the
Jacobian and its inverse, which have to be inserted in those Eq. (73) or Eq. (78) from chapter 3, have

another appearance, here given by
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1-7w20  —gwt 1o WD WD 0
AQ)=| - 1-7we? 0 |= A0 =7 ywt  1-ywe ) o | 157)
0 0 -1 0 0 -1
A S 1
7 det(A®©) 1w — oY — w1 () wWEwE )
and after inserting Egs. (155) in Egs. (73), (78), we obtain for the order k = 2 the solutions
n(n—zw®?) nzw Y
p“?0,0) =y newi® |, pPY(0,0)=y n(n—7w*?) (158)
0 0
. . A(l,O) _ d A
For the orders k >2 we apply Eq. (78). The derivatives = (P(X,,Y,)) etc. are
p xp:O,yp:O

directly obtained by total derivative of Eqg. (156) with respect to x, and y,, evaluated for x, =0 and

y, =0. For the orders k =k, +k, >2 only the results Wék*’ky)(0,0) for the propagated wavefront are

interesting, therefore we directly provide those result. The resulting second-order law is (omitting the

argument * (0) *)

WF()Z,O) _ 7/(% (Wél,l) )2 + (l— %Wéo’z) )\Néz,O))

wi =y wi (159)

WF()o,z) _ 7(% (Wél,l) )2 + (1—%W52’0) )\Néo,z))

which is well-known as the propagation equation and reveals to be a special case of the results. If the

coordinate axes coincide with the directions of principal curvature of the wavefront, which means that

wi =0, Eq. (159) can be simplified to

W0 = 1 (2,0
p ~(2.0) Yo
1- 7w
@y _
wi =0 (160)
W2 = 1 0.2)

p 1-%W§0'2) o]

The resulting higher-order laws can be written in a similar fashion
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WF()S,O) _ }/3((1_ %Wéo,z))3wt()3,0) + %W((Jl,l)

B 7wP?) W + 7w (W IWE?) +3(L- 7w 2) Wi )

Wéz’l) _ ys(w(()u) n %(W(()l,l) (2W51,2) n WéS,O)) _ (ZW(()O,Z) n WéZ,O) )W(()Z,l) )+
(%)2 (Wc()z,l) W(()O,Z)z _ Z(Wél,l) (W(()l,Z) n W(()3,O)) _ W((,Z’O)Wéz'l) )Wc(’o,Z) i
Wéo,S)Wén)Z n 2W§l’1) (Wél,l)Wéz,l) _ Wél,Z)Wéz,O))) +
(%)3 (W(()l,Z) Wél,l)s _ (Wéo,s) W(()Z,O) n 2W§0’2)W£2’1) )Wél’l)z n

2
W(EO’Z) (ZW(()LZ)W(SZ,O) + W(()O,Z)WS&O) )Wél,l) _ WéO,Z) W(()Z,O)W(()Z,l) ))

Wé1,2) _ ys(w(()1,2) + %(W(()l,l) (ZWéZ'l) + Wéo,s)) _ (ZW(()Z,O) + W(()O,Z) )Wél,Z) )+
()2 (Wél,Z) W(()Z,O)z —2(WED (WEY + WO - wODWED O
W§3’O)Wél’1)2 + 2w (W WD — W(()Z,l)W(EO,Z))) +
(%)3 (W((JZ,l) Wél,l)s _ (Wé3,0)wéo,z) n 2W(()2,O)W((Jl,2) )W51,1)2 "

2
Wéz'o) (ZW((,Z'DWC()O'Z) + W(()Z’O)WSO’S))WS’D —Wéz’o) W((,O’Z)W(()l'z) ))
(161)

W’go,s) _ 7/3((1—%w§2’°’)sw(§°'3) +%W§l’1)

(3L W)W+ 7 (L WEOWED) 30— 7wE0) )

Egs. (159)-(161) show that the result for Wéi’j) can be derived from the result of WF()“) by interchanging i

and | .

5.2.4. Special Case
Analogously to the special situation that leads to Eq. (149) in the 2D case, it is possible to find a

corresponding special case in the 3D case. By a similar reasoning as in the 2D case and as in chapter 3, it

is found that if all lower order aberrations for j, + j, <k, +k, vanish, then Eq. (78) will reduce to the

lowest term, yielding
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p® = —AAGIIA , k,#3,k, =0
p®? = ATQRAMIATACY _ACHATL , k,=3k, =0
p®? AT(ARIATACY L ACYATARD _ ACYATY ok =2k, =1
pt ) = —ATANTIA Y . k, #0,k, =0,k +k, #3
= —ATAYYIAT, e

p*? ATACYATALD L ACOATALD _ACD ATk =1k, =2
p¥ = ATRACIATACY - ACHAT , k,=0,k, =3

p(ovky) - _ AflA(O*kv’l)Aflby , k,=0,k, #3

The result in Egs. (162) is similar as Eq. (73) in chapter 3, but it differs due to different conditions under
which the matrix A or one of its derivatives vanish. For finally evaluating Egs. (162) we need the partial

derivatives of the matrix A under the assumption that all lower order aberrations for j, + j, <k, +Kk,

vanish, which is given as

0
Amx,my
0 , M +m, =2
(my+L,m, +1) (my,m,)
W, g w, "0
Amem,) _ (163)
(my+2,m,) (my+1,m, +1)
- %Wo ! - %Wo ’ 0
) o 2
_%Wc()mx+1my+1) _%Wc()m my +2) 0 ' mX +my > 2
émx+l,my) W(()mx,my+l) 0

with
(3,0) (2,1)
W, 2, W, 1m,+1
%V 021 +Wémx+ my) %V 012 +W(()mx+ my+1)
W( 1) W( ,2)
Amx,my == (21) 1L2)
w w
7 v 0 + W(mx+l,my+1) 7 v 0 + W(mx,my+2)
n ) 0 n , 0

~ VV(()mxﬁ-l,my)
V= W(()mx,my+1)
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L0) 10) 0.0

where X, Xéo‘l), Yo ., Yo, etc. have been substituted by their solutions according to Eq. (158).

Inserting A™™) from Egs. (163) and A(O)‘1 from Eqg. (157) into Egs. (162) yields one common

relation for W;k*’ky) for the various subcases in Egs. (162) (omitting the argument * (0,0) *):
(keky) _ arlkky)
W, =Wy (164)

for all orders k =k, +k, >2.

5.3. Results

5.3.1. 2D Case

Eq. (141) holds likewise for the derivatives and for the coefficients a,,, and a,, due to Egs.

(124),(125). In terms of local aberrations and substituting d =z/n and f = =

1 1
“ag ' EO

1-yw? 1-98
(141) reads
S, = fS,
Ep,3 = ﬂs Eo,S
S4
EP,A = ﬂ4 Eo,4 +3%£IBE02,3 —n—Zj]
83
Ep,s = /85 Eo,s + 518% Eo,s(onA + 313% ch,a - 6n_;Jj , (165)
6 d d 2 SSEOA
Ep,e = ﬂ Eo,e +5ﬂﬁ 3Eo,3 Eo,s + 21:3? Eo,s Eo,4 -12 n?
3+448 1+48
+2E5, —9BSJEZ, n—Z“° +21(BY)’Ey, +9S; n—l"D
Eq. (165) can be generalized for 2<k <6 to
ok = Vs (Eox +Ro) (166)

where in R, all wavefront derivatives E,; of lower order (j <k) are expressed in terms of local

aberrations.
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If only aberrations for one single given order K _are present while for all lower orders j <k we

have E,; =0, then #=1 and R, =0, which means for fixed order k that Eq. (166)_will be valid for

vanishing remainder term and the aberration of the propagated wavefront will be equal to the aberration

of the original wavefront independent of the propagation distance d .

E o« =Eox (167)

p,

Although the primary interest is to describe the relation between the aberrations of the original
and propagated wavefront, our approach also delivers simultaneously the relation between the coordinates
of the original and propagated wavefront as described in Eq. (128) (see Figure 26).

The relation between the coordinates is very interesting for example to calculate the changing boundary
of the wavefront by propagation as done approximately in [44].

The function y,(y,) describing the relation between the coordinate of the original and the propagated

wavefront can be described by power series expansion with

© (k) 0
yo(y,) =3 2 k,( ) Y, (168)
k=0 -

The solutions for the derivatives of yo(k) are given by the Egs. (136) with
¥,(0)=0
Y, (0) =5
Yo' (0) = 74,5°w,
.90 = 78w + 3l B~
V0 = 48O + P 57 2w + 37 ) - 6w 3+ 2702

(169)
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Figure 26: Propagation of a wavefront W, about the distance d = A to the propagated wavefront w,

Although the primary interest is to describe the relation between the aberrations of the original and
propagated wavefront, our approach also delivers simultaneously the relation between the coordinates of
the original and propagated wavefront. The relation between the coordinates is very interesting for
example to calculate the changing boundary of the wavefront by propagation

5.3.2. 3D Case

Eg. (159) can be summarized to a vector equation in terms of local aberrations and substituting
d=7/n

2
So,xy - So,xxso,yy
Sp =78y +— 0 (170)
S02,xy - So,xxso,yy
with
1

}/ =
1- %So,xx - ((%So,xy)2 - % So,yy + (%)2 So,xxSo,yy)

also shown in terms of local aberrations.
The vector equation (170) is identical with the well-known propagation matrix equation (19)

Equivalently Eq. (161) can be transformed to a vector equation in terms of local aberrations
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B 3B By 3B By By

o - Biby Bu(BuBy +2B5) By@BubBy +By) Byby
" BuBy By @BoBy +By) By (BuBy +285) Byby
By 36, B,y 368y By

€0 (71)

with

B By [y r(wE” WY (1 d[Son Sow )]
ﬂxy ﬁyy - _E W((Jl‘l) W(()O]Z) - _H SO,XY SOVW
If the coordinate system is chosen in such a way that the x- and y- axis coincide with the
directions of principal curvature of the wavefront, then the equations can be simplified. For doing so, the

coefficients a of the original wavefront have to be rotated around the axis « of the wavefront (the

direction of one principal curvature) with

1 —2S,,,
a = Eal’ctan ﬁ (172)

0,yy 0,XX

Then Egs. (170) and (171) can be simplified to

Bo 0 0
s,=| 0 0 0 s, (173)
0 0 B,
ﬂfx 0 0 0
0 2 0 0
€5 = Puby ) €0 (174)
0 0 BB, 0
0 0 0 B

and also for the radial order K =4 an appealing equation can be derived
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gL 0
BB, :
€= Iszxﬂjy
: BBy
0 ﬂ;y
ﬂ ﬁ S:XX
XX 0, XXX yy —o xxy n2 (175)

0 XXy (ﬂxx 0 o T lByy Eo,xyy)
d S, .Sow )
e0,4 +H ﬁxx (2E0 xxy oxxx oxyy) +ﬂyy (2Eo Xyy Eo,xxy Eo,yyy) _[uJ

n
oxyy(ﬁxx 0xxy+ﬂny0,yyy)
S4
0,yy
(lgxx 0,Xyy ﬁyy Oyyy 2 ]

n

Afterwards the coefficients of the propagated wavefront have to be re-rotated to the original coordinate
system. The resulting coefficients are then of course identical to the coefficients calculated by Egs. (170)
and (171).

Eq. (174)-(175) can be generalized for 2 <Kk <6 to the novel equation

ok =B (Eox +1y) (176)

where I, is a vector collecting the remainder terms ka,ky analogously to R, in Eq. (166) and with

B .. 0
L By By :

B, = (177)
: BBy’

0 v Ig';y

The result of the special case treated in Egs. (162)-(164) can be summarized in a similar fashion as Eq.

(176) to a vector equation in the very appealing form

€k =€k (178)

which is Eq. (176) for r, =0. Eq. (178), an interesting result of the present thesis, is the propagation

equation for aberrations of fixed order k >3 under the assumption that all aberrations with order lower
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than k vanish, which means that the aberration of the propagated wavefront will be equal to the
aberration of the original wavefront independent of the propagation distance d .

As written in the 2D case our primary interest is to describe the relation between the aberrations
of the original and propagated wavefront. Our approach also delivers simultaneously the relation between
the coordinates of the original and propagated wavefront as described in Eg. (152) . The relation between
the coordinates is very interesting for example to calculate the changing boundary of the wavefront by
propagation as done approximately in [44].

The functions x,(x,,y,) and y (x,,y,) describing the relation between the coordinates of the

original and the propagated wavefront can be described by power series expansion with

ke 00) (179)
- yo ' ] m -m
yo(xp’yp)zzz—xp ypk

icomo Mi(k —m)!
Analogously to the definition of the vectors for aberrations in Eq. (26), similar vectors X, and y, of

dimension k +1 can be defined (omitting the argument (0,0)).

(k,0) (k,0)
X§ %
(k-12) (k-11)
XO yO
Xk =| . b Yok =| . (180)
0,k 0,k
X, Yo

The solutions for the derivatives of yo(k) are given by the Egs. (329) and reads for the special

case that the coordinate system is chosen in such a way, that the x- and y- axis coincide with the directions
of principal curvature of the wavefront.

Xo0=0

Yoo = 0

s ‘o (181)
ﬂXX 0 O WC() Y )
X, =0 O BB, 0 [we?
0 0 BuBy WS
Bu'By 0 0 (WP
Yoo =Yl 0 BByt O | wi?
0 0 B, J(wo
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Bo. O 0 0 wto

X :7 0 Bh » 0 0 W, +
013 n 0 O ﬂxxzﬁyyz O W(EZYZ)
0 0 0 BB, )L w

3% (BaWEO" + B WD) — 3w

XX""0

AW (B0 + B, W)

1,2)2 0,2)1,,(2,0)2 21 21 0.3 1,2),,(3,0
2% B WD —wOAWENT 4 o w28, WD + B WD) + 7 B WEAWSEO
37 WED (B WD + B, we)

BB, 0 0 0 ([ w
0 BB, 0 0 |[lw??
Yoz = A 0 0 " 3 ay | T
BBy 0 || W
0 0 o B, Jlwd

35w (B WED + B, wi?)
25 B, WD —wWOAWEO® 4 o WD (28 WEY 1 WD)+ 7 B WS AW
3D (L0 + i)

XX "0

2 2 3
3% (B + Byw"¥7) = 3w

XX "0

(182)

5.4.Examples and Applications

One important application of the derived equations is that they allow determining the aberrations
of a wavefront by propagation, which not only has a defined Power S_, but also shows aberrations of

higher aberrations. Because of the analytical nature of the equations it is not necessary to use an iterative
numerical method.

We use the derived equations (173)-(175) to determine the aberrations of the propagated
wavefront up to the radial order k = 6 and compare them firstly with the results calculated by the
analytical wavefront approach described by Dai et al in [36,44]. One approximation with significant
influence of the analytical wavefront approach described by Dai et al is that the transformation of the
coefficients was solved without solving simultaneously the coordinate dependence. As we show in the
examples, and as is also stated in [44], it is absolutely necessary to solve both dependencies
simultaneously if wavefronts are containing both low-order and high-order aberrations.

Secondly we compare our results with the results calculated by a numerical ray-tracing approach
using the optical design package ZEMAX® followed by a Zernike analysis.

We would like to stress again that our local aberration values are obtained by an analytical

method and therefore by definition are exact. The transformation of our local Taylor coefficients to
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Zernike coefficients, on the other hand, yields only an (however very good) approximation for their
numerical values based on the assumption that the truncated subspaces of order k < 6 describe the
aberrations sufficiently well. But still, within this approximation, the results are analytical, such that a
Zernike coefficient obtained as zero is exactly zero, whereas a ray-tracing value is always numerical by
its nature resulting in small deviations from zero (see Table 4 to Table 7).

The necessary transformation between Zernike and Taylor coefficients, itself being state of the
art, is in our case also accompanied by the transformation from an OPD wave aberration to a wavefront
aberration referring to the sagitta, which is in detail discussed in chapter 3. The logical flow of the
transformations is illustrated in Figure 38 in Appendix C.

The examples Al and A2 are characterized by the specific feature that the first and second
derivatives are zero which means that the coefficients of Taylor monomials of first and second order are
also zero (see Table 11 in Appendix C). This implies that the low-order aberrations LOA (radial order
k<3) expressed as Taylor monomials are zero while in the examples B1 and B2 low-order and high-order
aberrations do occur (see Table 12 in Appendix C). In the examples Al and B1 only rotationally
symmetric aberrations are present while in the examples A2 and B2 also non rotational-symmetric

aberrations like coma, trefoil, secondary astigmatism etc. occur.
The value of the propagation distance d is 20 mm, of the pupil diameter d, is 6 mm and of the

refractive index N is 1 in all four examples.

For giving some more insight how the resulting values are obtained within our framework, we
provide explicit formulas for the Taylor coefficients in the case of the rotationally symmetric examples
Al and B1. In this case all the odd order coefficients vanish, and we obtain directly for order n = 2 from
Eq. (170)

ﬂxxso,xx
s,=| 0 (183)
ﬂyyso,xx
For order N =4 it follows from Eq. (175) that
ﬂ:XEO,XXXX Bﬂ:XS(?,XX
0 0
| g2 2E d 2 2 (S S )2
ep,4 - ﬂxxﬂyy 0, XXyY _? ﬂxxﬂyy 0,xx0,yy ) (184)
0 0
4 404
ﬁnyo,yyyy 3ﬂyyso,yy

and for order N =6 it follows from the general solution in Eq. (176) after some algebra that
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Ep,xxxxxx = ﬂfx(Eo,xxxxxx +5%(2ﬂxx (nZEo,xxxx _3S§,xx)_ 9S(?,xx )j

6IByyn5E02,xxxx

Ep,xxxxyy = ﬂ:xﬂjy Eo,xxxxyy + :_5 + ﬂxxso,xxsoz,yy (3S§,xx (n + d (3_ 2ﬂyy)so,xx + 2r]ﬂyy )_4n3Eo,xxxx)
+4n3ﬂxx Eo,xxyy (nZEo,xxxx +3S§xx((ﬂyy _Z)So,xx _ﬂyyso,yy))

E

E

E X< Y)

P, XXYYYyYy = P, XXXXYY (

DY Ep,xxxxxx (X A4 y)
(185)

Example Al:
Given is the original wavefront expressed with Zernike polynomials. The coefficients of the

Zernike polynomials are zero except defocus CS, spherical aberration Cff and secondary spherical
aberration cg, their values being chosen such that the second-order local aberrations vanish, which means

that the coefficients of Taylor monomials of first and second order are also zero (see Table 11 in
Appendix C). In this example only rotationally symmetric aberrations are present.

In this case the equations derived by Dai et al [44] are a very good approximation as also stated in
the conclusion by Dai et al [44]. The approximation made by Dai et al [44] is solving the transformation
of the coefficients without solving simultaneously the coordinate dependence. This approximation will be
in first order correct if the local second order wavefront aberrations are zero. As shown in Eq. (169) in the

2D case and Eq. (181) in the 3D case, the coordinates (X,,Y,) of the original wavefront and the
coordinates (X,,Y,) of the propagated wavefront are then in first order equal because f,, =1 and
B, =1

The values of the original wavefront and the resulting values of the propagated wavefront derived

by all three methods are provided in Table 4. The consistency between the results of all three methods is

obvious. The local aberration values are obtained by an analytical method and therefore by definition are
exact. The transformation of our local Taylor coefficients to Zernike coefficients, on the other hand,
yields only an (however very good) approximation for their numerical values based on the assumption
that the truncated subspaces of order k < 6 describe the aberrations sufficiently well. But still, within this
approximation, the results are analytical, such that a Zernike coefficient obtained as zero is exactly zero,
whereas a ray-tracing value is always numerical by its nature resulting in small deviations from zero (see
Table 4).

The logical flow of the transformations is illustrated in Figure 38 in Appendix C, which includes
the steps transformation of the Zernike OPD representation of the original wavefront to Taylor OPD
representation, then transforming the Taylor OPD representation to Taylor wavefront sagitta

representation, then propagation of the Taylor wavefront sagitta representation using the derived
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equations and transforming back to Taylor OPD representation and Zernike OPD representation of the
propagated wavefront. Additionally, the values of the local aberrations before propagation (Taylor
wavefront sagitta representation of the original wavefront) and after propagation (Taylor wavefront

sagitta representation of the propagated wavefront) are provided in Table 11 (see Appendix C)

5. Derivation of the Propagation Equations 101



Derivation of analytical refraction, propagation and reflection equations for Higher Order Aberrations of wavefronts

Zernike coefficients
Original
g Propagated wavefront
wavefront
Numerical Ray- - .
Radial Symbol al may Analytical Wavefront-Tracing
q (OSA Tracing
order :
standard) ZEMAX® Dai [44] Our method
k value/ um value/ zm value/ um value/ zm
0 cd -1.46532 -1.38629 -1.37962 -1.37911
c, ! 0 0 0 0
1
Cll 0 0 0 0
c2‘2 0 0 0 0
2 c -1.26853 -1.18718 -1.17953 -1.17894
c’ 0 0 0 0
c;® 0 0 0 0
c,t 0 0 0 0
3
C; 0 0 0 0
cs 0 0 0 0
C;4 0 0 0 0
C ;2 0 0 0 0
4 c -0.327046 -0.292971 -0.28882 -0.288494
c; 0 0 0 0
Cf 0 -6.46*107° 0 0
¢’ 0 0 0 0
c® 0 0 0 0
¢’ 0 0 0 0
5 1
Cs 0 0 0 0
Cs 0 0 0 0
Ce 0 0 0 0
(o 0 0 0 0
¢ 0 0 0 0
Cs’ 0 0 0 0
6 co 0.000205909 0.00545139 0.00662599 0.00672247
cl 0 0 0 0
Co 0 ~7.05%10° 0 0
o 0 0 0 0

Table 4: Zernike coefficients of the original and propagated wavefront in example Al: Propagated
wavefront. Left column: values based on the ray-tracing package (ZEMAX®). Middle column: values
based on method on the method derived by Dai et al [36,44]. Right column: values based on our

analytical method. The consistency between the results of all three methods is obvious.
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Example A2:

In example A2 the original wavefront shows defocus, astigmatism, coma, trefoil, spherical
aberration, secondary astigmatism, quadrafoil, secondary coma, secondary trefoil, secondary spherical
aberration, secondary quadrafoil and tertiary astigmatism. Also in this example their values being chosen
such that the second-order local aberrations vanish, which means that the coefficients of Taylor
monomials of first and second order are also zero (see Table 11 in Appendix C).

Also in this more complex example containing also non-symmetric aberrations the equations

derived by Dai et al [44] are a very good approximation, because the coordinates (X,,Y,) of the original
wavefront and the coordinates (x,,Y,) of the propagated wavefront are in first order identical based on
the fact that B, =1 and B, =1 (see Eq. (169) and Eq. (181)).

The values of the original wavefront and the resulting values of the propagated wavefront derived

by all three methods are provided in Table 5. Also in this complex case the consistency between the

results of all three methods is obvious.

The logical flow of the transformations is illustrated in Figure 38 in Appendix C. Again, values of
the local aberrations before propagation (Taylor wavefront sagitta representation of the original
wavefront) and after propagation (Taylor wavefront sagitta representation of the propagated wavefront)

are provided in Table 11 (see Appendix C).

5. Derivation of the Propagation Equations 103



Derivation of analytical refraction, propagation and reflection equations for Higher Order Aberrations of wavefronts

Zernike coefficients
Wgcg]ic?;l] t Propagated wavefront
Radial Symbol (OSA NumTergt(::ia::gRay- Analytical Wavefront-Tracing
order standard) ZEMAX® Dai [44] Our method
k value/ um value/ um value/ zm value/ um
0 cd 0.0675296 0.0716304 0.071439 0.0714675
¢, -0.469074 -0.471531 -0.471178 -0.471169
' Cll 0 0 0 0
C, 2 0 0 0 0
2 o 0.0586014 0.0621846 0.0620453 0.062074
c -0.00939598 -0.0122335 -0.0122895 -0.0123183
c;® 0.00510456 0.0053063 0.00526967 0.00527765
; c,' -0.167062 -0.1684 -0.168264 -0.168248
C; 0 0 0 0
cs 0 0 0 0
c;“ 0 0 0 0
C, 2 0 0 0 0
4 cy 0.0152538 0.016233 0.0162035 0.0162148
c; -0.0024714 -0.00327439 -0.00325126 -0.00326303
c, 0.0000898562 0.000141849 0.000138134 0.000140068
5> —-2.28*10°° -5.3*10°° —-4.36*10°° —4.32*107°
c;® 0.0000541121 0.000100209 0.0000896324 0.0000894449
.t -0.000663872 -0.000959765 -0.000917853 -0.000905828
° Cs 0 0 0 0
cs 0 0 0 0
Cs 0 0 0 0
g’ 0 0 0 0
c.’ 0 0 0 0
s’ 0 0 0 0
6 Ce 0.000051976 0.000084556 0.0000778738 0.0000791508
c -0.000019171 -0.00003832 -0.0000332 -0.000034846
Co 1.45%10° 3.71%10° 2.88*10°° 3.16*10°°
ce —6.65%10 ~2.00%1077 _1.49*107 ~169*107

Table 5: Zernike coefficients of the original and propagated wavefront in example A2: Propagated
wavefront. Left column: values based on the ray-tracing package (ZEMAX®). Middle column: values
based on the method derived by Dai et al [36,44]. Right column: values based on our analytical method.

The consistency between the results of all three methods is obvious.
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Example B1:
Example B1 is similar to example Al. Also in this example the coefficients of the Zernike

polynomials are zero expect defocus cg , spherical aberration Cf,’ and secondary spherical aberration c?,

which means only rotationally symmetric aberrations are present. But now the original wavefront is
characterized by the specific feature that low order aberrations LOA (radial order k=2) expressed as
Taylor monomials are non-zero (see Table 12). In this case the equations derived by Dai et al [44] are not
a good approximation as also stated in the conclusion by Dai et al [44].

The values of the original wavefront and the resulting values of the propagated wavefront derived

by all three methods are provided in Table 6. The consistency between the results derived by the optical

design package ZEMAX® and our analytical method is obvious while the results derived by the analytical

method of Dai et al [44] differ strongly. The wrong results derived by the analytical method of Dai et al

are based on the fact that in this method the coordinate change by propagation is not considered. This
approximation will lead to wrong results, also in this simple case containing only rotationally symmetric

aberrations, because low order and high aberrations order occur as stated by Dai et al [44] in their

conclusion. As shown in Eq. (169) in the 2D case and Eq. (181) in the 3D case, the coordinates (X,,Y,)

of the original wavefront and the coordinates (xp, yp) of the propagated wavefront are then in first order

not equal because S, #1 and B, #1.

The logical flow of the transformations is illustrated in Figure 38 in Appendix C. Again, values of
the local aberrations before propagation (Taylor wavefront sagitta representation of the original
wavefront) and after propagation (Taylor wavefront sagitta representation of the propagated wavefront)

are provided in Table 12 (see Appendix C).
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Zernike coefficients
Wgcg]ic?;l] t Propagated wavefront
Radial Symbol (OSA NumTergﬁﬁ!gRay- Analytical Wavefront-Tracing
order standard) ZEMAX® Dai [44] Our method
k value/ um value/ um value/ um value/ um
0 o -50.1362 -34.3311 -26.5342 -34.3309
. ¢, 0 1.18*10°° 0 0
c, 0 1.18*10°° 0 0
c,’ 0 ~1.76%10°° 0 0
2 cy -29.3453 -19.9117 -14.9908 -19.9115
(;22 0 0 0 0
c;® 0 5.88%10° 0 0
; c,' 0 0 0 0
Cs 0 0 0 0
cl 0 ~5.88%10°° 0 0
0;4 0 0 0 0
C, 2 0 0 0 0
4 cy -0.309331 -0.069658 0.261713 -0.0695334
c’ 0 0 0 0
c; 0 ~1.76*10° 0 0
- 0 1.76%10°8 0 0
¢’ 0 0 0 0
. 0 0 0 0
5 1
Ce 0 0 0 0
o 0 0 0 0
Ce 0 1.76*10°° 0 0
c;? 0 2.94%10° 0 0
c;’ 0 ~1.18*10°® 0 0
s’ 0 0 0 0
6 co -0.000110975 0.000437634 0.00598868 0.000473857
c 0 0 0 0
Co 0 1.18*10° 0 0
o 0 0 0 0

Table 6: Zernike coefficients of the original and propagated wavefront in example B1: Propagated
wavefront. Left column: values based on the ray-tracing package (ZEMAX®). Middle column: values
based on the method derived by Dai et al [36,44]. Right column: values based on our analytical method.
The consistency between the results derived by the optical design package ZEMAX® and our analytical
method is obvious while the results derived by the analytical method of Dai et al [44] differ strongly.
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Example B2:

Example B2 is similar to example A2 but here the original wavefront is also as in example B1
characterized by the specific feature that the low order aberrations LOA (radial order k=2) expressed as
Taylor monomials are non-zero (see Table 12). In this case the equations derived by Dai et al [44] are
also not a good approximation.

In contrast to example B1, in example B2 also non rotationally symmetric aberrations as coma,
trefoil, secondary astigmatism etc. occur.

The values of the original wavefront and the resulting values of the propagated wavefront derived
by all three methods are provided in Table 7. Also this complex example shows an obvious consistency

between the results derived by the optical design package ZEMAX® and our analytical method. In

contrast, the results derived by the analytical method of Dai et al [44] differ significantly. The wrong

results derived by the analytical method of Dai et al are based on the fact that in this method the

coordinate change by propagation is not considered. Also in this case the coordinates (X,,Y,) of the
original wavefront and the coordinates (xp, yp) of the propagated wavefront are in first order not equal

because B,, #1 and B, =1.

The logical flow of the transformations is illustrated in Figure 38 in Appendix C. Again, values of
the local aberrations before propagation (Taylor wavefront sagitta representation of the original
wavefront) and after propagation (Taylor wavefront sagitta representation of the propagated wavefront)

are provided in Table 12 (see Appendix C).
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Zernike coefficients
Wgcg]ic?;l] t Propagated wavefront
Radial Symbol (OSA NumTergﬁﬁ!gRay- Analytical Wavefront-Tracing
order standard) ZEMAX® Dai [44] Our method
k value/ um value/ um value/ um value/ um
0 cd -104.73 -53.8326 -3.35952 -53.8326
. ¢t -4.9774 -0.595659 10.947 -0.595597
¢! 0 ~2.35*10°° 0 0
C, 2 0 0 0 0
2 c -60.791 -31.0906 -0.77533 -31.0906
¢ 9.48371 2.41668 -10.2031 2.41668
c;® 0.541095 0.0328263 -1.80039 0.0328297
. c,t -1.82051 -0.210901 4.23289 -0.210908
C; 0 0 0 0
cl 0 ~353*10°8 0 0
Cf 0 -4.70*10°° 0 0
c,’ 0 1.76*10° 0 0
4 cy -0.25745 -0.00801529 0.943405 -0.00801618
c 0.175173 0.00367726 -0.794462 0.003678
c -0.0561936 -0.000561498 0.318015 -0.000561742
-~ -0.00501814 —4.44%10°° 0.042954 ~4.81%10°°
c.® 0.0152086 0.00004036 -0.109211 0.000041581
] ¢’ -0.0330566 -0.000178401 0.202975 -0.000180914
Ce 0 ~1.18*10°¢ 0 0
o 0 ~1.18*10°8 0 0
Ce 0 35310 0 0
c;® 0 2.35%10°® 0 0
(o 0 0 0 0
c;’ 0 ~1.76*10° 0 0
6 ce -0.00467708 ~1.28*10°® 0.033557188 ~157*10°°
c 0.00439538 —212*1077 -0.0364403 1.95%1078
Co -0.00191776 4.47*107 0.0179451 3.70*10~7
ce 0.000655743 ~1.70*1077 -0.00696252 ~1.6*1077

Table 7: Zernike coefficients of the original and propagated wavefront in example B1: Propagated
wavefront. Left column: values based on the ray-tracing package (ZEMAX®). Middle column: values
based on the method derived by Dai et al [36,44]. Right column: values based on our analytical method.
Also this complex example shows an obvious consistency between the results derived by the optical
design package ZEMAX® and our analytical method. In contrast, the results derived by the analytical
method of Dai et al [44] differ significantly.
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6. Derivation of the Reflection Equations

6.1. Mathematical Approach in the 2D Case

6.1.1. Coordinates in the 2D case

For giving insight into the method with smallest possible effort, we first treat in detail a fictitious
two-dimensional problem in which the third space dimension does not exist. Later we will transfer the
corresponding approach to the three-dimensional case, i.e. the case of interest, but now we will for an

instant drop the X degree of freedom and consider the three coordinate frames (y,z), (y',z') and

(Y,Z) spanning one common plane. Instead of a reflective surface in space there is now only a curve

(V,w(y))" in that plane, and similarly the wavefronts are described by curves in that plane (which, for

simplicity, shall still be called ‘surface’). All rays and normal vectors then lie in that plane, too. We
summarize this situation in the term “2D”. If one likes to, one can imagine the problem to be posed as a
3D one with the symmetry of translational invariance in X -direction, but this is by no means necessary
since it is inherent to the mathematics of the two-component system that any ray deflection in a direction
other that in the given plane cannot occur.

The two-dimensional version of the rotation matrix takes the form

. (186)
Sing Cos¢e

R(¢) =(

cose —sin gj

6.1.2. Description of Wavefronts in the 2D case
The surfaces themselves are each described by power series expansions specified in the

corresponding preferred frame. Any point on the incoming wavefront is given by the vector

W, (y) = [W y(y)j (187)

where in the 2D case w,, (y) is the curve defined by

Wi, (Y) = i %o

k 188
Z y (188)
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Equivalently, we represent the reflected wavefront and the reflective surface in their preferred frames by

the vectors

: : y e y
w t = ' f ’ w = ,_ 189
ou (V) Lwom(y)J <) (ws(y)] (4%
where
1 1 - alOUt,k 1k — (5 = aS,k —k
Wou () =2, =5y We(§) =2~ 7", (190)
k=0 : k=0 =

As in Eq. (4), again the normalization factor k! is chosen such that the coefficients a,, , are given by the
derivatives of the wavefront at y =0,
k

0
= oy e () =wy’(0) (191)

y=0

In the 2D case the vector €, in Eq. (26) reduces to a scalar E, =nw® =na,, , e.g. for second

and third-order aberrations, we have E, =nw'? =na,, E, =nw® =na,, etc.. A similar reasoning

applies for the vectors €',, €, and yields the local aberrations E',, E,, connected to the coefficients
@' oy » Agy by multiplication with the refractive index —n for the reflected wavefront and with the

factor — 2n for the reflective surface, respectively.
Each surface has zero slope at its coordinate origin because by construction the z axis points
along the normal of its corresponding surface. Additionally, since all surfaces are evaluated at the

intersection point, each of them has zero offset, too. In terms of series coefficients, this means that all the

prism and offset coefficients vanish, i.e. a;,, =0, a'y,, =0, @, =0 for k <2.

The normal vectors and their derivatives are described as in chapter 3 and obey the same relations

as. (36)-(38). Since the normal vector of the original wavefront and the normal vector of the propagated

wavefront are equal, the normal vector will be labeled generally with N, .

In application on the functions of interest, n,(y) =n(w (y)), this means that n (0) = (0,1)".

Further, the first derivatives are given by

ﬁ —nD ) =n® @ () — -1 2
aynw(y) yzo—nw (0) =n™ (0)w, (0)—[ijo (0) (192)

and similarly for the higher derivatives.
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6.1.3. Ansatz for Determining the Reflection Equations
Once the local aberrations of two of the surfaces are given, their corresponding a, coefficients
are directly determined, too, and equivalently the surface derivatives. It is our aim to calculate the third
surface in the sense that its derivatives and thus its a, coefficients (see Eqgs. (187)-(191)) are determined
for all orders 2<k <k, for the order k, of interest, and to assign values to its corresponding local

aberrations.

Figure 27: Local coordinates systems of the reflective surface, of the incoming wavefront and of the
reflected wavefront. The true situation is that the origins of all coordinate systems coincide. Shown is the
fictitious situation of separated origins by d and &’ for a better understanding of nomenclature. The sur-

face normal vectors along the neighboring ray are also drawn, referred to as N, Ng, Ny, in the
common global system (X, Y, Z) . It might appear helpful for the reader to imagine for a short instant that

the incoming wavefront is evaluated at a distance d >0 before the refraction, and that the outgoing
wavefront is evaluated at a distance d'> 0 after the refraction, measured along the chief ray. In this
fictitious situation of separated intersections even along the chief ray (and therefore also separated origins
of the coordinate frames) it is much easier to identify the various coordinates.

Our starting point is the following situation. While the chief ray and the coordinate systems are

fixed, a neighboring ray scans the incoming wavefront {W,n} and hits it at an intercept y,, # 0, then hits

the reflective surface {WS}, and finally propagates to the reflected wavefront {W'om} , Where the brackets
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{} shall denote the entity of vectors described by Eq. (187), (see Figure 27). Except for the limiting case

Y, — 0, the three points in space, w,,,W'y, ,Ws, do in general not coincide. As shown in Figure 27,

In?
and consistently with our notation, we denote as Y,, the projection of the neighboring ray’s intersection
with {W,n} onto the y axis. Analogously, the projection of the intersection with {W'Out} onto the y'

axis is denoted as Y'y,,, and the projection of the intersection with {WS} onto the y axis is called Y.

Figure 28: Shown is the fictitious situation of separated origins for a better understanding of the
nomenclature. The vector w,, =W, (Y,,) (see Eq. (187)) points to the neighboring ray’s intersection
point with the incoming wavefront, and the wavefront’s OPD referred to the reflective surface along the
ray is denoted by 7, correspondingly the vector from the wavefront to the surface is —z/nn,, . Hence,

the vector to the point on the surface itself, Wg, must be equal to the vector sum Wy =w, —z/nn,.

Transforming W to its preferred frame by Wy =R(g)W; (see Eq. (1)) yields the first one of the
fundamental equations in Eq. (193).

It might appear helpful for the reader to imagine for a short instant that the incoming wavefront is
evaluated at a distance d >0 before the reflection, and that the reflected wavefront is evaluated at a
distance d'> O after the reflection, measured along the chief ray. In this fictitious situation of separated
intersections even along the chief ray (and therefore also separated origins of the coordinate frames) it is
much easier to identify the various coordinates, as shown in Figure 27, Figure 28 and Figure 29. The true
situation is d = d'=0, which is relevant throughout the thesis.

While in Figure 27 all quantities are drawn in their preferred frames, Figure 28 shows the quan-

tities concerning the incoming wavefront and the reflective surface in the common frame (Y, z). The
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vector W, =W, (Yy,,) (see Eg. (187)) points to the neighboring ray’s intersection point with the

incoming wavefront, and the wavefront’s OPD referred to the reflective surface along the ray is denoted
by 7, whereas the absolute value 7 is determined by the optical path distance between the neighboring
ray’s intersection point with the incoming wavefront and the reflective surface and the sign of 7 is
determined by the relative position of the these intersection points. If the intersection point of the ray with
the wavefront is before the intersection point of the ray with the reflective surface the OPD will be

negative (7 <0), and if the ray first intersects the reflective surface the OPD will be positive (7 > 0).

Therefore the vector from the wavefront to the surface is —z/nn,_, determined by the product of the

In?

OPD and the normal unit vector of the incoming wavefront. Hence, the vector to the point on the surface

itself, wg, must be equal to the vector sum wg =w,, —z/n n . Transforming Wy to its preferred frame

by wg =R(g)Wy (see Eq. (1)) yields the first one of the fundamental equations in Eq. (193).

Figure 29: Shown is the fictitious situation of separated origins for a better understanding of the
nomenclature. The vector W'y, =W'q, (Y'o.) (See Eqg. (189)) points to the neighboring ray’s

intersection point with the reflected wavefront, and the wavefront’s OPD referred to the reflective surface
along the ray is denoted by 7', correspondingly the vector from the wavefront to the surface is

—7'In'n'y,=7'/Nn'y,,. Hence, the vector to the point on the surface itself, W'y, must be equal to the

vector sum W's=W'g,+7'/n n'y,. Transforming W' to its preferred frame by Wy =R(—&)W (see Eq.
(1)) yields the second one of the fundamental equations in Eq. (193).
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Analogously we have W'y, —7'/n'n'y,, = W'y for the reflected wavefront in the frame (Y',z'),

yielding the second equation in Eq. (193) (see Figure 29). The sum of the OPD from the ray’s intersection

point with the incoming wavefront to the reflective surface (—7) and the OPD from the reflective surface
to the ray’s intersection point with the outgoing wavefront (z') has to be constant, and in the true

situation with d =d'=0 yields —z +7'=0. Therefore the condition for the reflected wavefront to be
the surface of constant OPD is that 7 = 7' for all neighboring rays. Inserting this condition and replacing

n' by —n, we establish as starting point of our computations the fundamental equations

yln T ys
-—n,. =R
(Wm (Y )J n e (8)(V_Vs (ys)j

yIOut 1 _ _ VS
[Wlom (y|0ut )J i o R( 8)( )

W (¥s)
From Eq. (193), it is now possible to derive the desired relations order by order. For this purpose,

(193)

S|

it turns out to be practical to consider formally both wavefronts as given and to ask for the reflective

surface Wg(Ys) as the unknown function. Although only the surface is of interest, in Eq. (193)

additionally the four quantities 7, Y,,, Y'ou, Ys are also unknown. However, they are not independent
from each other: if any one of them is given, the other three ones can no longer be chosen independently.
We use Y as independent variable and to consider the three other unknowns 7, Y,,, Y'o, as functions

of it.

We arrive at the conclusion that Eq. (193) represents a nonlinear system of four algebraic

equations for the four unknown functions Wg(Vs), Y (Ys), Y'ou (Vs), 7(Ys). Even if we are only

interested in a solution for the function W (Ys), we cannot obtain it without simultaneously solving the

equations for all four unknowns order by order. Introducing the vector of unknown functions as

Yin (¥s)

p(ys) =| Yo ) (194)
7(Vs)

W (Vs)

and observing that the initial condition p(0) =0 has to be fulfilled, it is now straightforward to compute

all the derivatives of these Eq. (193) up to some order, which yields relations between the curvatures,

third derivatives etc. of the wavefronts and the reflective surface. Rewriting these relations in terms of

series coefficients a,,, , @'q,;» as, and solving them for the desired coefficients ag, yields the desired

result.
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Rewriting Eq. (193) leads to

T - o
— (Vs cose —Wgsing)
0 n
T
0 Wy, (Vi) — —(Yssine + W, cos ¢)
= n (195)
0 T
Y'out—N, —(¥s COS & + Wy sing)
0 n
.
Wou (¥ ou ) -1, — (= Vs sine + W cose)

Before solving Eq. (193), we distinguish if the independent variable Y enters into Eq. (193) explicitly

like in the first component of the vector (Y, W, (Ys))", or implicitly via one of the components of Eq.
(194). To this end, we follow the concept of chapter 3 and define the function

(IR*xIR)> IR : (p, ¥5) > f by

Yin _%ny(w(l) (Ym)) _(ys COS & — W Sin 8)

W, (¥) ——n, (WO (y,.)) = (Vssin e+, cos )
n , (196)

Ys
y|0ut+%ny(wlgl)n (Y out )) ( COS & + W Sin ‘9)
-y

] 1 T \} 1
WOut(yOut)+an(Wg&t(yOut)) Ing+WSCOSS)

where (P, P5,P3:P4) = (Yins Y'ou » 7, Ws) are the components of p. Setting now p =p(Ys), Eq. (196)

allows rewriting the fundamental system of Eq. (104) in a more compact way as
f(p(¥5).¥5)=0 (197)

as can be verified explicitly by component wise comparison with Eq. (193).

The key ingredient of our method is that the relations between the derivatives of wavefronts and

surfaces can be obtained by the first, second, etc. total derivative of Eq. (197) with respect to Yq,

evaluated in the origin. The advantage of the form of Eq. (197) using Eq. (196) is that the various terms

can be tracked in a fairly compact manner.

The total derivative of f(p(ys), VS) in Eq. (197) is obtained by applying the principles from the

theory of implicit functions. Hence, the total derivative is given by the partial derivatives of f with

respect to the components p; of p, times the derivatives of p; (Vs), plus the partial derivative of f with

respect to the explicit dependence on Y. This transforms the system of algebraic equations in Eq. (193)

to the system of differential equations
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4
Zﬁ pﬁ“(%)+@=0, i=1..4, (198)
j=l apj aYS

where the matrix with elements A; := of; /op; is the Jacobian matrix A of f with respect to its vector

argument p, evaluated for p = p(Ys). The Jacobian A reads

of,  of, of, of

bt L O T 1
Ny Now OT OWg 1_Hn'(§?ywl(”2) 0 _Hnm'y “
of, _of PRCIPY wo _ L0 @ 0 —n —y
A= Ny Now OT OWg I n " (199)

" | of, of of, of, 0 1 T 1) a2 1.,

~ \ U +—-Nn out,y W out —n outy o

Ny Yo 0T OWg n n

j;“' aj‘f % % 0 WI(Oll)Jt +% n'(Oll)Jt,Z WI(Ozu)t H n'Out,z 4

In out 3 s

where for convenience we have introduced o =Sing, y=C0S&. In Eq. (199), the occurring

- 1 1 2 2 _ 1
expressions are understood as WS =wp(y,), WP =w@(y,), n., =0, WY (y,)),

n® —n®

iy =Niry (W® (y,,)), etc, and analogously for the ‘Out’ quantities, and additionally Y, ,Y' oy 7, We

In

are themselves functions of ;.

The derivative vector of, /Yy in Eq. (198) shall be summarized as

Pt
APELCLIN g (200)
s X
— O

Similarly as in chapter 3 we conclude that we can write A with argument A(p(yp)) only and b

without argument at all because b is constant.. Eq. (198) can be written in the form

AP (¥s) =b. (201)

6.1.4. Solving techniques for the fundamental equation

Eq. (201) is the derivative of the fundamental equation in Eqg. (197), and therefore it is itself a

fundamental equation. But additionally, it allows a stepwise solution for the derivatives p™®' (y5 = 0) for

increasing order k . Formally, Eq. (201) can be solved for p® () by
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p® (¥s) = A(p(¥s)) 'b. (202)

Eq. (202) holds as a function of Y, but of course for arbitrary Y both sides of Eq. (202) are unknown.

However, evaluating Eq. (202) for Y5 =0 exploits that then the right-hand side (rhs) is known because
p(0) =0 is known! In the same manner, Eq. (202) serves as starting point for a recursion scheme by

repeated total derivative and evaluation for Y5 = 0. Remembering that b is constant, we obtain

pP () =A"b
pP?@=(a%)"b (203)

p(k) (0) : .<A_1 )(k—l) b,

where  Al=APO)*=A©0), ad (A*)= %A(p(ys))_l .

¥s=0

k-1
(A = %A(p(ys))‘1 are total derivatives of the function A(p(Ys))™. The reason why Eq.
ys ¥s=0
(203) really does provide solutions for p® (0), p®(0), ..., p* (0) is that in any row of Eq. (203) the
entries on the rhs are all known assuming that the equations above are already solved. Although on the rhs
there occur implicit derivatives p® (0), p®(0), ... as well, they are always of an order less than on the

left-hand side (lhs). For example, the second row in Eqg. (203) reads in explicit form
4

p@(0) = Z(ai A(p)l]pi(l)‘y , - where Y =0 implies p=0, and where on the rhs the highest
i-1 \ OP; s~

occurring derivative of p is p(l) (0) which is already known due to the first row in Eq. (203). Generally,

k-1
the highest derivative of p occurring in [% A(p(ys))_lJ is p*“™(0), which is already known

S

¥s=0
at the stage when p® (0) is to be computed by Eq. (203).
Although looking attractive and formally simple, applying Eq. (203) in practice requires still

some algebra. One part of the effort arises because it is the inverse of A which has to be differentiated

with respect to p. The other part of the effort is due to the large number of terms, since the higher
derivatives will involve more and more cross derivatives like 9°/0p,dp ; - Both tasks are straightforward

to be executed by a computer algebra package but nevertheless lengthy and not the best way how to gain

more insight.
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While cross-derivatives are inevitable, there exists an alternative recursion scheme for which it is
sufficient to differentiate the matrix A itself instead of its inverse A™, which means an enormous
reduction of complexity! To this purpose, we start the recursion scheme from Eq. (201) instead of Eq.
(202). The first (k —1) total derivatives of Eq. (201) are

Ap®(0) =b (@)
APp®(0)+Ap®(0)=0 (b)
APp®(0)+2Ap@ (0)+ Ap®(0) =0 (© (204)

(k-1 (k=1)y (1)
X AP =0, k22 (d)
=\-1

AkD —ﬂA( (¥s)) are
. 5 sy _dy§,J p yS B

¥s=0

where A =A(p(0)) =A(0), and A® = ddTA(p(Vs))

S

¥s=0

total derivatives of the function A(p(Ys)) . For the last line of Eq. (204) we have applied the formula for

the p-th derivative of a product, (fg)!™ :Z?O(P]f(p‘”g(”. Eq. (204) represents a recursion
scheme where in each equation containing p® (0), p®(0), ..., p® (0), only p® (0) (in the last term
for j=k) is unknown provided that all previous equations for p®(0), p®(0), ..., p*™®(0) are

already solved. A formal solution for p® (0) , expressed in terms of its predecessors, is

pY(0)= A7b k=1

K1k -1 L 205
p‘k’(o)=—AlZ(j JA("”p(”(O), k>2. (209)
=R\ A

Although quite different in appearance at first glance, Eq. (205) yields exactly the same solutions as Eq.
(203).

6.1.5. Solutions for the General Reflection Equations

In the result for p®(0), the first rows of both Egs. (203),(205) involve A(0)™*. For obtaining

A(0)™", we evaluate Eq. (199) for p =0 and apply Egs. (192), yielding
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10 O o 1 ol2y) 0 ol(2y)
0 0 -1/n - 0 —cl(2 1 —-ol(2
A(0) = 7o a@t=| 0 ToNeD oA2z) (206)
01 0 - 0 —n/2 0 n/2
00 1/n -y 0 —1/(27) 0 —-1/2p)
The final result for p® (0) is
y4
) =| * (207)
—no
0

For the orders k >2 we apply Egs. (205). The derivatives A® = d$A(p(ys)) , etc. are

S ¥s=0
directly obtained by total derivative of Eq. (199) with respect to Y, evaluating for y; =0 and again
applying Egs. (192). For the orders k >2 only the results W (0) for the reflective surface are

interesting, therefore we directly provide those result. The resulting second-order law is (omitting the

argument  (0) *)

W =1 y(w@ +w? (208)

In

which is well-known as the Coddington equation and reveals to be a special case of our results. The

resulting higher-order laws can be written in a similar fashion

w3 _ 2 ap(3) 3)
Ws —%Z (Wou Wy, +Rs)

w4 _ 34 (4)
Wg —%Z (WoutWy,” +R,)

(209)
W =4 7 Wl +R,)
with the remainder terms R, which are given for orders k = 3,4 explicitly as
R, = 3—(7(w(2)2 —w'® 2) (210)
3 2}( In Out
Ry = law e w2 W —awl? + o) o

23 | (23 (2) 1p(2) ( ) -(2))
+7/(Wln +WOut )+ 5WIn WOut Wln +W0ut
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with
a=-12
x
o
p=2
Zs (212)
— 5 2_4 2
7=4,760"-4r")
3
0= 4y% -o?
Ll o)

Eq. (209) holds likewise for the derivatives and for the coefficients a, ,, @'q,,, as, dueto

Egs. (187)-(191). In terms of local aberrations, Eq. (209) reads (after substituting y by the cosin)
E, =cos**¢(E',—-E, —R,), (213)

where in R, =nR, all wavefront derivatives are expressed in terms of local aberrations.

6.1.6. Generalization of the Coddington Equation

Although application of Eq. (203) or Eq. (205) provides a solution for w{ (0) up to arbitrary
order k , it is very instructive to analyze the solutions more closely for one special case. We observe that
the expressions in Egs. (210),(211), for R, (or R,) will vanish if we set W'’ =0 and w'J) =0 for all
lower orders j <k (for k =3 or k =4, respectively). This leads to the assumption that the following
statement is generally true: if only aberrations for one single given order k are present while for all lower
orders j <k we have W’ =0 and w') =0, then R, =0, which means for fixed order k that Eq.

(209) will be valid for vanishing remainder term. This assumption can in fact be shown to hold generally.
To this purpose, we start from the recursion scheme in Eg. (205) and show that only the term containing
p“) can contribute to the sum if all aberrations vanish for order less than k . For doing so, it is necessary
. . i I d" .
to exploit two basic properties of the derivatives A™ = @A(p(ys)) of the matrix A for the
¥5=0
orders 1<m<k—1. As can be shown by element wise differentiation of the matrix A, the highest

wavefront derivatives present in A™ (p(Vs)) (see Eq. (199)) occur in the terms proportional to 7 , and

(m+2) 1(M+2)

those are proportional to either W, or w'{"? . Evaluating A™ (p(¥s)) at the position ¥ =0
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(m+1) or Wl(m+l). It

implies = =0, such that A™ cannot contain any higher wavefront derivatives than W, out

follows that

(m+1) 1(m+1)

i) The highest possible wavefront derivatives present in A™ are Wy, or W

i) If all wavefront derivatives even up to order (m+1) vanish, then A™ itself will vanish. This is

in contrast to A itself which contains constants and therefore will be finite even if all wavefront

derivatives vanish.

Analyzing the terms in Eg. (205), we notice that the occurring derivatives of the matrix A are A
A2 AD AD for j=12,...,(k—1), respectively. It follows from property i) that the highest
occurring wavefront derivatives in these terms are k,(k —1),...,3,2, respectively. Now, if all wavefront
derivatives up to order (k —1) vanish, it will follow from property ii) that all the matrix derivatives

ACD AP AD myst vanish, leaving only A Therefore all terms in Eq. (205) vanish,

excluding only the contribution for j =1. We directly conclude that

K — _ A A KD
P P L k>2 (214)
=—(A*ACIAL)b
For evaluating A®™ we set k —1=m, and it is straightforward to show by induction that if all

aberrations vanish for order less or equal to m, then

_mZm—lowl(r:rH-l) 0 Z_mwl(r:nﬂ) 0
n
m, ,,(m+1)
AM _ X Wi 0 mO 0 , (215)
0 m%m—low.gnrl) iwl(r:nﬂ) 0
O me(erl) 0 O

In

where y,‘,}), y'@ and 7 have been substituted by their solutions 7, 7 and ns wherever they occur,

respectively (see Eq. (207)). Inserting A™ (0) for m=k —1 and A(0)™* from Eg. (206) into Eq. (214)
yields directly that

k-1

509(0) = Zz (W, (0)+w® (0)) (216)

for all orders k > 2.

The novel resulting reflection equation in the situation of Eq. (216) in terms of local aberrations

reads
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E, =cos**¢(E'. -E, ), (217)

which is indeed Eq. (213) for R, =0.

6.2. Mathematical Approach in the 3D Case

6.2.1. Wavefronts and Normal Vectors

Although more lengthy to demonstrate than the 2D case, conceptually the 3D case can be treated
analogously to the 2D case. Therefore, we will only report the most important differences. Analogously to
Eqg. (187), the incoming wavefront is now represented by the 3D vector

X
w, (X, y) = y (218)
Wln (Xv y)

where w,, (X, Y) is given by Eq. (8), and the relation between the coefficients and the derivatives is now
given by a relation like Eq. (5). The connection between coefficients and local aberrations is now given

by €, = (Sxx7sxy’syy)T = n(am,z,ma|n,1,17a|n,0,2)T ' €3 = (Exxx’ Exxy’ Exyy’ Eyyy)T =

n(aln,S,O’aln,z,l’aln,l,z’aln,O,S)T' etc. (see Eq. (27) for €, ). The reflected wavefront and the reflective

surface are treated similarly.

For treating the normal vectors, we introduce the analogous functions to Eg. (36) as

~u
n(u,v):= S S (219)

V1+u? +v? '
1

such that the normal vector to a surface W(X, y) == (X, y,W(X, y))" is given by

_ o
1,0) 0,2)
W xw 1
= —wO | = n(w(l*o) WD ): n(Vw),
W xw®| L a0? | 0?2
1+w™ +w 1

In the intersection point we have now n, (0,0) = (0,01)", n'y, (0,0) = (0,01)", N (0,0) = (0,0,))",

and the derivatives corresponding to Eq. (192) can directly be obtained from Eqg. (219).
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6.2.2. Ansatz for Determining the Reflection Equations
The starting point for establishing the relations between the wavefronts and the reflective surface

is now given by equations analogous to Eq. (193), with the only difference that X and y components are

simultaneously present, and that the original 3D rotation matrix from Eq. (2) has to be used.

The vector of unknown functions is now given by

Xin (X5, ¥s)
Yin (X5 ¥s)
o o X' out (X5, ¥s)

X<, = 220
P(%s. ¥s) Y out (Xs: ¥s) (220)
z'()_(Sf ys)
S(Xs, ¥s)

and the 3D analogue to Eq. (193) leads now to
f(p(Xs, Ys), Xs, ¥s) =0 (221)

where f is the 3D analogue to Eq. (196).

One important difference compared to the 2D case is that there are two arguments with respect to
which derivatives have to be taken. This implies that the dimension of the linear problems to solve grows
with increasing order: while there are only 6 different unknown functions, the first-order problem
possesses already 12 unknown first-order derivatives, then there are 18 second-order derivatives, etc.
Another implication of the existence of two independent variables is that from the very beginning there

are two different first-order equations

A(p()_(s’ ys))p(m) ()_(51 ys) = bx

s (222)
A(p()_(31 75))p( Y)(Xs’ YS) = by

where the different inhomogeneities are given as column vectors

b,=-T @ 00100, b=-2

y —=0 y -0 0 y o). (223)
X ’ 53’5( )

The structure of b, arises because there is no respective tilt in this coordinate direction between the
wavefronts and the reflective surface.

The Jacobian matrix A(p(Xs, Ys)) with elements A; = of; /op; is the same for both equations

and analogous to Eq. (199) but now of size 6x 6. It is practical to provide it in block structure notation
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A(p(X.,V.))= An 0 A A
(PCs.¥)=| " " A . A
Out
where 0 isa 3x 2 block with entry zero,
T T
(0,1),,,11) (1,0),,,(2,0) (0,1),,,(0,2) (1,0),,,11)
1+_(nln,x WIn + r]In,x WIn ) _(nln,z WIn + r]In,z WIn )
n n
T T
_ (0.1) (LD | L0),,(2,0) (0.1),4,(0,2) | (1,0),,,(12)
Aln - E(nln,y WIn + nIn,y WIn ) 1+H(nln,y WIn + r]In,y Wln )
1.0) T( 0@ | A(1L0) (2,0)) ) T( (0,,(02) | (10) (14))
Wln +E nIn,z WIn +nIn,z WIn Wln +H nIn,z Wln + nln,z Wln

and a similar block expression for A’y . The other two blocks are given as column vectors

Ny /N 0

Ny /N -o

A - N, /N A= -
N I L P 0
—N'gyy /N o
—N'g,, /n -

6.2.3. Solutions for the General Reflection Equations
The direct solutions analogously to Eq. (203) are now given by

p“?(0,0)=A"b,
p©2(0,0)=Ab,

p(z,o) (0’0) _ (A_l )(1,0) b

X

5900 - (b, ~(8* ",

p©?(0,0)=(A*)*b

y

(Af™p, , k. #0,k, =0
0% (0. 0) = (Afl)(kfl'ky)bx _ (A—l)“wkrl’by .k, =0k, #0
(A+)" b, , k,=0k, =0

(224)

(225)

(226)

(227)
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where AT =APOO)'=A©O",  ad (A =%A(p(zs,vs))‘l ,
S %5=0,¥5=0
\kk)  d% o d % N . .
(A ) = A(p(xs, ys)) , etc. The fact that there are two starting equations (222)

T ook, =k
X * y
dXg* dxg 7000

reflects itself in the existence of two formally different solutions for the mixed derivatives, e.g. p(l’l).

However, since both starting equations originate from one common function f in Eq. (221), for each

p(k*’ky) both solutions must essentially be identical, as can also be verified e.g. for p(“) directly by some

algebra.

In analogy to Egs. (206),(207) for the 2D case, we provide here the explicit results

1 000 0 0 10 0 00 0
0100 0O -0 01 -ol2y) 0 0 —-cl(2y)
0 000 1Un - 0 0 0 1 0 0
A(0) = £l AQ0) = (228)
0010 O 0 0 0 oli2y) 0 1 ol(2y)
0001 0 o 00 n/2 0 0 -n/2
0 00 0 -1/n —y 0 0 -1/(2y) O O -1/(2y)
and, after application of Egs. (223),(227) the solutions
1 0
0 x
1,0 1 01 0
p~7(00)= |, pP(00)= (229)
0 X
0 -no
0 0
The general result for the reflection equation can be written in the way
ky—1
Wl L (W vl R ) (230)

It is interesting to note that only ky but not K, occurs in the exponents of the cosines. This is a
consequence of the fact that the reflection takes place in the y—z plane whereas in X the direction no
tilting cosines occur at all. Summarizing all components of Eq. (230) for a fixed value of k =k, + ky and

applying Egs. (5),(27),(29) yields the novel reflection equation in terms of local aberrations,

€ :Ck(elk_ek _rk)' (231)
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where I, is a vector collecting the remainder terms n ka,ky in Eq. (230) analogously to R, in Eq. (213)

. Eq. (231) is the general reflection equation for aberrations of any order in the 3D case.

6.2.4. Generalization of the Coddington Equation
Although Eq. (227) represents the full solution, we provide here a more detailed result for

Ued) S\ Uab) for all lower orders, i.e. for

p(k*'ky) (0,0) in the case of vanishing wavefront derivatives w
I+ jy <k, + ky. This works analogously to the treatment of Egs. (204)-(216), with the only difference

that the notation requires more effort.
Analogously to Eq. (205) we obtain as a result that

K1k 1 ) )
p® (0,00 = —A‘lz(jx ljA(kX‘X’O’p(‘*’O’, k,22,k, =0 (a)
B=1\Jx T
k. —1Yk N
p(kkay)(01o) — _A—l Z (-X ]( -y]A(kx_lkay_Jy)p(lvay) (b)
jx>Lj,>0 Jx -1 Jy
I+ iy <ky+ky k k 1 (232)
_ _A—l Z (xj -y A(kx*jx,ky’jy)p(jxvjy), kx;tO,ky;tO (C)
§x20,j,>1 Jx Jy -1
Jx+iy<ky+ky
(0k)) LKy =LY ok-i @)
p" (0,00 = —Azj 1A g B k,=0,k, =2 (d)
=1\ Jy ™

. Ky .k
where again for p( oK)

two formally different solutions occur which are essentially identical. We
recognize that Eq. (232) (a) is a special case of Eq. (232) (b) for k, =0, j, =0, and similarly Eq. (232)
(d) is a special case of Eq. (232) (c) for k, =0, j, =0. By means of a similar reasoning as in the 2D
case it is found that if all lower order aberrations for j, + j, <k, +K, vanish, then Egs. (232) will

reduce to the lowest term, yielding

p“?0,0 = -ATA®TIRE) K >2k =0 (a)

p(kkay) (010) — _ A—lA(kxflyky)p(l,O) (b)
_ ALA Kk D 50 (233)
= - pt, k,#=0,k, #0  (c)

p 00 = -ATAYTpOY K =0k, >2 (d)

For finally evaluating Egs. (232) we need the partial derivatives of the matrix A under the assumption

that all lower order aberrations for j, + j, <k, +k, vanish, which is given as
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(my,my)
Ay 0 _
A(mxvmy) — In A(mx,my) A(mxrmy) (234)
0 A.(mx,my) T S
Out
with the block
m, -1 (m,+2,m,-1) m, -1 (m,+1,m,)
-my "’ ow, ! -my "’ ow, !
(m,,m,) m, -1 (my+1,m,) m, -1 (m,,m, +1)
A=l -moy” ow, T —myy Y Tow, Y (235)
Zmywl(mxﬂ,my) Imy Wl(mx,my+1)
n n
(mxvmy)

and a similar expression for the block A'y;" " . The other two blocks are given as column vectors

Zmle(r:nerl,my) /n
Zmle(r:nX,merl) /n

0 _

A = , A, =0, (236)
_Zmyw.grlljxt+l,my) /n S

— 2" won™ ™ In

0

1,0)
In

(0,1) (1,0 (0,2)
In *JiIn In

where X X etc. have been substituted by their solutions according to Eq. (229).

Inserting A™™ from Egs. (234)-(236) and A(0)™* from Eq. (228) into Egs. (233) yields one common

relation for v_vsfk*’ky) for the various subcases in Egs. (233) (omitting the argument  (0,0) *):

;L/kyl
— (ky k
WS<x D =

W i) (237)
for all orders k > 2.

Eq. (237) can be summarized in a similar fashion as Eqg. (230) to a vector equation in the very

appealing form

& =C.(e—e) (238)

which is Eq. (231) for r, =0. Eq. (238), an interesting result of the present thesis, is the reflection

equation for aberrations of fixed order k > 2 under the assumption that all aberrations with order lower

than k vanish.
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6.3. Results and Discussion

One standard situation in optics is that a given wavefront hits a given reflective surface, and that
the reflected wavefront is the unknown quantity. Therefore, we provide in the following the derived

reflection equations, solved for the reflected wavefront’s aberration.

6.3.1. 2D Case

Eq. (217) describes the special case that for given order k the aberrations of the incoming and

reflected wavefront for all orders less than k are zero (E; =0;E'; =0 for J <K). For calculation of

the aberrations of the reflected wavefront, Eqg. (217) can be transformed to
E'=E +cos *P¢E,_. (239)

we could generally show this statement to hold for all orders k > 2 including as a special case for k =2

the well-known Coddington and Vergence equation. Therefore Eq. (239) represents an interesting result

of the present thesis.

Also Eq. (213) for the general case can be transformed in such a way that E', of the reflected

wavefront is the unknown quantity to be determined
E,=E +cos “P¢E, +R,. (240)

_In R, only aberrations E;,E'; of order J <k occur. These aberrations can be determined by

successively solving of Eq. (240) for lower orders.

E.g., assume that the aberrations E', of the reflected wavefront up to order k =3 (E',=S', E/,

) are the unknown quantities, and the aberrations E, of the incoming wavefront and Ek of the reflective

surface are given. In a first step the aberrations of order k = 2 are calculated using Eq. (240), which is in

this case identical with the well-known Coddington equation
S'=S+costeS. (241)
In a second step the aberrations of order k = 3 are calculated using Eg. (240) and the results of Eq. (241)

E,=E,+cos2¢E, +R, (242)
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with R, = aN€ (52 _g2)
2Nncose

6.3.2. 3D Case

Equivalently to the 2D case transforming Eq. (238) leads to €', =€, +C;1ék for the case that
e; =0e';=0 for j<k, a statement which we could generally show to hold for all orders k >2

including the special case of the Coddington equation.

In the general case Eq. (231) can as well be transformed in such a way that the unknown aberration vector

e', of the reflected wavefront is determined by the incoming wavefront and the reflective surface.
e, =6, +Cl g +r,, (243)

where in r, only aberrations of order j <k occur. Therefore, r, can be determined by successively

solving of Eq. (243) for lower orders. Eq. (243) is the general reflection equation for aberrations of any
order in the 3D case.

6.4. Examples and Applications

6.4.1. Aspherical Surface Correction up to Sixth Order

One important application of the derived equations is that they allow determining a reflective

surface, which not only has a defined Power S , but also generates a reflected wavefront which shows no
deviation from an ideal sphere up to the order k = 6.

Because of the analytical nature of the equations it is not necessary to use an iterative numerical
method. The task is to determine a rotationally symmetric aspherical surface, which images an axial
object point with the distance S to the reflective surface to an axial image point with the distance s' to

the reflective surface (Figure 30).
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Figure 30: One important application of the derived equations is that they allow determining a reflective

surface, which not only has a defined Power S, but also generates a reflected wavefront which shows no
deviation from an ideal sphere up to the order k = 6. The task is to determine a rotationally symmetric

aspherical surface S , which images an axial object point with the distance s to the reflective surface to
an axial image point with the distance s' to the reflective surface.

The object side vergence and the image side vergence are givenby S =n/s and by S'=-n/s',
respectively, expressed in terms of the reciprocals of the object and image distance. Treating the

rotationally symmetric problem as 2D problem in the Yy -Z plane, a sphere with radius r is exactly

described by

f(y)= r(;l—qll— y2/r? ) (244)

whose series expansion up to the order k =6 is

1 1 1
f(y)=—vy2+—y* 4. 245
(y) oY +8r3y +16r5y + (245)

Applying Eq. (245) once on f(y)=w, (y), r=s and secondly on f(y')=w,,(y), r=s

(including in both cases the sign of S or s") allows us to identify the wavefronts’ coefficients in the sense

of Egs. (187)-(191):

3 5
a :EZE, a -3+ _4S5 . a a5t 45 S
m2 =07 In,4 3 n In,6 s5 n
(246)
: 18 1 s, 1 S'
a‘Out,2=; _F’ aOut,4: S.s __3(F) ) aOut,6=4ST5:_45[F)
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The solution for the desired reflective surface, described by the series

aS 2 2 a5,4 4 gS,G 6
S = + + +... 247
S(y) = 5 24 y 720 y (247)

as in Eq. (190), will be found up to the order k =6 if we provide expression for the three coefficients
a,, as, and &g (the odd coefficients for k =35,7,... are not present because of the rotational

symmetry of the problem).

Since the local aberrations of higher order have no influence on the local aberrations of lower

order, the coefficient of second order &g, can be directly determined by Eq. (208). In the present case of

orthogonal incidence we exploit that =0, y =1, such that Eq. (208) reads as &, = 5 (a'y,+a,5)

yielding

(248)

For finding &g ,, we have to apply Egs. (209)-(213). Due to the orthogonal incidence Eq. (212) simplifies
to
a=0,=0,y=-30=3, (249)

and consequently Eq. (211) simplifies to
R, =— 3w+ i w ~w f (250)

Inserting Eq. (250) into Eg. (209) and substituting w? 'gu)t by the coefficients in Eq. (246)

In

yields
_ _ 1/,
gy = Ws(4) = 2( glu)t WI(:) + R4)
1/, )
= E(a Out,4+aln,4 - 3(aln,2 + aOut,ZXaln,Z - aom,z) ) (251)
SS'

_BE(S -S)

Similarly, we find that
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SZSIZ
2n®

age =W =45 (S-5"). (252)

Egs. (251), (252) complete the demanded solution, i.e. the coefficients ag,, as, and ag, of the

aspherical reflective surface are determined such that an object point with the vergence S is imaged to a

point with the vergence S' without aberrations with order less or equal to k =6.

6.4.2. Special examples

The Egs. (248). (251) and (252) are the solution for the coefficients a5,, a5, and ag, of the

aspherical reflective surface, such that an object point with the vergence S is imaged to a point with the

vergence S' without aberrations with order less or equal to k = 6. Figure 31 shows the coefficients a,,
ag,, and &g, of the aspheric reflective surface as a function of the object vergence S =n/s. For

simplicity the image vergence S' is chosen to be 1D. We will discuss three special examples in detail.

[HEY
o

< S[D]

4
-
\CD\

N
o

! 30 - 1

;: L —_— g, [m ]

: I _ 3

i' a = dg, [m™]
; i _ 5
~i' 40 = dgg [m™]

Figure 31: General overview: Solution for the coefficients as,, as, and ag ¢ of the aspherical

reflective surface, such that an object point with the vergence S is imaged to a point with the vergence
S' without aberrations with order less or equal to K = 6. For simplicity the image vergence S' is chosen
by 1D. The solid black line shows the coefficient ag ,, the dashed red line the coefficient @, and the

dot-dashed blue line shows the coefficient ag .
Al. Spherical mirror
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The spherical mirror has ideal imaging properties if the object is imaged exactly on itself (

s'=s <=> S'=-5). Inthis case Eqgs. (248), (251), (252) yield

L _S-S'_s_1
2 2n n s
Ss' s® 3
a,=3—-(5-S)=3" ==
S 2n3( ) n® s
_ $%S” , S® 45
as =45—— (s—s)=45n—5=5—5. (253)

2n
From the graph in in Figure 31 and Figure 32 the coefficients of the reflective surface can be
1

derived. If S=-1D, which means S=-S' because S'=1D, then will be &a;,=-1m"
a;, =-3m~ (Figure 32) and &, =-45m™~ (Figure 31), which are the coefficients of a spherical

3 45
=S_5)_

. _ 1 _ _
surface, as shown in Eq. (246) (&, = 3 a5, =—5 and ag,
— -1
— ag, [Mm7]
— -3
=== ag, [m7] '
— -5 B e - !
A e .
e e s
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Figure 32: Detailed view: Solution for the coefficients as,, @s, and &g of the aspherical reflective

surface, such that an object point with the vergence S is imaged to a point with the vergence S' without
aberrations with order less or equal to K = 6 .For simplicity the image vergence S' is chosen by 1D. The
solid black line shows the coefficient a; , , the dashed red line the coefficient @, and the dot-dashed

blue line shows the coefficient ag .

A2. Parabolic mirror
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The parabolic mirror has ideal imaging properties if the object or equivalently the image is placed
in infinity (S =0 or S'=0). In this case Egs. (248), (251), (252) yield

g S-S -8 1
2 9p 2n  2s'
_ S
a., :3F(S -S$)=0
2012
asa=4552:5 (s-s')=0. (254)

From the graph in Figure 31 and Figure 32 the coefficients of the reflective surface can be
derived. If S=0, then will be a,=-0.5m™" and &, =a;,=0. (Figure 32), which are the

coefficients of a parabolic surface.

A3. Plane mirror
The plane mirror has ideal imaging properties if the object is imaged exactly behind the mirror

with the same distance as the object is placed in front of the mirror (s'=—s <=> S'=S). In this case

Egs. (248), (251), (252) yield

_ _S-¢
as, = on =0,
_ SS'
A, =3E(3 -S$)=0
2012
as,6=4552:5 (s-s')=0. (255)

From the graph in in Figure 31 and Figure 32 the coefficients of the reflective surface can be

derived. If S=1D, which means that S=S" because S'=1D, then all coefficients will be zero (

as, =ag, =ag, = 0,Figure 32), which are the coefficients of a plane surface.

6.4.3.Numerical example

The results of Egs. (248), (251), (252) can be illustrated by a numerical example in which the
refractive index of the first medium is n=1 and the object and image distance are given by

s=-30.0mm and $'=-9.13043mm, respectively. Egs. (248), (251), (252) then vyield
a,, =-0.0714286mm™, a,, =—0.000782314mm"®, &, , =—0.000042841 mm™®. By means of a

ray-tracing approach using the optical design package ZEMAX®, we have generated layout plots showing

rays corresponding to these values. As a comparison, we have first traced rays through a spherical surface

with radius r=1/a5, =-80.0mm and a stop with semi-diameter r,,

=16.0mm (see Figure 33).
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Paraxial the imaging is perfect, but the peripheral rays introduce large errors. Next, we have considered a

parabolic surface with the same paraxial curvature ag, (see Figure 34). Again, the peripheral rays

introduce large errors.

1 O W Y

AV 77y

:
§

Figure 33: Numerical example in which the refractive index of the first medium is N =1 and the object
and image distance are given by S =-30.0mm and s'=-9.13043 mm. Ray-tracing generated by the

optical design package ZEMAX®: Spherical surface with radius r =1/85, = —80.0mm and a aperture

stop with a semi-diameter r,,,, =16.0mm. Paraxial the imaging is perfect, but the peripheral rays

introduce large errors. The vertical lines in the drawings are construction lines of ZEMAX® and have no
relevance in our context.
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Figure 34: Numerical example in which the refractive index of the first medium is N =1 and the object
and image distance are given by S =-30.0mm and s'=-9.13043 mm. Ray-tracing generated by the
optical design package ZEMAX®: Parabolic surface with the same paraxial curvature

a;, =—0.0714286mm™ and a aperture stop with a semi-diameter Iop =16.0mm. Paraxial the

imaging is perfect, but the peripheral rays introduce large errors. The vertical lines in the drawings are
construction lines of ZEMAX® and have no relevance in our context.

Although such a system has a very low f-number, it is now possible to reduce these errors

dramatically by choosing a sixth-order asphere based on the locally determined values ag,, as, and
ag ¢ - Figure 35 shows that the errors are reduced to a level which is no longer visible on the scale of the

plot.
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Figure 35: Numerical example in which the refractive index of the first medium is N =1 and the object
and image distance are given by S =-30.0mm and s'=-9.13043 mm. Ray-tracing generated by the
optical design package ZEMAX®: Strongly reduced aberrations due to aspherical surface of 6™ order with
coefficients &, =—0.0714286mm ™, &, = —0.000782314mm° and a5 = —0.000042841 mm®

and a aperture stop with a semi-diameter r,,,, =16.0mm. The errors are reduced to a level which is no

longer visible on the scale of the plot. The vertical lines in the drawings are construction lines of
ZEMAX® and have no relevance in our context.
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7. Propagation of OPD Aberrations

The propagation of OPD aberrations can also be derived directly by the algorithm described in
chapter 3 and 5. Equivalently to Figure 25, the propagation of the OPD aberrations is shown in Figure 36.

7.1. Mathematical Approach in the 2D Case

7.1.1. Description of Wavefronts described by their OPD
Then the wavefronts themselves are each described by power series expansions. Any point on the

original wavefront is given by the vector

T, () = (r 3(/; )j (256)

where in the 2D case 7, (Y,) is the curve defined by

o0 bo
() =2 W (257)

k=0

Equivalently, we represent the propagated wavefront by the vector

T, (y,) =(Tp)("yt)j (258)
where
» P
7, (Y,) kZ"—,k (259)

As in Eq. (4), again the normalization factor k! is chosen such that the coefficients b, are given by the

derivatives of the wavefrontat y, =0,

k

=Wro<yt) =7{(0) (260)

¥y =0
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The relation between the derivatives of the OPD of the wavefront z{) and the local OPD aberrations
EP reads for the 2D case ESf° =79 =b,,, e.g. for second and third-order aberrations, we have

S(?PD = ESSD =T(§2) =D, ,, ESED =T(()3) :b013, etc., equivalent to Egs. (26). A similar reasoning applies

. OPD -
for the local OPD aberrations E ok connected to the coefficients bp’k for the propagated wavefront.

7.1.2. Normal Vectors and their Derivatives

If the wavefront is described by their saggita as done in chapter 5, it will exist a relation between
the normal of the wavefront n(w™ (y)) and the first derivation of the saggita of the wavefront W (y).
This relation is shown in Eq. (36). It is necessary to derive also an equivalent relation between the normal
of the wavefront N(z(Y,)) and the first derivation of the OPD of the wavefront 7\"(Y,). The lower

index W has to be understood as a synonym for the original wavefront with the index 0 or for the

propagated wavefront with the index p.

The starting point for deriving this relation is Eq. (319), which describes the relation between the
OPD 7,,(Y,(Y)) and the saggita W(Y) of the wavefront.
Derivation of Eq. (319) with respect to Y reads

arwgi (v)) ayéiy) _ dgy iy T ) (261)

Inserting Eq. (320) and solving the derivatives leads to

7y (yt(y))(1+ w(y)®* +W(y)W(y)‘2))= ”%(ﬁ w(y)®* +w(y)w(y)(2’) (262)

From Eg. (262) follows directly
o (% ()

w (y) = L (263)

1_[r53’(yt<y))J2

n

Inserting Eq. (263) into Eq. (36) leads to requested relation between the normal vector n  (y,) of the

&) &) 2
wavefront and its OPD z,,(y,). This relation is given by n_(y,) = (_T‘N—(yt),\/l_(rw—(yt)J )’
n n

where Tw(l) =07, /0y,. In principle, we are interested in derivatives of n_(y,) with respect to VY,.

Observing, however, that n (y,) depends on Yy, only via the slope Tw(l)(yt), it is very practical to
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concentrate on this dependence nW(TW(l)) first and to deal with the inner dependence Tw(l)(yt) later. To

do this, we set v = rw(l) and to introduce the function

n(v):= (264)

1-(%)?

Since at the intersection point of the chief ray with the original wavefront all slopes vanish, only

the behavior of that function n(v) for vanishing argument v =0 is of interest. It is now straightforward

to provide the first few derivatives N (0)=alovn(v) . n®(0) = 6%/ov? nv) et

v=0

n(0)= @ n®(0) ::%(‘01} n® (0) :=n—12(_°1} n®(0) = @ a®(0) ::n_ﬁ(_‘;j, e, (265)

In application on the functions of interest, n, (y)=n(z"(y,)) and this means that n,(0)=(01)".

Further, the first derivatives are given by

ayitnw(yt)

SRR b R

0 (266)

¥y =0

and similarly for the higher derivatives.

7.1.3. Ansatz for Determining the Propagation Equations

As shown in Figure 36 the vector W, =w,(Y,) points to the neighboring ray’s intersection point

with the original wavefront, and the wavefront’s OPD referred to the original wavefront along the ray is

denoted by 7. Hence, the vector [y(t)"j pointing to the intersection point with the plane z =0, must be

( yO ]_To(yto)nw z[ytoj. (267)
W, (Y,) n 0

Correspondingly the vector w =w (y,) points to the neighboring ray’s intersection point with the

equal to the vector sum

propagated wavefront, and the wavefront’s OPD referred to the propagated wavefront along the ray is
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Yip
denoted by 7. Hence, the vector | 7 | points to the intersection point with the plane z = 1, must be
— n
n
equal to the vector sum
Yi
T p
Yo _an= _— (268)
w,(Y,) n —

n

The vector from the original wavefront to the propagated surface is 7/nn,. Hence, the vector to the point
on the propagated wavefront itself, w , must be equal to the vector sum w, =w, +7/nn,. This yields

the fundamental equation:

Yir Yoo z'+2'o(yt0)_7p(ytp)
T = :
i n
n

(269)

w
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Figure 36: Propagation of a wavefront W, about the distance % to the propagated wavefront w , . The

chief ray and the coordinate system are fixed, a neighboring ray scans the original wavefront {Wo} and
hits it at an intercept Yy, # 0, then propagates to the propagated wavefront {wp } where the brackets {}
shall denote the entity of vectors described by Eq. (124). Consistently with our notation, we denote as Y,
the projection of the neighboring ray’s intersection with {WO} onto the y axis and analogously, the
projection of the intersection with {wp} onto the Yy axis is denoted as y, . The wavefronts are described
by their OPD 7, .and 7

From Eq. (269), it is now possible to derive the desired relations order by order. Although only
the OPD of the propagated wavefront is of interest, in Eq. (269) additionally the quantities Y,, and Yy,
are also unknown. However, those are not independent from each other: if any one of them is given, the
other one can no longer be chosen independently. Y, is used as independent variable and to consider
Y, as function of it.

Eq. (269) represents a nonlinear system of two algebraic equations for the two unknown functions
z,(y,) and Yy, (Yy,) . Even if we are only interested in a solution for the function 7, (y,,), we cannot

obtain it without simultaneously solving the equations for both unknowns order by order. Introducing the

vector of unknown functions as
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Yio (Yip)
P(Yyp) = ( fp(ytp)J (270)

0
and observing that the initial condition p(0) :{7] has to be fulfilled, it is now straightforward to
n

compute all the derivatives of these Eg. (269) up to some order, which yields relations between the

curvatures, third derivatives etc. of the OPD of the original and propagated wavefront. Rewriting these

relations in terms of series coefficients b, and solving them for the desired coefficients b, yields the
desired result.

Before solving Eq. (269), we distinguish if the independent variable Y, enters into Eq. (269)
explicitly like in the first component of the vector (ytp,rp(ytp))T, or implicitly via one of the

components of Eq. (270). To this end, we define the function (IR2 X |R)H IR?: (p, V) =T by

z-—I—To(y o)_z-
yto + t ’ nw,y(T(El)(yto)) - ytp

f(p, — n
o 0 ()

) 271
z-+T0(yto)_z-p ( )

n

where (p,,p,)=(Y,.7,) are the components of p. Setting now p=p(y,), Eq. (271) allows

rewriting the fundamental system of Eq. (269) in a more compact way as
f(p(yy): ¥y )=0 272)

as can be verified explicitly by component wise comparison with Eg. (269).
The key ingredient of the method is that the relations between the derivatives of the OPD of the
original and propagated wavefront can be obtained by the first, second, etc. total derivative of Eq. (272)

with respect to y,, evaluated in the origin. The advantage of the form of Eq. (272) using Eq. (271) is

that the various terms can be tracked in a fairly compact manner.

The total derivative of f(p(ytp), ytp) in Eq. (272) is obtained by applying the principles from the

theory of implicit functions. Hence, the total derivative is given by the partial derivatives of f with
respect to the components p; of P, times the derivatives of p;(y,,), plus the partial derivative of f
with respect to the explicit dependence on 'y, . This transforms the system of algebraic equations in Eq.
(269) to the system of differential equations

2, of

Zl:$ pﬁl)(ytp)+ay—'=0, 1=12, (273)
i1 OP; o
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where the matrix with elements A, = of; /0p; is the Jacobian matrix A of f with respect to its vector

argument P, evaluated for p =p(y,,) - The Jacobian A reads

of,  ofy 1 r® 0 T+7,-7, o0 Ny
8yt 8r T wy T Mwy T

A—| Jw LI - n n n 274
of, o, ¥ T+7,—7 n (274)
— £ £ _ Yo n _ 0 p n(l) W,z
¥, 07, n " n e n

In Eq.274), the occurring expressions are understood as z® =z®(y.), 72 =w2(y,),

0

Ny =My (780 (V1)) NS, =03 (757 (V) etc., and additionally y,,,z, are themselves functions of

ytp )

The derivative vector of; / 8ytp in Eq. (273) shall be summarized as

b O _ (_ lj , (275)
Np \ O

Both A and b are deduced from f(p(ytp), ytp) and must in general themselves have the same kind of
dependence, i.e. A(p(ytp), ytp) and b(p(ytp), ytp). However, due to the special property of f to be linear
in y,, b is constant. Additionally, A has no explicit dependence on y, besides the implicit

dependence via p(y,,). Hence we write b without argument and A = A(p(y,,)), and Eq. (43) can be

written in the form

APY,)PY (V) =b. (276)

7.1.4. Solving techniques for the fundamental equation
Eq. (276) is the derivative of the fundamental equation in Eq. (272), and therefore it is itself a

fundamental equation. But additionally, it allows a stepwise solution for the derivatives p“ (y,, =0) for

increasing order k . Formally, Eq. (276) can be solved for p(l)(ytp) by

PY (¥,) =AP(Yy,) 'b. @277)
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Eg. (277) holds as a function of Y, but of course for arbitrary Y, both sides of Eq. (277) are unknown.

However, evaluating Eq. (277) for Y, = 0 exploits that then the right-hand side (rhs) is known because
0
p(0) = 7 is known! In the same manner, Eq. (277) serves as starting point for a recursion scheme by
n
repeated total derivative and evaluation for Y, = 0. Remembering that b is constant, we obtain

p®(0) = A™b
2 _(A-1\®
@ =(A%)"b 278)

p(k) (0) : .(Al )(k—l) b,

where  AT=APO)'=A©0)*, ad (A =——Alp(y,))* S

(A =L Alp(y,)*?

s are total derivatives of the function A(p(ytp))fl. The reason why
t

Yp=0
Eq. (278) really does provide solutions for p® (0), p‘®(0), ..., p® (0) is that in any row of Eq. (278)
the entries on the rhs are all known assuming that the equations above are already solved. Although on the
rhs there occur implicit derivatives p® (0), p®(0), ... as well, they are always of an order less than on

the left-hand side (lhs). For example, the second row in Eg. (278) reads in explicit form

2 0
p(z)(O):Z(iA(p)‘ljpi(l)‘ _,-b where Y, =0 implies p=| ./ |, and where on the rhs the
iz \ Op; Vo= A

highest occurring derivative of p is p(l) (0) which is already known due to the first row in Eq. (278).

is p®“™®(0), which is

tp

d ? g
Generally, the highest derivative of P occurring in [WA(p(ytp))ll

Yp=0
already known at the stage when p®’(0) is to be computed by Eq. (278).

Although looking attractive and formally simple, applying Eq. (278) in practice requires still
some algebra. One part of the effort arises because it is the inverse of A which has to be differentiated
with respect to P. The other part of the effort is due to the large number of terms, since the higher

derivatives will involve more and more cross derivatives like 82/6pi0p j - Both tasks are straightforward

to be executed by a computer algebra package but nevertheless lengthy and not the best way how to gain

more insight.
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While cross-derivatives are inevitable, there exists an alternative recursion scheme for which it is
sufficient to differentiate the matrix A itself instead of its inverse A™", which means an enormous
reduction of complexity! To this purpose, we start the recursion scheme from Eq. (276) instead of Eq.
(277). The first (k —1) total derivatives of Eq. (276) are

Ap®(0)=b €Y
APpY(0)+Ap®(0)=0 (b)
APp®(0)+2AYp@(0)+ Ap®(0)=0 (© (279)

K K=1) o
2 AP0 =0, k=2 ()
-1

oy de
y e AR = v Alp(y,))  are

Yp=0 P Yp=0

where A =A(p(0)) = A(0), and A® = diA(p(ytp))

tp

total derivatives of the function A(p(y,,)). For the last line of Eq. (279) we have applied the formula for
I N
the p-th derivative of a product, (fg)® = leo( _)f =D Eq. (279) represents a recursion scheme
—\J

where in each equation containing p® (0), p*?(0), ..., p*’(0), only p® (0) (in the last term for j =k
) is unknown provided that all previous equations for p® (0), p‘®(0), ..., p“™(0) are already solved.
A formal solution for p® (0) , expressed in terms of its predecessors, is

pP0)= A™b k=1

Kk —1) . 280
lo(k’(O):—Alz[j JA("‘)p“)(O), k> 2. (280)
—| -

Although quite different in appearance at first glance, Eq. (280) yields exactly the same solutions as Eq.
(278).

7.1.5. Solutions for the General Propagation Equations

In the result for p® (0), the first rows of both Egs. (278),(280) involve A(0)™. For obtaining

A(0)™, we evaluate Eq. (274) for p=0 and apply Egs. (265), yielding

—1+i27(§2)
A(0) = n
0

-1
=A0) " =|1-7.7? 0 (281)

0

0
1
— 0 n
n
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The final result for p® (0) is

e S

p?(0)=A"b=|1-7,7? (282)
0

The first derivative of the y, -coordinate is a dilation depending on the curvature of the OPD of the

original wavefront and the propagated optical path length 7, such that y(0) = 1/—(2)
—_ Tnz TO

of the OPD of the propagated wavefront vanishes, rél) (0) =0, as does the slope of the OPD of the

. The slope

original wavefront due to 7" (0) = 0.

For the orders k >2 we apply Egs. (280). The derivatives A® = diA(p(ytp)) , etc. are

tp Yo =0
directly obtained by total derivative of Eq. (274) with respect to y,, evaluating for y, =0 and again
applying Egs. (265). For the orders k > 2 only the results 7 (0) for the propagated wavefront are of

interest, therefore we directly provide those result. The resulting second-order law is (omitting the

argument  (0) )

1
(2) _ (2)
= 283
P 1-7, e (283)

which is well-known as the propagation equation and reveals to be a special case of the results. The

resulting higher-order laws can be written in a similar fashion

1

() 3
T, =l | %

1- 7.7

4
1 1 T 2 T 4
4) _ (4) ©) (2)
Ty = @ | | %o +3 =T, +3n470

(284)

®) —
Tp =

7. Propagation of OPD Aberrations 147



Derivation of analytical refraction, propagation and reflection equations for Higher Order Aberrations of wavefronts

Eq. (284) holds likewise for the derivatives and for the coefficients b, , , and bpyk due to Egs.

(257)-(260). In terms of local aberrations and substituting d =z/n and f = Eq. (284) reads

OPD !
1-95
S'?PD zﬂSOOPD
E:))‘F:;D :ﬂ3 EOO;D
4
[ OPD _ﬂ4 £ OPD +3g£ﬁEOPD2 n SoOPD J
p,4 = 0,4 n 0,3 nz
3
EOPD _ 5| EOPD | £ pd EOPD| o OPD d FOPD? Sc?PD
p,5 _ﬂ 0,5 + ﬂF 0,3 0,4 +3ﬂ? Eo,S +6n—2 ) (285)
SOPD3EOPD
ENe =B° Ege” +5B8%| BESPES. +2184 EggDzEg;’D +12°n—2°"‘
2 2 2 3+ 44897 4 6 1+ 457
+2ESZD +9,BSOOPD ESZD T+21(/3%)2E0?§D +9800F’D T
Eqg. (285) can be generalized to
EOR = gm0 (EOP 1+ ROP) (286)

. OPD A . .
where in R, all wavefront derivatives of lower order (<k) are expressed in terms of local aberrations.

Table 8 shows the propagation equation for OPD aberrations up to order k = 6 and the propagation

equations for wavefront (saggita) aberrations are shown for comparison in Table 9.
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Propagation OPD aberration:

1

b= g =TT
SOPD ,8 SOPD
[
EOPD ﬁ3 EOPD
EQRD 4
d 2 GOPD
4 OPD OPD o
B*| EQGP + 35(/3 EZ% "~
EQEP opp3
d 8§
ﬁS OPD + 5‘8 EOPD <2 EOPD _l_BBE E(())EDZ +6 — )
EOPD 3
d OPD OPD
Be| ESEP + 53 3EQSP EQEP + 218 — EQEP” EQRP + 12— + 2 EQRP”

oPD? 0PD? 3 +4 % SgPD
+96 S, Eg3 —a2 b
d SOPD

opD® n
+93S; —

d
OPD2 2
E;3z" +21p8 3 E

2
opD#

Table 8: Equations to calculate the OPD aberrations up to order k = 6 of the propagated wavefront as a

function of the OPD aberrations of the original wavefront
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Propagation Wavefront aberration:
1 d=1/
=—FF =T/n
1- gD
n
S BS,
Ep,3 ﬂs Eo,S
E 4
. ﬂ4(E04+3%(ﬂE§3—S—ZJ]
’ ©on
Eps 2 S
ﬂS Eo,5 +5ﬂ% Eo,3 2E0,4 +3ﬂ% Eo,s _6n_3
E,. SJE
" IBG[EO,G + 5ﬂ%(3E03 Eo,5 + Zlﬂ% E02,3 E0,4 _12 On 20'4
3+47S, 448, 1+4S,
+2E2, ~9BSIEZ, T 0% L o] (pe)2ES 4988 T 0 jj
' n’ n*

Table 9: Equations to calculate the wavefront (saggita) aberrations up to order k = 6 of the propagated
wavefront as a function of the wavefront aberrations of the original wavefront

7.2. Mathematical Approach in the 3D Case

7.2.1. Description of Wavefronts described by their OPD
Although more lengthy to demonstrate than the 2D case, conceptually the 3D case can be treated
analogously to the 2D case. Therefore, we will only report the most important differences. Analogously to

Eqg. (256), the original wavefront is now represented by the 3D vector

Xt
T, (Xt ' yt) = Y (287)
76 (% ¥e)
where in the 3D case 7,(X,,Y,) is the surface defined by
0,m,k—m -m

T 288
o (XY = g%mk T "y (288)
As in Eq. (4), again the normalization factors k! and m! are chosen such that the coefficients b, ., . are

given by the derivatives of the wavefrontat x, =0, y, =0,
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k

0
b =—-1. (X, 289
0,m,k—m 6Xtm6ytk_m To( t yt) ( )

%=0,y,=0

Equivalently, we represent the propagated wavefront by the vector

Xt
0¥ = (290)
z-p (Xt ! yt)
with
2 - bp,m,k—m m,, k—-m
Tp (Xt 1 yt) = ZZ—Xt Y (291)

ico moo Mi(k —m)!

7.2.2. Normal Vectors and their Derivatives

If the wavefront is described by their saggita as done in chapter 5, it will exist a relation between

the normal of the wavefront (W™ (X,y)) and the first derivation of the saggita of the wavefront

w® (X,y). This relation is shown in Eq. (65). It is necessary to derive also an equivalent relation between
the normal of the wavefront N(z(X,,Y,)) and the first derivation of the OPD of the wavefront

t9(X,,Y,). The lower index W has to be understood as synonym for the original wavefront with the
index 0 or for the propagated wavefront with the index p .

The starting point for deriving this relation is Eq. (318). Equivalently the fundamental equation in
the 3D case takes the form

X X,
y —%an [y |- (292)
w(X,y) 0

Our question is now posed such that z,,(X,,Y,) is the unknown function of interest while w(x,y) is

given. In this case it is most practical to use X and Y as the independent variable, such that the functions

X, (X, Y), ¥, (X, y) and consequently 7, (X, (X,Y),Y,(X,Y)) enter into Eq.(292).

Inserting  n,, (X, y) = (~w"?(x, y),~w(x, y),1)’ /\/1+ wh (x, y)2 + W (x,y)?, the

third row of Eq. (292) can be solved for z,,(X, (X, ¥), Y, (X, ¥)), yielding
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7, (% (6 ), Y, 06 ) = 0, YY1 W (6, ) + W (x, ) (293)

Inserting then Eq. (293) into the first and second row of Eq. (292) leads to

_ (1,0)
X (X, Y) = X+W(x, y)W(Ol)(X, Y)_ (294)
Yo (X, y) = y+W(X, )W (x,y)

Inserting Egs. (294) into the arguments of 7, in Eq. (293), yields

7, (X WOG Y)W (X, Y), Y+ WX YWD (%, ) = nwOx YL+ WS (x, ) + WO (x,y)° (295)

Derivation of Eq. (293) with respectsto X and Yy reads

07, (% (X, ¥). Y1 (X, ¥)) % (*,Y) 07 (X (X, Y), Y1 (X, Y)) Oy (X Y)
OX, OX oy, OX

= & [ y) L WP 0 )7+ W,y

(296)

07, (% (%, ¥), ¥ (%)) % (x,y) 07, (X (X ¥), Y (X, Y)) Oy (X Y)
Xy oy Y, oy

_ (nw(x YVL+ W (x, )2 + WO (x, y)? )

Inserting Egs. (294) and solving the derivatives leads to

289 (x (%, y), Y (6 YL wix, )20+ wi(x, yywix, ) @2 J+

79 (%, (%, ), Y, (% Y) (WCx, ) O w(x, y)©2 +w(x, 1) )

CO* L y(x, ) D w(x, y) 4 +w(x, y) ¢ L+ w(x, y) " +w(x,y)??)
\/1+ whO (x, y)2 + WO (x, y)?

—

E

—~

E

_ g Wx,y)

(297)

78 (% (6 ), Y (%, y))(l+ w(x, Y)®° +w(x, y)w(x, y)©? )+

789 (%, (%, ), Y, (%, YD) W%, ) 2Ow(x, y) 2 +w(x, y) )

_ g W(x, Y) @0+ w(x, Y)W, Y)HY  wx, ¥) O L+ wix, Y)EO° +wix, y) ©?)
\/1+ w9 (x, y)2 + WO (x, y)?

The Egs. (297) define a system of linear equations regarding z*® and z{®? . Solving this system

—~

E’,;E

of linear equations leads to
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209 (3 (4, y), ¥, (X, Y)) =1 Wi )™
VLW (x, )2 + WO (x, y)? -
209 0, (% ), Y, (% Y)) = W y)°
\/1+ wh (x, y)2 +wO (x, y)?
From Eqgs. (298) follows directly
750 (% (%, Y), Y (%, )
WO (x, y) = I
(T | (P00 1))
n n
(299)
OV (% (X, Y), Y (X, )
weD(x, y) = 0 :
Jl (r&&‘”(xt(x, 1. % (% y»j ] [réf”(xt (6 9). 3, y»j
n n

Inserting Egs. (299) into Eq. (65) leads to the requested relation between the normal vector n_ (x,,y,) of

the wavefront and its OPD 7, (X,, Y, ) . This relation is given by

(g = (T ) m ) Jl_{rw‘l*")(xt,yt)] _(rw“"“(xt,yoj (@00

n n n n

where 7,"% =z, /2%, and 7, =67,/ dy, .

In principle, we are interested in derivatives of n  (x,,y,) with respectto X, and Y,. Observing,

however, that n_ (x,,y,) depends on X, and Y, only via the slopes Tw(l’o)(xt,yt) and TW(O'l)(Xt,yt), it is

@ 0)

very practical to concentrate on this dependence n,(z,, (O'l) ) first and to deal with the inner

0 0, .
dependence 7,"” (x.,y,) and 7,°”(x,,Y,) later. To do this, we set u=7,* and v=7," and to

introduce the function

n(u,v):= _% (301)
N A A
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Since at the intersection point of the chief ray with original wavefront all slopes vanish, only the

behavior of that function n(u,v) for vanishing arguments u=0 and v=0 is of interest. It is now

straightforward to provide the first few derivatives
n“2(00)=aoun(uy),,,, n®00)=dovnluv),, . n“?00)=*u’n(uy) . ete:
0 -1 0
n(0,0)=| 0 ,n<1'°>(o,o):=l 0 |, n®Y(0,0):==| -1/,
1 "o "o
0 0
n<zv°>(o,o)::i2 0 ,n(“)(O,O)::O,n(o*z)(O,O)::iZ 0|,
"1 "1
0
n®9(0,0)=n®"(0,0)=n"?(0,0)=n®?(0,0):=0, n“”(0) = n—14 0 |, etc., (302)
-3

In application on the functions of interest, n,(xy)=n(z"?(x,y,)) and this means that

n, (0,0)=(0,01)" . Further, the first derivatives are given by

0
Soney) =nS700)=n" 00" (00)=| 0
t

z29(0,0)
n (303)

X =0,y,=0

and similarly for the higher derivatives.

7.2.3. Ansatz for Determining the Propagation Equation
As shown in Figure 36 the vector w, =w_ (X,,Y,) points to the neighboring ray’s intersection
point with the original wavefront, and the wavefront’s OPD referred to the original wavefront along the

Xto
ray is denoted by 7. Hence, the vector | y, | pointing to the intersection point with the plane z =0,
0

must be equal to the vector sum
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XO (X ) XtO
. _ 7’-O to? ytO nw — " (304)
n
w, (Y,) 0

Correspondingly the vector w_  =w (y,) points to the neighboring ray’s intersection point with the

propagated wavefront, and the wavefront’s OPD referred to the propagated wavefront along the ray is

Xip
denoted by 7. Hence, the vector | y,, | points to the intersection point with the plane z = 1, must be
i n
n
equal to the vector sum
X X
p tp
7o (X Yip)
I LA B2 (305)
W, (¥,) T
n

The vector from the original wavefront to the propagated surface is 7/nn . Hence, the vector to the point
on the propagated wavefront itself, w , must be equal to the vector sum w, =w, +7/nn,. This yields

the fundamental equation:

ti — X

_ T+T0(Xto1yto)_z—p(xtp!ytp)
ytp_yto - n n,
T

n

(306)

The starting point for establishing the relations between the original and the propagated wavefront is now
given by Eq. (306). This equation is analogous to Eq. (269), with the only difference that x and Y

components are simultaneously present.

The vector of unknown functions is now given by

Xto (ti ' ytp)
p(xtp' ytp) = yto(xtp' ytp) (307)
Wp (ti ! ytp)

0
and observing that the initial condition p(0,0) =| 0 | has to be fulfilled.

7

Eqg. (306), the 3D analogue to Eq. (269), leads now to
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F(P(Xp: Vip) X1 Vip )= 0 (308)

where f is the 3D analogue to Eq.(271).
The key ingredient of the method is that the relations between the derivatives of the OPD of the
original and propagated wavefront can be obtained by the first, second, etc. total derivative of Eq. (308)

with respect to x,, and y, , evaluated in the origin. The advantage of the form of Eq. (308) is that the

various terms can be tracked in a fairly compact manner.

The total derivative of f(p(ytp), ytp) in Eq. (308) is obtained by applying the principles from the

theory of implicit functions. Hence, the total derivative is given by the partial derivatives of f with

respect to the components p; of p, times the derivatives of p;(x,,,Y,,), plus the partial derivative of f
with respect to the explicit dependence on x,, and y, . This transforms the system of algebraic equations

in Eq. (306) to the system of differential equations

One important difference compared to the 2D case is that there are two arguments with respect to
which the derivatives have to be taken. This implies that the dimension of the linear problems to solve
grows with increasing order: while there are only 3 different unknown functions, the first-order problem
possesses already 6 unknown first-order derivatives, then there are 9 second-order derivatives, etc.
Another implication of the existence of two independent variables is that from the very beginning there
are two different first-order equations

APy, ¥i) )P40 Xy, ¥ip) = b,

(309)
A%y, ¥i) P (X1 Vi) =D,
where the different inhomogeneities are given as column vectors
bxz_i:(_l 0 o), by:_i:(o -1 0). (310)
MKy Vi

The structure of b, and by arises because the original and propagated wavefronts do not have a tilt.

The Jacobian matrix A(p(x,,,Y,,)) With elements A; = df, /op; is the same for both equations

and analogous to Eq. (274) but now of size 3x 3.
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0) THT
14 Lo e ; Tp (n(“) wy o (10> (20))
AlpOt. )= | -, + T (000 4 0 o)
’ n
(1.0 T+T
z'on n,, + o "% (n(o 1) (11) (1 0) (2 0)
o1 (311)
' T+7T n
z'on Ny + o " Tp (n(o ) (o 2 (1 0) (11)) _$
1. éo’l) - TH+T, -7, (n(01) 02 (10) (11)) My
n " n n
oD T+7T, — 01)_(0,2 1,0) (11 n
°n,,+ p(n()() ()()) _we
n n
7.2.4. Solutions for the General Propagation Equations
The direct solutions analogously to Eq. (278) are now given by
p*“?(0,0)=A"b,
p(O,l) (0,0) _ Ailby
p@2(0,0) = (A",
(1'1) _ -1 (O,l) _ -1 (1,0)
p®0,0)=(A**?b, = (A, (312)
(0,2) _(A-1Y0D
p2(00)=(A")""b,
(A—l)(kxfl,o)bx , k, # O,ky =0
(Ky Ky) _ —1 \(ke—Lky) . —1 \(ky ky 1)
p®“™*)(0,0) = (Al)Ok 1 b, =(A) b, , k 20k, =0
(A)"?p, . k, =0k, %0
_ _ _ 4 \10) d o
where AT =A(POO) =AO0)F,  and (A = dTA(p(ti, V) ,
tp Xp=0,Yp=0
ke d T . .
(A ) A(p( Xip ytp)) , etc. The fact that there are two starting equations (309)

dx dy

xm:O,ym:O
reflects itself in the existence of two formally different solutions for the mixed derivatives, e.g. p(l'l).
However, since both starting equations originate from one common function f in Eq. (308), for each

p(k*’ky) both solutions must essentially be identical, as can also be verified e.g. for p(l’l) directly by some

algebra.
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In analogy to Egs. (281),(282) for the 2D case, we provide here the explicit results

(2,0) 1)

1+ T T 0 7702 JCE)

n2 n2 _1+ o2 _ 02 0
TT(l’l) TT(O’Z) y n n
A(0) = % -1+—2 0| A= i e | 0| (313)

n n -—2 -1+—2

1 n? n?
0 0 o 0 0 n

det(A(O)) 1- (rrél’l) )2 B ”52,0) B rréo’z) N 12152’0)150’2)
2 2 2 4
n n n n

and after application of Egs. (310),(312) the solutions

1— TT(EZ'Z) TTC()::l)
n n
11) (2,0)

TT T7T,
P00 =y 5= | P00 =r1-—1 (314)

0 0
For the orders k > 2 we apply Egs. (312). The derivatives A®? = diA(p(th Vi) etc. are

Xep ,
Xip =0, ¥y, =0

directly obtained by total derivative of Eq. (311) with respect to x,, and vy, , evaluated for x,, =0 and

(ks ky

A )(0,0) for the propagated wavefront are

Yy, =0. For the orders k >2 especially the results 7

interesting, therefore we directly provide those result. The resulting second-order law is (omitting the

2
(L) 0.2)
T T
752,0) =yl —>—| +|1-7—">5 720
n n

@y _ (%))
z-p - 7/ z-0

2
(1) (2,0)
T T
T;O’z) =yl 7| —>—| +|1-7—"5 702
n n

which are identical with the results of Eqgs. (159) using Egs. (324) to transform OPD aberrations to

argument  (0) )

(315)

wavefront (saggita) aberrations.

If the coordinate axis coincides with the directions of principal curvature of the wavefront, which

means that 7 = 0, Eqg. (315) can be simplified to
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1
(2,0) _ (2,0)
o T a0 b
1-"fo
n2
@y _

7,7 =0 (316)
£02) _ 1 02
p (0,2) "o
1_TT0

n2

The resulting higher-order laws can be written in a similar fashion. Now for the special case that

the coordinate axis coincide with the directions of principal curvature of the wavefront the third-order law

is
(3,0) 1 (3,0)
Tp 3 To
(2,0)
1%
n2
21 1 (21
%o (20)\? (0.2) Fo
1_ TTO ' 1_ TTO '
2 2
n n
1 (317)
2) L2)
T (2,0) 0.2)\? Fo
1_T% 1 7%
2 2
n n
£09) _ 1 03
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8. Summary

In the present thesis we have developed a general method for generating refraction, propagation
and reflection equations for local wavefront aberrations of any order under arbitrarily oblique incidence
conditions, which are published in [25,26,27]. The main advantage of the approach presented in this
thesis is that it is based exclusively on analytical formulas which are novel. This saves much
computation time compared to numerical iteration routines which would otherwise be necessary for
determining the higher order aberrations. These results include as a special case the well-known scalar
Vergence equation as well as the Coddington equation and the classical Transfer equation (order k = 2),
but extend these equations to aberrations of any arbitrary higher order k > 2.

For convenience, we have distinguished between the two-dimensional and the three-dimensional
problem in deriving the refraction, propagation and reflection equations. we have provided the general
formulism and for the orders k <6, we have provided explicit formulas for the resulting terms in the
two-dimensional case.

In chapter 3 we have demonstrated for the first time the derivation of analytical refraction

equations for Higher Order Aberrations and in chapter 6 the derivation of analytical reflection
equations for Higher Order Aberrations. The refraction and reflection equations are relations between
an incoming wavefront, a refractive or reflective surface and an outgoing or reflected wavefront. In detail,
we have defined local aberrations of those three surfaces in terms of local power series coefficients,
which describe the surfaces in local coordinate systems aligned with the chief rays or the surface normal,
respectively. The general refraction equations are established as a sequence of analytical relations
between these series coefficients. We have been able to show that for each given order k >2 it is
possible to assign one equation taken from that sequence whose leading-order terms represent a
straightforward generalization of the Coddington equation to the order k, and which in general
contains some additional terms whose order is always less than k. A direct consequence is that if
only aberrations of one single order k are present, then the generalization of the Coddington equation

will be exact for that order k, which reads for the two-dimensional problem

E', cos* &'=E, cos* ¢ +v-E, in case of refraction and in case of reflection E, =cos**&(E', ~E, ),
and in the three-dimensional case the vector-valued version of which reads C', €', =C,e, +v€, for

refraction and €, =C, (', —€,) for reflection. These results include as a special case the well-known

scalar Vergence equation as well as the Coddington equation (order k = 2 ), but extend these refraction
equations to aberrations of any arbitrary higher order k > 2 which is done for the first time and
published in [25,27].
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It is important to note that the formalism presented in this work in general allows to determine
each of the three surfaces (incoming wavefronts, refractive or reflective surface, outgoing or reflected
wavefront) up to an order k , provided that the two other surfaces are given up to the same order k .

The standard situation is that an incoming wavefront and a refractive or reflective surface are
given and that the outgoing or reflected wavefront is to be determined, as we have illustrated by
examples. However, the reverse problem can likewise be treated. As we have shown explicitly in
examples, if the incoming and the outgoing or reflected wavefront are both given without deviation from
an ideal sphere up to the order k =6, our equations directly allow to determine the refractive or
reflective surface necessary for this imagery.

In chapter 3 we have demonstrated for the first time the derivation of analytical

propagation equations for Higher Order Aberrations. For propagation only analytical equations exist
which are still restricted by some approximations. As is written by Dai et al [44], further study is
necessary to obtain a unified formulation for wavefronts containing both low-order and high-order
aberrations. In the present work we have succeeded to develop such a unified and novel analytical

propagation _method. These results include as a special case the classical scalar vertex correction

formula as well as the well-known Transfer Matrix equation (order k = 2 ), but extend these propagation
equations to aberrations of higher order k > 2 which is done for the first time and published in [26].

The propagation equations are relations between the original wavefront and the propagated
wavefront. In detail, we have defined local aberrations of those two wavefronts in terms of local power
series coefficients, which describe the wavefronts in a general coordinate systems aligned with the chief
rays normal. The general propagation equations are established as a sequence of analytical relations
between these series coefficients. We have been able to show that for each given order k > 2 it is
possible to assign one equation taken from that sequence whose leading-order terms represent a
straightforward generalization of the Transfer equation to the order k, and which in general
contains some additional terms whose order is always less than k . A direct consequence is that if

only aberrations of one single order k (k > 2) are present, then the aberrations are not changed by

propagation, which reads E, =E, for the two-dimensional problem, and the vector-valued version of

which reads €,, =€, in the three-dimensional case.

In chapter 4 we have demonstrated how to calculate the aberration coefficients in a rotated
coordinate system directly from the original aberration coefficients. Also in this chapter we have
derived the relation between the coefficients of Zernike series polynomials and the coefficients of power
series polynomials. In Appendix A: Relation between sagitta derivatives and OPD derivatives” are
equations provided for transforming wavefront (sagitta) aberrations to OPD aberrations. The method,
used in this thesis, has also the capability to derive directly the equations for Higher Order OPD
aberrations. This is done exemplarily in the case of propagation in chapter 7 which is done for the

first time.
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With the method developed in this work, it is now possible to calculate in an analytical way
the local Higher Order Aberrations of the outgoing or reflected wavefront directly from the
aberrations of the incoming wavefront and the refractive or reflective surface and the aberrations
of the propagated wavefront from the aberrations of the original wavefront. Although our method is
based on local techniques, it yields results which are by no means restricted to small apertures, as shown
theoretically as well as in two examples.
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9. Appendix

Appendix A: Relation between sagitta derivatives and OPD derivatives

If a wavefront is given by its sagitta, then the OPD between the wavefront and a reference plane being
tangential to the wavefront can determined from it, and vice versa. In particular, there exists a unique
relation between the aberration coefficients in terms of the wavefront (by our definition the sagitta
derivatives) and the aberration coefficients in terms of the aberration function (to be defined as the OPD
derivatives). For simplicity, we establish this relation first in the 2D case. Formally, the situation can be
imagined to be described by Figure 16 for the special case that the refractive surface is a plane and the
incidence is orthogonal. Applying to any wavefront in this context, we generically call the wavefront

sagitta W(y) instead of W,, (Y,,), the coordinate in the tangential plane is Y, instead of Y, and the

wavefront’s OPD is 7,,(Y,) instead of 7(Y;) (see Figure 37).

Figure 37: Relationship between the sagitta W(y) of a wavefront and its OPD given by the function

7,,(Y) . There exists a unique relation between the aberration coefficients in terms of the wavefront (by

the definition the sagitta derivatives) and the aberration coefficients in terms of the aberration function (to
be defined as the OPD derivatives).

The first one of Egs. (39) then takes the form

( y j—T—anz[y‘j. (318)
w(y)) n 0

Our question is now posed such that 7, (Y,) is the unknown function of interest while W(Yy) is given. In

this case it is most practical to use Y as the independent variable, such that the functions ¥, (y) and

consequently z,, (Y, (y)) enter into Eq. (318). Inserting n,, (y) = (~w® (y),))" //1+w® (y)* (see Eq.

(36)), the second row of Eq. (318) can be solved for 7, (Y, (Y)) , yielding
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7, (Y (¥)) = nw(y)y1+w® (y)? . (319)

Inserting then Eq. (319) into the first row of Eq. (318) leads to
Y (y) =y +w(y)w®(y). (320)
For obtaining a relationship between the derivatives 7 (y,) = 6*z,, /6y, and the derivatives w® (y),

we insert Eq. (320) into the argument of 7, in Eq. (319), yielding

7 [y + W)WE () ) = nw(y)y 1+ w® (y)? . (321)

As is generally the key ingredient in this thesis, we take now the subsequent derivatives of Eq. (321) and
evaluate at the position y =0. Making use of w(0) =0, w® (0) =0, this leads to
z, o)= 0
00
@
3w?(0)°72(0)+ 2 (0)=nw®(0) (322
10w® (0)w® (0)z2(0) + 12w (0)2z? (0) + ¥ o) n(6w® (0)° + w“(0))

a
w
2
(
(

(

(0)=
2(0)= nw<2> 0)
o

(

which represents a system for determination of z,,(0), 7 (0),7? (0),z& (0),.... Inserting the result for
70 (0) in the successive equations in Eq. (322), then the one for ¢ (0), and so on, yields the result

(omitting the argument * (0) )

7, =0
=0
@ =nw®
Tf’) —nw® (323)

3
= n(w“‘) —-6w® )

t® =n (W(S) - 40W(2)2W(3))
Eq. (323) shows that up to order kK =3 the OPD measure of aberrations is, apart from the prefactor n ,

equal to the sagitta measure, but for orders K >4 | there occur more and more transformation terms.

In the 3D case the procedure is analogous, and the result reads
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=0
(0
“lo

Tw
(1,0)
Tw

T$@

(2,0)
w
1)
w
0.2)
w

T

|

ew 20 (W(1,1)2 CUE

3w (W(1,1)2 + W20 (W<o,2) + 2020

(W(o,Z) + W20 Y5 ad? 4 (02,20

3y (W(1,1)2 +w©2 (ZW(O’Z) w0
ew©2 (Wa,l)z L w022

(324)

For calculation of the relations between the OPD and saggita aberrations of the wavefront in the 2D case,

the results of Eq. (323), describing the relations between sagitta derivatives and the OPD derivatives, can

be transformed to relations between the wavefront and OPD aberrations, shown in Table 10.

Relation between OPD aberrations and Wavefront aberrations

OPD aberration Wavefront aberration
SOPD S
Egm) E3
EEPD 53
E4_ - 6?
EOPD SZE
; Es — 40—>
n

Table 10: Relation between OPD aberrations and wavefront aberrations up to order 5 in the 2D case. the
results of Eq. (323), describing the relations between sagitta derivatives and the OPD derivatives, can be
transformed to relations between the wavefront and OPD aberrations

9. Appendix

165



Derivation of analytical refraction, propagation and reflection equations for Higher Order Aberrations of wavefronts

Appendix B

The vector I, is given by

0
sine (n cose S’y (n°S',—n"* S)+n'cose’(n'S* —n? (S5 +SS', S, S',, )))
12 1 ]
(- nn'“ (n cogg—ncose) . (325)
3cosecose'sing (n'cose S —ncose'S' )(n'? S —n?S'))

nn'* (n'cos &'-ncos €)
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Appendix

where

SR

9. Appendix

C

PP (y,) = AP(y,)"'b.

p®(0)= A"
o0 (3P

p(k) (0) : .(A-l )(k—l) b,

AT-APO) I -AO),  ad (A7) =L
dy,
d*? o
d k-1 A(p(yS)) '
% .

Ap®(0)=b
APp®(0)+Ap®(0)=0
APpD(0)+2AYp@ (0)+ Ap®(0) =0

Alp(y,))*

)
(b)
©

(k-1 (k=1)y (1)
2 AP =0 k22 (d)
-1

pP @)= A7 k=1

k-1 k -1 . .
|o<k’<0)=—AlZ[j 1JA“”p‘“(O), k
SR

> 2.

(326)

(327)

yp =0

(328)

(329)
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Local Aberrations (our method

Example Al Example A2
iig:l Symbol Original wavefront | Propagated wavefront Original wavefront Propagated wavefront
k value*m“* | value*m** value*m** value*m**
0 E 0 0 0 0
E, 0 0 0 0
1
E y 0 0 0 0
= 0 0 0 0
2 E.y 0 0 0 0
Eyy 0 0 0 0
E 0 0 0 0
EXXy 0 0 -99.919 99.9191
3
EXyy 0 0 0 0
Eyyy 0 0 -311.92 311.924
E -1.3049x10° -1.3049x10° 50653 51253
XXXX
E ooy 0 0 0 0
4 E Xy -4.3498x10° -4.3498x10° 19729 20752
E oy 0 0 0 0
E WYY -1.3049%10° -1.3049%10° 68329 74167
E oo 0 0 0 0
E ooy 0 0 -1.9975x10° -2.6475x10°
E voy 0 0 0 0
5
E vy 0 0 -2.1749x10° -2.9387x10°
SN 0 0 0 0
Eyyyyy 0 0 -1.1823%10 -1.6268x107
EXXXXXX 1.0761x10% 3.5133x10" 1.6856x10° 2.2744x10°
E ooy 0 0 0 0
EXXXny 2.1522x10° 7.0266x10" 4.6196x10° 6.7583x10°
6 E ooyyy 0 0 0 0
EXnyyy 2.1522x10° 7.0266x10'° 6.0316x10° 9.3213x10°
E YV 0 0 0 0
Eyyyyyy 1.0761x10% 3.5133x10" 3.8114x10° 6.1388x10°

Table 11: Values of the local aberrations based on our method before propagation (Taylor wavefront
sagitta representation of the original wavefront) and after propagation (Taylor wavefront sagitta
representation of the propagated wavefront) in examples Al and A2.
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Local Aberrations (our method)
Example B1 Example B2
Radial Symbol Original Propagated Original wavefront | Propagated wavefront
order wavefront wavefront
K _ _ _ _
value*m*? | value*m*? value*m“™ value*m“™
0 E 0 0 0 0
E, 0 0 0 0
1
E y 0 0 0 0
EXX -21.669 -15.117 -41.247 -22.602
2 E.y 0 0 0 0
Eyy -21.669 -15.117 -50.877 -25.2174
(= 0 0 0 0
E oy 0 0 -749.20 -111.50
3
EXyy 0 0 0 0
Eyyy 0 0 -3420.7 -416.53
EXXXX -1.2881x10° -3.0828x10° -8.1744x10° -87851
E ooy 0 0 0 0
4 EXXyy -4.2937x10° -1.0276x10° -4.5578x10° -37337
E oy 0 0 0 0
E Wy -1.2881x10° -3.0828x10° -2.3047x10° -1.4236%10°
= 0 0 0 0
E ooy 0 0 -7.6008x10’ -1.8204x10°
E oy 0 0 0 0
5
E vy 0 0 -1.2692x10° -2.2713x10°
E vy 0 0 0 0
Eyyyyy 0 0 -1.0583x10° -1.4054x107
EXXXXXX -5.0085x10" 1.9658x10%° -1.1937x10" -2.1245x10°
S 0 0 0 0
E -1.0017x10% 3.9317x10° -4.9496x10" -5.7487x10°
XXXXYY
6 E ooyyy 0 0 0 0
EXnyyy -1.0017x10% 3.9317x10° -9.9092x10% -7.6601x10°
E " 0 0 0 0
Eyyyyyy -5.0085x10%° 1.9658x10% -9.6626x10* -5.0286x10°

Table 12: Values of the local aberrations based on our method before propagation (Taylor wavefront
sagitta representation of the original wavefront) and after propagation (Taylor wavefront sagitta
representation of the propagated wavefront) in examples B1 and B2.

9. Appendix

169




Derivation of analytical refraction, propagation and reflection equations for Higher Order Aberrations of wavefronts

Original wavefront

Zernike represen-
tation of OPD

Propagated wavefront

Zernike represen-
tation of OPD

Figure 38: Logical flow of the computation of the Zernike coefficients of a propagated wavefront for
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given Zernike coefficients of the original wavefront by the derived analytical method.
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