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Abstract 

 

Derivation of analytical refraction, propagation and reflection equations for Higher Order Aberrations of 

wavefronts 

From literature the analytical calculation of Lower Order Aberrations (LOA) of a wavefront after refraction, 

propagation and reflection is well-known, it is for local Power and Astigmatism performed by the Coddington 

equation for refraction and reflection and the classical vertex correction formula for propagation. However, 

equivalent analytical equations for Higher Order aberrations (HOA) do not exist. Since HOA play an increasingly 

important role in many fields of optics, e.g. ophthalmic optics, it is the purpose of this study to extend the analytical 

Generalized Coddington Equation and the analytical Transfer Equation, which deals with second order aberration, to 

the case of HOA (e.g. Coma and Spherical Aberration). This is achieved by local power series expansions.  

The purpose of this PhD was to extend the analytical Generalized Coddington Equation and the analytical 

Transfer Equation, which deals with Lower Order Aberrations (power and astigmatism), to the case of 

Higher Order Aberrations (e.g. Coma and Spherical Aberration). 

In summary, with the novel results presented here, it is now possible to calculate analytically the aberrations of an 

outgoing wavefront directly from the aberrations of the incoming wavefront and the refractive or reflective surface 

and the aberrations of a propagated wavefront directly from the aberrations of the original wavefront containing both 

low-order and high-order aberrations. 

Keywords: wavefront · Higher Order Aberration · Refraction   Coddington Equation · Coma · spherical Aberration   

Propagation   Reflection 
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Aberrations play a decisive role in optics. They describe the deviation from the perfect image. 

Wavefront aberrations are usually described by a power series expansion or by Zernike polynomials [1,2

,3]. The wavefront aberrations describe the differences in optical path length between the ideal and the 

actual wavefront. From literature the calculation of Lower Order Aberrations (LOA) as Power and 

Astigmatism of a local wavefront after refraction and reflection at a given surface is known. In the case of 

orthogonal incidence this relation is described by the “Vergence Equation [1,2,3], and in the case of 

oblique incidence by the “Coddington Equation” [3,4,5,6,7,8,9]. For Higher Order Aberrations (HOA) 

equivalent analytical equations do not exist. 

An imagery will be said to be free from aberrations if every point of an object is imaged perfectly. 

Aberrations are deviations from this situation. A wavefront based description of these aberrations can 

either refer to the geometrical shape of the real wavefronts in space or by a wave aberration function 

which measures the optical path differences (OPD) between the real wavefronts and the reference sphere 

along the real occurring rays. The aberration function can be written as a power series expansion in both 

the image coordinates and the pupil coordinates or some combinations of these. It is a very interesting 

subtopic to consider the aberration function for fixed image point and consequently as a function of the 

pupil coordinates only [2]. In this case, which is the focus of the present PhD study, the aberration 

function is often called a wavefront aberration.  

The awareness of the role of Higher Order Aberrations (HOA) has significantly increased also in 

optometry and ophthalmology [10,11,12,13,15,16,17,18]. Hitherto for determining HOA, the wavefront 

in the pupil was calculated by ray-tracing [1,2,3,19,20,21,28,29,30] a precise method when a large 

number of rays are used. In the field of spectacle optics the use of local wavefronts (determined by their 

local derivatives) to calculate the Lower Order Aberrations (Power and Astigmatism) is well established 

[3,4,5,6,7,22,23]. Wavefront tracing is a very fast semi-analytical method because it is only necessary to 

calculate the chief ray by numerical ray tracing. The coefficients of the wavefront itself, determined by 

their local derivatives, are calculated analytically.  

In terms of rays, the ideal image point serves as a reference point which any ray starting from the 

object point through the aperture has to hit. In terms of waves, the ideal image point serves as center of a 

reference sphere, usually through the center of the exit pupil. The point will be imaged without 

aberrations if the wavefront originating from the object point coincides with this reference sphere. 

For calculating the wavefront aberrations of an entire lens, especially of a spectacle lens, it is 

necessary to propagate the wavefront from the intersection point of the chief ray at the front surface along 

the chief ray to the intersection point at the rear surface and further to the vertex sphere or the entrance 

pupil of the eye. Because the refracting plane (plane of incidence) at the front and rear surface are not 

congruent, it is also necessary to rotate the coefficients of the wavefront. For second order aberrations 
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(Power and Astigmatism) the propagation and rotation of the coefficients of the wavefront is known and 

described by the analytical Transfer equation [7,24].  

In this context, the purpose of this PhD was to extend the analytical Generalized Coddington 

Equation and the analytical Transfer Equation, which deals with second order aberration (power 

and astigmatism), to the case of Higher Order Aberrations (HOA) (e.g. Coma and Spherical 

Aberration). Therefore, it is now possible for the first time to calculate analytically the wavefront Higher 

Order Aberrations of a spectacle lens or in general of an optical system by wavefront tracing. This new 

approach has significant advantages with respect to the state of the art methods. First, the analytical 

nature of the solution yields more detailed insight into the underlying optical process. Second, the 

dramatic reduction of computational time in comparison to numerical methods opens new possibilities for 

the solution of practical problems in optics. Although the method is based on local techniques, it yields 

results which are by no means restricted to small apertures, as it is been shown theoretically as well as in 

two examples as described in the J. Opt. Soc. Am. A “Derivation of the refraction equations for higher 

order aberrations of local wavefronts by oblique incidence” by Esser et al [25], in J. Opt. Soc. Am. A 

“Derivation of the propagation equations for higher order aberrations of local wavefronts” by Esser et al 

[26] and in Advances in Imaging and Electron Physics “Derivation of the reflection equations for higher 

order aberrations of local wavefronts by oblique incidence” by Esser et al [27]. 

The main advantage of the approach is that it is based exclusively on analytical formulas. This 

saves much computation time compared to numerical iteration routines which would otherwise be 

necessary for determining the higher order aberrations. The thesis is structured in four principal objectives 

as described in the proposal and two additional objectives. Every principal objective describes a process, 

which is necessary to calculate the wavefront Higher Order aberration of a spectacle lens or an entire 

optical system [see Figure 1]. The principal objective 1 deals with the derivation of the analytical 

refraction equations, which is the first basic process. This objective is described in chapter 3 “Derivation 

of the Refraction Equations”. The principal objective 2 deals with the relation between the coefficients of 

Zernike series polynomials and the coefficients of power series polynomials and is demonstrated in 

chapter 4.4 “Relation between Zernike series and power series”. The principal objective 3 deals with the 

rotation of the coordinate system. This is only a support process because the wavefront is not changing; 

only the coordinate system is rotated. This objective is shown in chapter 4 “Description of a Wavefront in 

a rotated Coordinate System”. The principal objective 4 deals with the derivation of the analytical 

propagation equations, which is the second basic process and is described in chapter 5 “Derivation of the 

Propagation Equations”. The additional principal objective 5 deals with the derivation of the analytical 

reflection equations and is demonstrated in chapter 6 “Derivation of the Reflection Equations”. The 

derived equations in the chapters 3, 5 and 6 are based on wavefront (sagittal) aberrations. In Appendix A: 

Relation between sagitta derivatives and OPD derivatives are equations provided for transforming 

wavefront (sagitta) aberrations to OPD aberrations. The method, used in this thesis, has also the capability 
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to derive directly the equations for OPD aberrations. This is done exemplarily in the case of propagation 

in chapter 7 “Propagation of OPD Aberrations”. 

  

 

Figure 1: Calculating the wavefront aberrations of a spectacle lens for one viewing direction for given 

chief (or principle) ray. This calculation process includes the refraction at the front surface (in this 

example a progressive surface), then the propagation from the front to the rear surface and the description 

of the wavefront in a rotated cordinate system, because regarding the  asymmetrie of the refractive 

surfaces do the reflecting planes not conciide. The next step is the refraction at the rear surface and then 

the propgation to the entrance pupil of the eye and desribing the wavefront in the coordinate system of the 

eye.  
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LOA:  Lower Order Aberrations 

HOA:  Higher Order Aberrations 

OPD:  Optical Path Difference 

PSF:  Point-Spread-Function 

RMS:  Root-Mean-Square 

LASIK: Laser-in-situ-Keratomileusis 

zyx ,, :  Local coordinate system of the refractive or reflective surface 

zyx ,, :  Local coordinate system of the incoming wavefront or global coordinates system in the  

  case of propagation 

',',' zyx :  Local coordinate system of the outgoing or reflected wavefront 

R :  Spatial rotations matrix about the common x  axis 

)()1( xf , )()2( xf , )()3( xf , … ),()0,1( yxf , ),()1,0( yxf , ),()0,2( yxf , 

  Derivatives of the function )(xf  and ),( yxf   

n :   Refractive index of the medium in front of the refractive or reflective surface 

'n :   Refractive index of the medium behind the refractive surface 

 :   Angle of incidence, angle between the incoming ray and the surface normal  

' :   Emergent angle, angle between the emerging ray and the surface normal  

Inn :   Directional vector of the incoming ray resp. normal of the incoming wavefront in the  
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r :   Radius of curvature of the refractive or reflective surface (distance from the surface to  

 the center point of the surface) 

S :   Vergence at the object side 
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  the Power vectors  

E , E' , E :  Generally aberrations of the incoming and outgoing wavefront and the    

  refractive/reflective surface. 
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1. Introduction 

 

Aberrations play a decisive role in optics. In this PhD study, it is dealt with them in the 

framework of geometrical optics in which the wavelength is neglected )0(   with respect to 

diffraction effects [1,2]. Also in this case, still the notions of both rays and wavefronts do exist. A 

wavefront, in general defined as a surface of constant phase, is in this limit a surface of constant optical 

path length. A ray is a virtual infinitesimally small bundle of light, the direction of which is defined by the 

normal of the wavefront. 

With the help of the Coddington equation and the vertex correction formula the analytical 

calculation of local Power and Astigmatism of a wavefront after reflection, refraction and also 

propagation can be accomplished. In three recent publications the author extended the refraction, 

propagation and reflection equations to HOA [25,26,27]. 

 

1.1.  Rays, Wavefronts and Aberrations 

An imagery will be said to be free from aberrations if every point of an object is imaged perfectly. 

For a given object point this will be the case if it is imaged to its paraxial conjugate image point. In terms 

of rays, this image point serves as a reference point which any ray starting from the object point through 

the aperture has to hit. In terms of waves, the image point serves as center of a reference sphere, usually 

through the center of the exit pupil. The point will be imaged without aberrations if the wavefront 

originating from the object point coincides with this reference sphere. 
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Figure 2: Caculation of the wavefront aberration function using numerical ray tracing. The aberration 

function can be written as a power series expansion in both the image coordinates ( 'h ) and the pupil 

coordinates ( ,r ) or some combinations of these. The wave aberration function is defined by the optical 

path differences (OPD) between the real wavefronts and the reference sphere along the real occurring 

rays. 

 

Aberrations are deviations from this situation. They can be likewise described in the ray picture 

or the wave picture, leading to ray or wave aberrations, respectively [3]. Both pictures, i.e. ray and wave 

aberrations, are equivalent, and can be translated into each other.  

Throughout the PhD thesis, it will be referred to wave aberrations. A wavefront based description 

of these aberrations can either refer to the geometrical shape of the real wavefronts in space (as it will be 

done in the PhD thesis), or by a wave aberration function which describes the optical path differences 

(OPD) between the real wavefronts and the reference sphere along the real occurring rays [see Figure 2]. 

 

1.2.  Classification of Aberrations 

The aberration function can be written as a power series expansion in both the image coordinates 

and the pupil coordinates or some combinations of these. Depending on symmetry and conventions, this 

series expansion may have different appearances, but in either case the respective coefficients are used for 

classifying the aberrations present. In the case of wave aberrations of rotationally symmetric systems, for 

example, it is customary to consider Seidel (primary) Aberrations, Schwarzschild (secondary) 

Aberrations, etc.. Synonymously, those are sometimes also called fourth-order, sixth-order, etc. 

aberrations. In terms of ray aberrations, different expressions for the same aberrations would occur, which 

in that picture are called third-order, fifth-order, etc. aberrations. Therefore, the ‘order’ of an aberration is 

only meaningful in connection with the underlying aberration scheme. 
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While the treatment of rotationally symmetric systems is well established in literature [2,3], there 

exist rather few publications about non-symmetric systems. Thompson has treated the third-order 

aberrations [28] and the fifth-order aberrations [29] (in the picture of rays) of misaligned or generally 

non-symmetric optical systems made of otherwise rotationally symmetric optical surfaces. Quite recently, 

Thompson et al. established a real-ray-based method for calculating these aberrations [30]. 

It is a very interesting subtopic to consider the aberration function for fixed image point and con-

sequently as a function of the pupil coordinates only [2], but without any restrictions to the symmetries of 

surfaces or wavefronts. In this case, which is the focus of the present PhD study, the aberration function is 

often called a wavefront aberration. This aberration is often referred to a plane orthogonal to the chief ray 

instead of the reference sphere, which is e.g. usual in aberrometry [10]. It will also be done so in this 

work. The above-mentioned series expansion then reduces to an expansion in terms of the pupil coordi-

nates x  and y  only. The terms in this series give rise to define the order of an aberration as the highest 

number of added powers of x  and y  [10,11]. It is well accepted that there is no one-to-one 

correspondence between the order used in this work and the more general one described above [2]. This 

arises since different orders concerning the image coordinates are summarized within one order of pupil 

coordinates. Throughout the PhD thesis, we will summarize 1
st
 order aberrations (tilt) and 2

nd
 order 

aberrations (comprising Defocus and Astigmatism) as Lower Order Aberrations (LOA), and all 

aberrations of 3
rd

 order (Coma, Trefoil), 4
th
 order (e.g. Spherical Aberration) and higher will be 

summarized as Higher Order Aberrations (HOA) [see Figure 3], as also done in Ref. [10,12]. 
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Figure 3: Illustration of the wavefront aberrations by Zernike-polynomials up to the radial order n = 4 

and the angular frequency m. Throughout the PhD thesis, aberrations of radial order n = 1 (tilt) and n = 2 

(Defocus and Astigmatism) as Lower Order Aberrations (LOA), and all aberrations of radial order n = 3 

(Coma, Trefoil) and n = 4 (e.g. Spherical Aberration) and higher will be summarized as Higher Order 

Aberrations (HOA). Figure from [13] 

 

Wavefront aberrations are the starting point for computing the image quality. Although it is not in 

the focus of this PhD thesis, the image quality is often represented by the Point-Spread-Function (PSF), 

which is computed from the wave aberration in the exit pupil and from its interference pattern taking into 

account the finite wavelength of light [1,31]. In particular there exist well-known features of the Point-

Spread-Functions (see Figure 4) assigned to the elementary aberrations shown in Figure 3. Until now the 

aberrations in the exit pupil had to be calculated by ray tracing. The purpose of this PhD is to provide a 

method for calculating the wavefront aberrations in the pupil plane by analytical wavefront tracing. The 

higher the radial order of the aberration is the higher is the asymmetry of the PSF. Usually only the 

aberrations of first order (prism) and second order (power and astigmatism) are corrected by contact 

lenses and spectacle lenses. 
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Figure 4: Illustration of the Point-Spread-Function (PSF) pattern taking into account the finite 

wavelength of light and their influence on the image quality by Zernike-polynomials up to the radial order 

n = 5 and the angular frequency m. As higher the radial order of the aberration is as higher is the 

asymmetry of the aberration. Figure from [14]. 

 

1.3.  General context and scope of the work 

The awareness of the role of HOA has increased in optometry and ophthalmology [10,11,12,13

,15,16,17,18]. Figure 5 shows the influence of each aberration with the same Root-Mean-Square (RMS) 

on the imaging of an optotype. The quality of the image is worse at the center of the Zernike-Pyramid 

than at the edges even though the RMS is equal. HOA are known to become important for large pupil 

sizes only and are therefore associated with a wavefront description over the entire pupil. Despite this, it 

is the aim of this work to establish a description of HOA based on local derivatives, but which is 

nevertheless suitable for describing all effects of a large pupil. It will be shown that this description is 

indeed fully equivalent to the usual approaches which are tailored for describing the entire pupil (e.g. by 

means of Zernike polynomials). The local description has the advantage to permit the derivation of 

analytical formulas for computing HOA, which represents a significant progress in the general 

understanding and in a reduced numerical effort. 
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Figure 5: Influence of each aberration (Zernike-coefficient) with the same Root-Mean-Square (RMS) on 

the imaging of an optotype. The quality of the image is worse at the center of the Zernike-Pyramid than at 

the edges even though the RMS is equal. Figure from [18]. 

 

Hitherto for determining HOA, the wavefront in the pupil was calculated by ray-tracing [1,8,20

,21,28,29,30] a precise method when a large number of rays are used but then being a very time-

consuming iterative numerical method. In the field of spectacle optics the use of local wavefronts to 

calculate Power and Astigmatism is well established [3,4,5,6,7,22,23]. Wavefront tracing is a very fast 

semi-analytical method [22,23]. Especially in spectacle lens optics local features of a wavefront are very 

important, because the aperture stop is not stationary as in technical optics. Also magnification and 

anamorphotic distortion previously have been calculated locally [32,33,34]. 

The importance of wavefront driven correction of ocular aberrations which are often measured by 

an aberrometer has increased rapidly in recent years. The wavefront data are determined at some device-

specific plane and by the diameter of the evaluated ray bundle. Depending on the desired application, it is 

usually necessary to transform these raw data to some other plane, e.g. the entrance pupil of the eye, the 

cornea (as is relevant for LASIK or contact lenses) or the vertex plane of a spectacle lens. The ray 

bundle’s diameter, in turn, is determined by the pupil size of the eye. 

Figure 6 shows the mean value and standard deviation of the Root-Mean-Square (RMS) of the 

wavefront aberration of 18 Zernike-coefficients. 109 subjects were measured by an aberrometer and the 

Zernike-coefficients were determined at a pupil size of 5.7 mm [12]. The first three Zernike-coefficients 

describe the aberrations of second order (power and astigmatism). It is obvious that these aberrations are 

dominating but individually also the Higher Order Aberrations can reach high values. The small picture 
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shows the Higher Order Aberrations magnified. The Zernike-coefficient 
0

4Z  (spherical aberration) is 

significant different from zero. 

 

 

Figure 6: Mean value and standard deviation of the Root-Mean-Square (RMS) of the wavefront 

aberration of 18 Zernike-coefficients at a pupil size of 5.7 mm (109 subjects). The first three Zernike-

coefficients describe the aberrations of second order (power and astigmatism). It is obvious that these 

aberrations are dominating but individually also the Higher Order Aberrations can reach high values. The 

small picture shows the Higher Order Aberrations magnified. Figure from [12] 

 

While there exist various publications dealing with analytical scaling transformations to a 

different pupil size [35,36,37,38,39,40,41,42] rotating the pupil [36,41,42,43] displacing the pupil [35,36

,41,42,43] or deforming the pupil [42] only a few publications can be found which attempt to treat the 

wavefront propagation in an analytical way. In [36,44] an analytical method is described to calculate the 

propagation of a wavefront, but the method is still restricted by some approximations. As is written there, 

further study is necessary to obtain a unified formulation for wavefronts containing both low-order and 

high-order aberrations. In this PhD thesis we have developed such a novel unified analytical propagation 

method in homogenous material. 

It is known from literature how to calculate Power and Astigmatism of a local wavefront after the 

refraction or reflection at a given surface. In the case of orthogonal incidence this relation is described by 

the Vergence Equation [1,2], and in the case of oblique incidence by the Coddington Equation [1,4,5,8]. 

For calculating the wavefront aberrations of an entire lens, especially of a spectacle lens, it is 

necessary to propagate the wavefront from the intersection point of the chief ray at the first surface along 

the chief ray to the intersection point at the next surface and so on. In the special case of a spectacle lens 
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this means the propagation from the front to the rear surface and further to the vertex point sphere or the 

entrance pupil of the eye.  

Further, it is necessary to describe the wavefront in different (rotated) coordinate systems, 

because the refracting planes, e.g. the refracting plane at the front surface and at the rear surface of a 

spectacle lens, are not identical. They are rotated around the chief ray. A rotation is also necessary to 

describe the aberrations relating to the horizontal or vertical axis or the axis defined by Listing’s law. 

Listing’s law describes the three dimensional eye movement when viewing in a diagonal gaze direction 

(tertiary position). It says that the rotation takes place around an axis which is perpendicular to the plane 

spanned by the vector in primary gaze direction and the vector in tertiary gaze direction [45,46]. The goal 

and also the advantage of the method is that the derived equations allow calculating the coefficients of the 

wavefront in the rotated coordinate system relating to the coefficients of the original wavefront directly 

without a coordinate transformation. 

For second order aberrations (Power and Astigmatism) the propagation and rotation of the 

coefficients of the wavefront is known and described by the analytical transfer equation, which can be 

described either in matrix form [7,24,32,47,48] or by power vectors [49]. 

The purpose of this PhD thesis is to extend the Generalized Coddington Equation [3,4,5,6,7,8,9] 

and Transfer Equation [7,32,24,47,48,49] to the case of Higher Order Aberrations (e.g. Coma and 

Spherical Aberration), in order to decrease the computational effort with the intrinsic accuracy of an 

analytical method. 
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2. Theoretical background 

 

It turns out to be very practical to establish the treatment of refraction, propagation and reflection 

including HOA on the basis of wavefront sagittas in space and not directly with OPD-based aberrations. 

In the end, we provide a connection between those two pictures (see Appendix A: Relation between 

sagitta derivatives and OPD derivatives). Refraction equations are a set of relations between the incoming 

wavefront, the outgoing wavefront and the refractive surface. Regardless which two of those three 

surfaces are given, the relations can always be rearranged in order to determine the third surface as a 

function of the two other ones.  

 

2.1.  Coordinate Systems 

In order to describe the incoming wavefront, the refractive or reflective surface and the outgoing 

or reflected wavefront, three different local Cartesian coordinate systems ),,( zyx , ),,( zyx  and 

)',','( zyx  
are used, respectively (see Figure 7 for refraction and Figure 8 for reflection). They are 

determined by the chief ray corresponding to the fixed image point. The origins of these coordinate 

systems coincide in the chief ray’s intersection point with the refractive or reflective surface. The systems 

possess as common axis xxx  '  the normal of the refracting or reflecting plane, which is the plane 

containing the normals of the incoming wavefront, the refractive or reflective surface and the outgoing or 

reflected wavefront. Consequently, the y - z  plane, the 'y - 'z  plane and the y - z  plane coincide with 

each other and with the refracting or reflecting plane. The z  axis points along the incoming chief ray, the 

'z  axis points along the outgoing or reflected chief ray, and the z  axis points along the normal of the 

refractive or reflecting surface. The orientations of the y  axis, the 'y  axis and the y  axis are such that 

each system is right-handed. 
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Figure 7: Local coordinates systems ),,( zyx  of the refractive surface  Sw , ),,( zyx  of the incoming 

wavefront  Inw and )',','( zyx  of the outgoing wavefront  Out'w  where the brackets .  shall denote 

the entity of vectors. The origins of these coordinate systems coincide in the chief ray’s intersection point 

with the refractive surface. The systems possess as common axis xxx  '  the normal of the refracting 

plane, which is the plane containing the normals of the incoming wavefront, the refractive surface and the 

outgoing wavefront. The z  axis points along the incoming chief ray, the 'z  axis points along the 

outgoing chief ray, and the z  axis points along the normal of the refractive surface. The orientations of 

the y  axis, the 'y  axis and the y  axis are such that each system is right-handed.  
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Figure 8: Local coordinates systems ),,( zyx  of the reflective surface  Sw , ),,( zyx  of the incoming 

wavefront  Inw and )',','( zyx  of the reflected wavefront  Out'w  where the brackets .  shall denote 

the entity of vectors. The origins of these coordinate systems coincide in the chief ray’s intersection point 

with the reflective surface. The origins are fictitious separated by d and d’ for a better understanding of 

the nomenclature. The systems possess as common axis xxx  '  the normal of the reflecting plane, 

which is the plane containing the normals of the incoming wavefront, the reflective surface and the 

reflected wavefront. The z  axis points along the incoming chief ray, the 'z  axis points along the 

reflected chief ray, and the z  axis points along the normal of the reflective surface. The orientations of 

the y  axis, the 'y  axis and the y  axis are such that each system is right-handed. 

 

In this work we use the following notation: scalars are written in plain letters, such as x , y , w or 

S , for coordinates, wavefront aberrations or vergences, respectively. Vectors are written as bold lower-

case letters, such as r  for position or n  for normal vectors, and matrices are written as bold upper-case 

letters, such as R  for spatial rotations. Any object (i.e. quantity, space point or vector) which is specified 

in the ),,( zyx  frame is represented by an unprimed symbol (e.g. x , r , n ,…), whereas the 

representation of the same object in the primed frame )',','( zyx  or in the frame ),,( zyx  
is given by a 

prime or a bar at its symbol, respectively. The above definitions imply that the representations of any 

vector-like quantity v  are connected to each other by the relations  

 vRv )( , vRv )'('   
(1) 

where R  stands for spatial rotations about the common x  axis, defined by the three-dimensional rotation 

matrix  
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In order to avoid confusion between primes for coordinate systems and derivatives, we shall 

denote the derivatives of a function )(xf  as )()1( xf , )()2( xf , )()3( xf , … instead of )(' xf , )('' xf , 

)()3( xf , …, respectively. Analogously, we denote the derivatives of a function ),( yxf  as ),()0,1( yxf , 

),()1,0( yxf , ),()0,2( yxf , … instead of ),( / yxfx , ),( / yxfy , ),(/ 22 yxfx , …, respectively. 

Consequently, for functions )'(' xf  or )(xf , the symbolism )'(' )1( xf  or )()1( xf  refers to 

)'(''/ xfx  and )(/ xfx , respectively.  

Additionally to the coordinate notation, we introduce a lower index notation for labeling whether 

a quantity belongs to the incoming wavefront, the refractive or reflective surface or the outgoing or 

reflected wavefront. Regardless which frame is used for mathematical description, the index “In” belongs 

to the incoming wavefront (e.g. the normal vector is represented as Inn , In'n , Inn  in the three frames, 

respectively), the index “Out” stands for the outgoing or reflected wavefront ( Outn , Out'n , Outn , 

respectively), and the index “S” stands for the refractive or reflective surface ( Sn , S'n , Sn , respectively). 

Although all representations are used, the preferred frame of each quantity is the one in which the 

corresponding normal vector has the components 
T)1,0,0( , where the index T  indicates the transpose. 

Therefore, the preferred frame is the unprimed one for “In” quantities, the primed one for “Out” 

quantities and the frame ),,( zyx  for “S” quantities, i.e. the preferred representations for the normal 

vectors are Inn , Out'n  and
 Sn ,  and similarly for all other kinds of vectors. 

In contrast to refraction and reflection, where three coordinate systems are appropriate, in the case 

of propagation where tilt is absent it is practical to use one common global Cartesian coordinate system 

),,( zyx  in order to describe the original wavefront and the propagated wavefront. The system is defined 

by the intersection point of the chief ray with the original wavefront and by the direction of the chief ray 

which defines the z  axis. The orientation of the x  axis can be freely selected. The orientation of the y  

axis is such that the system is right-handed (see Figure 9). 
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Figure 9: In the case of propagation where tilt is absent it is practical to use one common global 

Cartesian coordinate system ),,( zyx  in order to describe the original wavefront and the propagated 

wavefront. The system is defined by the intersection point of the chief ray with the original wavefront and 

by the direction of the chief ray which defines the z  axis. The orientation of the x  axis can be freely 

selected. The orientation of the y  axis is such that the system is right-handed 

 

2.2.  Description of Wavefronts  

Since the wavefronts and refractive surface are likewise described by their sagittas, here and in 

the following the notion ‘surface’ refers to any of the refractive surface, the incoming or the outgoing 

wavefront, unless those are distinguished explicitly. 

Any surface sagitta, provided it is continuous and infinitely often differentiable within the pupil, can be 

expanded with respect to any complete system of functions spanning the vector space of such functions 

which is mathematically denoted by )(PC
 where 

2RIP  is the subset of the pupil plane inside the 

pupil. 

For circular pupils it is common to use the orthogonal complete system of Zernike circle 

polynomials [2,50]. Even for these polynomials there exist different conventions, indexing schemes and 

normalizations [1,11]. We use the OSA standard of Zernike polynomials ),( m

kZ  of Ref.[11] which 

describes a surface ),( yxw  within a pupil of radius 0r  as the expansion 

 even)(,),(),(
0

kmZcyxw
k

k

km

m

k

m

k 


 

 ,
  

(3) 
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where 0/ rr , sinrx  , cosry  , and the 
m

kc  are the Zernike coefficients. Alternatively any 

other complete system can be used for expansion, e.g. the infinite set of monomials of the variables, i.e. 1

, x , y , 
2x , xy , 

2y , etc., yielding 

 


 
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0 0

, ),(),(
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k

m

m

kmkm yxTayxw ,
 

(4) 

with 
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mkm
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k
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which represents the power expansion in a Taylor series [1,2], and the coefficients are simply given by 

derivatives of the surface: 

 )0,0(),( ),(

0,0

,

mkm

yx

mkm

k

mkm wyxw
yx

a 



 



  (5) 

By the order of an aberration term we mean the number k , in either of the Eqs. (3) and (4). As 

long as the series expansion is infinite, i.e. the sum runs to k , a transformation between any of the 

representations in Eq. (3) and Eq. (4) is legitimate, well-defined and unique. 

In practice, however, an expansion is always truncated at some finite order 0k , justified by the 

observation that the major part of light information content is already sufficiently accurately described by 

the truncated series. Instead of a series we then deal simply with a polynomial. This polynomial can then 

be considered as a projection of the aberration function onto the vector subspace of )(PC
 which is 

spanned by the finite (incomplete) basis system of functions underlying the truncated series. 

Before proceeding in the reasoning, we consider the first orders 2,1,0k  of Taylor and Zernike 

basis sets of )(PCV  , respectively. We observe that also if the subspaces spanned by these basis 

functions are identical, the basis vectors of order 2k  will be not identical. For example, in Eq. (3) the 

Zernike aberration in the term     1/23123 2

0

2220

2  ryxZ   due to 0/ rr  with order 

2k , usually called Defocus, contains also a constant term, whereas any 2k  term in Eq. (4) is a 

monomial with pure value 2k  for added x  and y  powers or similar in the case of higher orders 

4k , in Eq. (3) the Zernike aberration in the term )166(5 240

4  Z  

)1/)(6/)(6(5 2

0

224

0

222  ryxryx  due to 0/ rr  with order 4k , usually called 

Spherical Aberration, contains also quadratic and constant terms, whereas any 4k  term in Eq. (4) is a 

monomial with pure value 4k  for added x  and y  powers. An explicit transformation between the 

Zernike basis and the monomial basis is provided in chapter 4.4 and in [51]. The following Table 1 shows 
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both basis sets of Taylor and Zernike for the first orders 2,1,0k  where for simplicity we use 10 r  for 

the Zernike terms. 

 

# order k  Taylor 
m

kT  Zernike 
m

kZ  

1 0 10

0 T  10

0 Z  

2 1 yT 0

1  yZ 21

1 
 

3 1 xT 1

1  xZ 21

1   

4 2 2/20

2 yT   xyZ 622

2 
 

5 2 xyT 1

2    123 220

2  yxZ  

6 2 2/22

2 xT    222

2 6 yxZ   

Table 1: The first orders 2,1,0k  of Taylor and Zernike basis sets of )(PCV  , as defined in Eq. (3) 

and Eq. (4), where for simplicity we use 10 r  for the Zernike terms 

 

Let us now discuss how a function of order 2k , say 
21)( xxf  , is represented in each 

system. In Taylor representation, we would obtain (see Eq. (4)) 
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Whereas in Zernike representation, we would obtain (see Eq. (3)) 
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Now, if the space allowed for representation is truncated to contain only terms of order 00 k , 

then the approximated Taylor representation would be 1)( xf  whereas the approximated Zernike 

representation would be 4/1)( xf . Both approximations are not identical, and they are not very 

good for 1  either. However, for 
310 , they are more similar and also a good approximation to 

)(xf  in the inner parts of the pupil, and for 
610 , they are almost identical and a very good 

approximation to )(xf  in the whole domain (i.e. the pupil), of course depending on the demanded 

accuracy. 
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On a more abstract level, we encounter the following situation. Given is a vector space V  (of 

functions) whose dimension is assumed to be n = 2 without loss of generality here. Formally we denote 

the coordinates of vectors in V  by 1x  and 2x . Further two different basis systems  21, vv  and 

 21,ww  of V  are given. We can symbolize them as blue and red sets of vectors, as shown in Figure 10. 

The basis systems are chosen according to our situation concerning the Zernike and the Taylor set in that 

1v  spans the same subspace V  as 1w  does, i.e. both systems give rise to a common subspace 

111 wv V  of V . On the other hand, 2v  spans a different subspace of V  than 2w  does. 

 

 

Figure 10: Formally the coordinates of vectors in V  are denoted by 1x  and 2x . Further two different 

basis systems  21, vv  and  21,ww  of V  are given as shown in a). They are symbolized as blue and 

red sets of vectors. We consider a given vector a  shown as black arrow in b) and c). Then we obtain 

different representations depending on if the red basis set or the blue one is used. If the basis set is 

truncated, i.e. 2v  and 2w  have to be omitted, then the representation of a  in the subspace 1V  

corresponds to the blue horizontal arrow for the blue basis set and to the red one in the case of the red 

one. The horizontal vectors can be interpreted as the projections of a  onto 1V  or 1W . In the blue case the 

projection takes place along the direction of 2v  whereas in the red case it is performed along 2w . Since 

2v  and 2w  are not parallel, those projections are different, which is directly dependent on the distance of 

a  in relation to 1V  or 1W . b) Vector a  far away from the subspace 111 wv V  spanned by 1v  or 

1w  c) Vector a  close to the subspace spanned by 1v  or 1w   

 

Now, if we consider a given vector a  (black arrow in Figure 10b,c), then we will obtain different 

representations depending on if the red basis set or the blue one is used. If the basis set is truncated, i.e. 

2v  and 2w  have to be omitted, then the representation of a  in the subspace 1V  will correspond to the 

blue horizontal arrow for the blue basis set and to the red one in the case of the red one. The horizontal 

vectors can be interpreted as the projections of a  onto 1V , and in the blue case the projection takes place 
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along the direction of 2v  whereas in the red case it is performed along 2w . Since 2v  and 2w  are not 

parallel, those projections are different. In the case of Figure 10b), where a  is far away from 1V , the 

projections are even very different, and both are no good approximation to a . On the other hand, if a  is 

lying close to 1V  (Figure 10c), then the projections are quite similar, and both are good approximations to 

a  itself.  

Our conclusion is the following. In contrast to the Zernike polynomials, which are tailored for a 

surface description over a finite pupil size, it seems only at first glance that a description of local 

derivatives at the pupil might only be valid in an infinitesimal neighborhood of the pupil center. However, 

the above vector space arguments show that a basis of local derivatives does not suffer for any loss of 

information over the entire pupil size either, provided that the order of derivatives chosen is sufficiently 

high. 

For later application, we introduce 
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and 
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for describing the incoming wavefront, the outgoing or reflected wavefront and the refractive or reflective 

surface, respectively. 

Analogously we introduce for describing the original wavefront and the propagated wavefront 
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The central mathematical idea for the method given in this work is that the coefficients of the 

unknown surface – it having been assumed to be describable by a finite polynomial function so that once 

the coefficients are known the surface is known – may be found by taking derivatives and evaluating 

them at )0,0(),( yx  where it is known that the value of a derivative of order k  equals the value of 

coefficient k . 
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2.3.  Local Properties of Wavefronts and Surface 

Considering the infinitesimal area around the optical axis or rather around the chief ray leads to 

Gaussian optics (or paraxial optics)[1]. 

 

2.3.1.  Refraction 

For the aberrations of second order the refraction of a spherical wavefront with orthogonal 

incidence onto a spherical surface with the Surface Power S  (see Figure 11) is described by the vergence 

equation [1,2]: 

 SSS '  (11) 

where 

snS /  is the Vergence at the object side 

'/'' snS   is the Vergence at the image side 

rnnS /)'(   is the Surface Power 

s  is the vertex distance at the object side (Axial distance from the refractive surface to the object 

point), which is equivalent to the radius of curvature of the incoming wavefront 

's  is the vertex distance at the image side (Axial distance from the refractive surface to the image 

point), which is equivalent to the radius of curvature of the outgoing wavefront 

r  is the radius of curvature of the refractive surface (distance from the refractive surface to the center 

point of the refractive surface) 

n  is the refractive index of the medium at the object side 

'n  is the refractive index of the medium at the image side 
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Figure 11: For the aberrations of second order the refraction of a spherical wavefront with vergence 

snS /  with orthogonal incidence onto a spherical surface with the Surface Power rnnS /)'(   is 

described by the vergence equation. The vergence '/'' snS   of the outgoing wavefront is equal to the 

sum of the vergence of the incoming wavefront and the Surface Power SSS ' . 

 

In literature, the notion of vergences is usually extended to 3-dimensional space for describing the 

sphero-cylindrical power of a surface by the following steps. First, the curvatures s/1 , '/1 s  and r/1  in 

Eq. (11) are identified with the second derivatives of the sagittas of the incoming wavefront, the outgoing 

wavefront and the surface, respectively. Further, in 3-dimensional space the second derivatives 

2

In

2)0,2(

In / xww  , yxww  /In

2)1,1(

In , 
2

In

2)2,0(

In / yww  , are summarized in terms of 22  

vergence matrices [8,24] in the shape 












)0,2(

In

)1,1(

In

)1,1(

In

)0,2(

In

ww

ww
n , and similarly for )','('Out yxw  and ),(S yxw , 

for which the prefractors are 'n  and )'( nn   instead of n , and the derivatives are taken with respect to 

',' yx  and yx,  instead of yx, , respectively. 

Additionally to the description in terms of vergence matrices, an equivalent description is 

common in the 3-dimensional vector space of power vectors [52,53,54], which we will apply throughout 

the thesis. For the incoming and the outgoing wavefront, as well as the refractive surface we introduce the 

power vectors 
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The symbolism xxS , etc. is merely understood as component labeling of the vector s . Nevertheless, it 

shall remind the reader to the fact that the value of xxS  is proportional to the second derivative 
)0,2(

Inw  of 

the wavefront sagitta. It is well-known that the components of Eq. (12) are in ophthalmic terms given by 
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(13) 

where 

Sph  is the spherical Power of the incoming wavefront 

Cyl  is the cylindrical Power of the incoming wavefront 

  is the axis of the cylindrical Power of the incoming wavefront 

and equivalently for 's  and s . 

One well-established generalization of Eq. (11) relating the components of Eq. (12) to each other 

is the “Coddington Equation”. It describes the case of a spherical wavefront hitting a spherical or 

astigmatic surface under oblique incidence such that one principal curvature direction is lying in the 

refracting plane [1,4,5,8]. 

The most general case is characterized by an astigmatic wavefront hitting an astigmatic surface 

under oblique incidence, but such that no special orientation between the refracting plane, the directions 

of principle Power of the incoming wavefront and those of the refractive surface has to be assumed at all. 

This is the most complex case, described by the “Generalized Coddington Equation” [3,4,5,6,7,8,9], in 

compact form written in terms of power vectors 

 ssCsC ''  
(14) 

where we have introduced the matrices  
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and the factor 
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2.3.2.  Propagation 

For the aberrations of second order the propagation of a spherical wavefront with the Vergence 

oS  (see Figure 12) is described by the propagation or Transfer equation [7,24,32,47,48,49] 

 o

on
dp S

S
S




1

1
 (17) 

where 

oo snS /  is the Vergence of the original wavefront 

pp snS /  is the Vergence of the propagated wavefront 

os  is the vertex distance of the original wavefront (distance along the chief ray from the wavefront to 

the image point), which is equivalent to the radius of curvature of the original wavefront 

ps  is the vertex distance of the propagated wavefront (distance along the chief ray from the wavefront 

to the image point), which is equivalent to the radius of curvature of the propagated wavefront 

n  is the refractive index  

d  is the propagation distance 

 

 

Figure 12: Propagation of a spherical wavefront ow  with a vergence distance so about the distance d to 

the propagated wavefront 
pw  with a vergence distance s p= so - d. For the aberrations of second order the 

propagation of a spherical wavefront with the Vergence oo snS /  is described by the propagation or 

Transfer equation o

on
dp S

S
S




1

1
. 
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In literature, the notion of vergences is usually extended to 3-dimensional space for describing the 

sphero-cylindrical power of a wavefront in terms of 22  vergence matrices [25,52,53] of the shape 
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The relation between the components of Eq. (18) and the ophthalmic terms axiscylsph ,, are well known 

[25] and described in Chapter 2.3.1 by Eq. (13). 

One well-established generalization of Eq. (11) relating the components of Eq. (18) to each other 

is the “Generalized Propagation Equation”. It describes the propagation of an astigmatic wavefront [7,24

,32,47,48] written in compact form in terms of vergence matrices, 

 o

on
dp S

S1
S




1
,
 

(19) 

where we have introduced the unit matrix  
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
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10

01
1 .

 
(20) 

Additionally to the description in terms of vergence matrices, an equivalent description is 

common in the 3-dimensional vector space of power vectors [47,54]. In [49] also the “Generalized 

Propagation Equation” in terms of power vectors is described. 

 

2.3.3.  Reflection 

For the aberrations of second order the reflection of a spherical wavefront with orthogonal 

incidence onto a spherical surface with the Surface Power S  (see Figure 13) is described by the vergence 

equation: 

 SSS '  (21) 

which is equivalent to 

 

 
rss

2

'

11
  (22) 

where 

snS /  is the Vergence of the incoming wavefront 

'/' snS   is the Vergence of the reflected wavefront 
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rnS /2  is the Surface Power 

s  is the vertex distance at the object side (Axial distance from the reflective surface to the object 

point), which is equivalent to the radius of curvature of the incoming wavefront 

's  is the vertex distance at the image side (Axial distance from the reflective surface to the image 

point), which is equivalent to the radius of curvature of the reflected wavefront 

r  is the radius of curvature of the reflective surface (distance from the reflective surface to the center 

point of the reflective surface) 

n  is the refractive index  

 

Figure 13: For the aberrations of second order the reflection of a spherical wavefront with vergence 

snS /  with orthogonal incidence onto a spherical surface with the Surface Power rnS /2  is 

described by the vergence equation. The vergence '/' snS   of the reflected wavefront is equal to the 

sum of the vergence of the incoming wavefront and the Surface Power SSS ' .  

 

For the incoming and the reflected wavefront, as well as the reflective surface we introduce the 

power vectors 
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The relation between the components of Eq. (23) and the ophthalmic terms axiscylsph ,, are well known 

[25] and described in Chapter 2.3.1 by Eq. (13). 

One well-established generalization of Eq. (21) relating the components of Eq. (23) to each other 

is the “Coddington Equation”. It describes the case of a spherical wavefront hitting a spherical or 

astigmatic surface under oblique incidence such that one principal curvature direction is lying in the 

refracting plane [1,4,5,8]. 

The most general case is characterized by an astigmatic wavefront hitting an astigmatic surface 

under oblique incidence, but such that no special orientation between the refracting plane, the directions 
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of principle Power of the incoming wavefront and those of the reflective surface has to be assumed at all. 

This is the most complex case in compact form written in terms of power vectors  

 )(
~

ssCs  '  
(24) 

where we have introduced the matrices  
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2.3.4.  Power Vectors 

According to the definition of the Power vectors for aberrations of order 2k , we define for 

aberrations of higher order 2k  similar vectors kkk eee ,',  of dimension 1k  by 
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in the case of refraction and  
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in the case of reflection, such that in particular se 2 , ''2 se   and se 2 . We use the vectors ke , k'e , 

ke  merely as a device for a compact notation to be used later. Although they form a vector space (which 

follows directly from the linearity of the derivative), we do not make explicit use of this fact.  

Finally, Eq. (15) can also be extended to all 2k  by the definition 
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and Eq. (25) can also be extended to all 2k  by the definition 
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3. Derivation of the Refraction Equations 

 

3.1.  Mathematical Approach in the 2D Case 

 

3.1.1.  Coordinates in the 2D case 

For giving insight into the method with smallest possible effort, we first treat in detail a fictitious 

two-dimensional problem in which the third space dimension does not exist. Later we will transfer the 

corresponding approach to the three-dimensional case, i.e. the case of interest, but now we will for an 

instant drop the x  degree of freedom and consider the three coordinate frames ),( zy , )','( zy  and 

),( zy  spanning one common plane. Instead of a refractive surface in space there is now only a curve 

Tywy ))(,(  in that plane, and similarly the wavefronts are  described by curves in that plane (which, for 

simplicity, shall still be called ‘surface’). All rays and normal vectors then lie in that plane, too. We 

summarize this situation in the term “2D”. If one likes to, one can imagine the problem to be posed as a 

3D one with the symmetry of translational invariance in x -direction, but this is by no means necessary 

since it is inherent to the mathematics of the two-component system that any ray deflection in a direction 

other that in the given plane cannot occur. 

The two-dimensional version of the rotation matrix takes the form 
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3.1.2.  Description of Wavefronts in the 2D case 

The surfaces themselves are each described by power series expansions specified in the 

corresponding preferred coordinate frame. Any point on the incoming wavefront is given by the vector 
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where in the 2D case )(In yw  is the curve defined by 
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which corresponds to Eq. (8) in the 3D case. Equivalently, we represent the outgoing wavefront and the 

refractive surface in their preferred coordinate frames by the vectors 
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where 

 
k

k

k
y

k

a
yw '

!

'
)'('

0

,Out

Out 




 ,       
k

k

k
y

k

a
yw 






0

,S

S
!

)( , (34) 

As in Eq. (5), again the normalization factor !k  is chosen such that the coefficients ka ,In  are given by the 

derivatives of the wavefront  at 0y , 
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In the 2D case the vector ke  in Eq. (26) reduces to a scalar 
k

k

k anwnE ,In

)(

In  , e.g. for second 

and third-order aberrations, we have 2

)2(

In2 anwnE  , 3

)3(

In3 anwnE  , etc.. A similar reasoning 

applies for the vectors k'e , ke  and yields the local aberrations kE ' , kE , connected to the coefficients 

ka ,Out' , ka ,S  by multiplication with the refractive index 'n  for the outgoing wavefront and with the factor 

nn '  for the refractive surface, respectively.  

It is important to note that each surface has zero slope at its coordinate origin because by 

construction the z  axis points along the normal of its corresponding surface. Additionally, since all 

surfaces are evaluated at the intersection point, each of them has zero offset, too. In terms of series 

coefficients, this means that all the prism and offset coefficients vanish, i.e. 0,In ka , 0' ,Out ka , 

0,S ka  for 2k . 

 

3.1.3.  Normal Vectors and their Derivatives 

The normal vector )(ywn  of any surface )(yw  (i.e. curve in the 2D case) is given by 

2)1()1( )(1/)1),(()( ywywy T

w n  where yww  /)1(
. In principle, we are interested in 

derivatives of )(ywn  with respect to y . Observing, however, that )(ywn  depends on y  only via the 

slope )()1( yw , it is very practical to concentrate on this dependence )( )1(wwn  first and to deal with the 

inner dependence )()1( yw  later. To do this, we set 
)1(wv   and introduce the function 
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Since at the intersection point all slopes vanish, only the behavior of that function  vn  for 

vanishing argument 0v  is of interest. It is now straightforward to provide the first few derivatives 
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In application on the functions of interest, ))(()( )1(

InIn ywy nn  , ))'('()'(' )1(

OutOut ywy nn  , 

))(()( )1(

S ywyS nn  , this means that 
T)1,0()0(In n , 

T)1,0()0('Out n , 
T)1,0()0(S n , where each 

equation is valid in its local coordinate system. Further, the first derivatives are given by  
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and similarly for the higher derivatives. 

 

3.1.4.  Ansatz for Determining the Refraction Equations 

Once the local aberrations of two of the surfaces are given, their corresponding ka  coefficients 

are directly determined, too, and equivalently the surface derivatives. It is our aim to calculate the third 

surface in the sense that its derivatives and thus its ka  coefficients (see Eqs. (32)-(35)) are determined for 

all orders 02 kk   for the order 0k  of interest, and to assign values to its corresponding local 

aberrations.  



Derivation of analytical refraction, propagation and reflection equations for Higher Order Aberrations of wavefronts 

42  3.1 Mathematical Approach in the 2D Case 

 

Figure 14: Shown are the local coordinates systems of the refractive surface, of the incoming wavefront 

and of the outgoing wavefront in the true situation in which the origins of all coordinate systems coincide. 

While the chief ray and the coordinate systems are fixed, a neighboring ray scans the incoming wavefront 

 Inw
 
and hits it at an intercept 0In y , then hits the refractive surface  Sw , and finally propagates to 

the outgoing wavefront  Out'w . Except for the limiting case 0In y , the three points in space, 

SOutIn ,', www , do in general not coincide. Consistently with our notation, we denote as Iny  the 

projection of the neighboring ray’s intersection with  Inw  onto the y  axis. Analogously, the projection 

of the intersection with  Out'w  onto the 'y  axis is denoted as Out'y , and the projection of the intersection 

with  Sw  onto the y  axis is called Sy . 

 

Our starting point is the following situation. While the chief ray and the coordinate systems are 

fixed, a neighboring ray scans the incoming wavefront  Inw
 
and hits it at an intercept 0In y , then hits 

the refractive surface  Sw , and finally propagates to the outgoing wavefront  Out'w  , where the 

brackets .  shall denote the entity of vectors described by Eqs. (31),(33) (see Figure 14 and Figure 15). 

Except for the limiting case 0In y , the three points in space, SOutIn ,', www , do in general not 

coincide. As shown in Figure 14 and Figure 15, and consistently with our notation, we denote as Iny  the 

projection of the neighboring ray’s intersection with  Inw  onto the y  axis. Analogously, the projection 

of the intersection with  Out'w  onto the 'y  axis is denoted as Out'y , and the projection of the intersection 

with  Sw  onto the y  axis is called Sy . 

The mutual position of the points and surfaces is shown in Figure 14. Although both wavefronts 

in general penetrate the refractive surface, the definition of the intersection coordinates as projections will 

be meaningful if we formally allow all parts of the rays and wavefronts to be extended into both half-

spaces (indicated as dashed curves in Figure 14). 
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Figure 15: Shown is a fictitious situation of separated origins by d and d’ for a better understanding of 

the nomenclature. The surface normal vectors along the neighboring ray are also drawn, referred to as Inn

, Sn , Outn  in the common global system ),,( zyx . It might appear helpful for the reader to imagine for a 

short instant that the incoming wavefront is evaluated at a distance 0d  before the refraction, and that 

the outgoing wavefront is evaluated at a distance 0'd  after the refraction, measured along the chief ray. 

In this fictitious situation of separated intersections even along the chief ray (and therefore also separated 

origins of the coordinate frames) it is much easier to identify the various coordinates. 

 

It might appear helpful for the reader to imagine for a short instant that the incoming wavefront is 

evaluated at a distance 0d  before the refraction, and that the outgoing wavefront is evaluated at a 

distance 0'd  after the refraction, measured along the chief ray. In this fictitious situation of separated 

intersections even along the chief ray (and therefore also separated origins of the coordinate frames) it is 

much easier to identify the various coordinates, as shown in Figure 15. The true situation is 0' dd , 

which is relevant throughout the thesis. 
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Figure 16: The vector )( InInIn yww   (see Eq. (31)) points to the neighboring ray’s intersection point 

with the incoming wavefront, and the wavefront’s OPD referred to the refractive surface along the ray is 

denoted by  , correspondingly the vector from the wavefront to the surface is In/ nn . Hence, the 

vector to the point on the surface itself, Sw , must be equal to the vector sum InInS / nww n . 

Transforming Sw  to its preferred frame by SS )( wRw   (see Eq. (1)) yields the first one of the 

fundamental equations in Eq. (39). 

 

While in Figure 14 and Figure 15 all quantities are drawn in their preferred frames, Figure 16 

shows the quantities concerning the incoming wavefront and the refractive surface in the common frame 

),( zy . The vector )( InInIn yww   (see Eq. (31)) points to the neighboring ray’s intersection point with 

the incoming wavefront, and the wavefront’s OPD referred to the refractive surface along the ray is 

denoted by  , whereas the absolute value   is defined by the optical path distance between the 

neighboring ray’s intersection point with the incoming wavefront and the refractive surface and the sign 

of   is determined by the relative position of the these intersection points. If the intersection point of the 

ray with the wavefront is before the intersection point of the ray with the refractive surface the OPD will 

be negative )0(  , and if the ray first intersects the refractive surface the OPD will be positive )0(  . 

Therefore the vector from the incoming wavefront to the surface is In/ nn , determined by the product 

of the OPD and the normal unit vector of the incoming wavefront. Hence, the vector to the point on the 

surface itself, Sw , must be equal to the vector sum InInS / nww n . Transforming Sw  to its 

preferred frame by SS )( wRw   (see Eq. (1)) yields the first one of the fundamental equations in Eq. 

(39). 
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Figure 17: The vector )'('' OutOutOut yww   (see Eq. (33)) points to the neighboring ray’s intersection 

point with the outgoing wavefront, and the wavefront’s OPD referred to the refractive surface along the 

ray is denoted by ' , correspondingly the vector from the wavefront to the surface is Out''/' nn . Hence, 

the vector to the point on the surface itself, S'w , must be equal to the vector sum OutOutS ''/''' nww n . 

Transforming S'w  to its preferred frame by SS )'( wRw   (see Eq. (1)) yields the second one of the 

fundamental equations in Eq. (39).  

 

Analogously we have SOutOut '''/'' wnw  n  for the outgoing wavefront in the frame )','( zy , 

yielding the second equation in Eq. (39) (see Figure 17). The sum of the OPD from the ray’s intersection 

point with the incoming wavefront to the refractive surface )(   and the OPD from the refractive surface 

to the ray’s intersection point with the outgoing wavefront )'(  has to be constant, and in the true 

situation with 0' dd  yields 0'  . Therefore the condition for the outgoing wavefront to be 

the surface of constant OPD is that '   for all neighboring rays. Inserting this condition, we establish 

as starting point of our computations the fundamental equations. 
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 (39) 

 

From Eq. (39), it is now possible to derive the desired relations order by order. For this purpose, it 

turns out to be practical to consider formally both wavefronts as given and to ask for the refractive surface 

)( SS yw  as the unknown function. Although only the surface is of interest, in Eq. (39) additionally the 
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four quantities  , Iny , Out'y , Sy  are also unknown. However, they are not independent from each other: 

if any one of them is given, the other three ones can no longer be chosen independently. We use Sy  as 

independent variable and to consider the three other unknowns  , Iny , Out'y  as functions of it.  

Eq. (39) represents a nonlinear system of four algebraic equations for the four unknown functions 

)( SS yw , )( SIn yy , )(' SOut yy , )( Sy . Even if we are only interested in a solution for the function 

)( SS yw , we cannot obtain it without simultaneously solving the equations for all four unknowns order by 

order. Introducing the vector of unknown functions as  
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and observing that the initial condition 0p )0(  has to be fulfilled, it is now straightforward to compute 

all the derivatives of these Eq. (39) up to some order, which yields relations between the curvatures, third 

derivatives etc. of the wavefronts and the refractive surface. Rewriting these relations in terms of series 

coefficients ka ,In , ka ,Out' , ka ,S  and solving them for the desired coefficients ka ,S  yields the desired 

result. 

Before solving Eq. (39), we distinguish if the independent variable Sy  enters into Eq. (39) 

explicitly like in the first component of the vector 
Tywy ))(,( SSS , or implicitly via one of the 

components of Eq. (40). To this end, we define the function   fp  ),(:RIRIRI S

44 y  by  
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where ),,',(),,,( SOutIn4321 wyypppp 
 
are the components of p . Setting now )( Sypp  , Eq. (41) 

allows rewriting the fundamental system of Eq. (39) in a more compact way as  

   0pf SS ),( yy  (42) 

as can be verified explicitly by component wise comparison with Eq. (39).  
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The key ingredient of our method is that the relations between the derivatives of wavefronts and 

surfaces can be obtained by the first, second, etc. total derivative of Eq. (42) with respect to Sy , evaluated 

in the origin. The advantage of the form of Eq. (42) using Eq. (41) is that the various terms can be tracked 

in a fairly compact manner. 

The total derivative of  SS ),( yypf  in Eq. (42) is obtained by applying the principles from the 

theory of implicit functions. Hence, the total derivative is given by the partial derivatives of f  with 

respect to the components ip  of p , times the derivatives of )( Sypi , plus the partial derivative of f  with 

respect to the explicit dependence on Sy . This transforms the system of algebraic equations in Eq. (39) to 

the system of differential equations 
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where the matrix with elements jiij pfA  /:  is the Jacobian matrix A  of f  with respect to its vector 

argument p , evaluated for )( Sypp  . The Jacobian A  reads 
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where for convenience we have introduced  sin ,  cos , and similar for ' . In Eq. (44), the 

occurring expressions are understood as )( In
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In, ywnn yy  , etc, and analogously for the ‘Out’ quantities, and additionally SOutIn ,,', wyy   

are themselves functions of Sy .  

The derivative vector S/ yf i   in Eq. (43) shall be summarized as 
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Both A  and b  are deduced from  SS ),( yypf  and must in general themselves have the same 

kind of dependence, i.e.  SS ),( yypΑ  and  SS ),( yypb . However, due to the special property of f  to 

be linear in Sy , b  is constant. Additionally, A  has no explicit dependence on Sy  besides the implicit 

dependence via )( Syp . Hence we write  b  without argument and
 

))(( SypAA  , and  Eq. (43) can be 

written in the form 

 bppA )())(( S

)1(

S yy . (46) 

 

3.1.5.  Solving techniques for the fundamental equation  

Eq. (46) is the derivative of the fundamental equation in Eq. (42), and therefore it is itself a 

fundamental equation. But additionally, it allows a stepwise solution for the derivatives )0( S

)( yk
p  for 

increasing order k . Formally, Eq. (46) can be solved for )( S

)1( yp
 
by 

 bpAp
1

SS

)1( ))(()(  yy . (47) 

Eq. (47) holds as a function of Sy , but of course for arbitrary Sy  both sides of Eq. (47) are unknown. 

However, evaluating Eq. (47) for 0S y  exploits that then the right-hand side (rhs) is known because 

0p )0(  is known! In the same manner, Eq. (47) serves as starting point for a recursion scheme by 

repeated total derivative and evaluation for 0S y . Remembering that b  is constant, we obtain 
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where 
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ypA . The reason why Eq. 

(48) really does provide solutions for )0()1(
p , )0()2(

p , …, )0()(k
p  is that in any row of Eq. (48) the 

entries on the rhs are all known assuming that the equations above are already solved. Although on the rhs 
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there occur implicit derivatives )0()1(
p , )0()2(

p , … as well, they are always of an order less than on the 

left-hand side (lhs). For example, the second row in Eq. (48) reads in explicit form 
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 where 0S y  implies 0p  , and where on the rhs the highest 

occurring derivative of p  is )0()1(
p  which is already known due to the first row in Eq. (48). Generally, 

the highest derivative of p  occurring in  
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at the stage when )0()(k
p  is to be computed by Eq. (48). 

Although looking attractive and formally simple, applying Eq. (48) in practice requires still some 

algebra. One part of the effort arises because it is the inverse of A  which has to be differentiated with 

respect to p . The other part of the effort is due to the large number of terms, since the higher derivatives 

will involve more and more cross derivatives like ji pp  /2
. Both tasks are straightforward to be 

executed by a computer algebra package but nevertheless lengthy and not the best way how to gain more 

insight.  

While cross-derivatives are inevitable, there exists an alternative recursion scheme for which it is 

sufficient to differentiate the matrix A  itself instead of its inverse 
1

A , which means an enormous 

reduction of complexity! To this purpose, we start the recursion scheme from Eq. (46) instead of Eq. (47). 

The first )1( k  total derivatives of Eq. (46) are 
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where )())0(( 0ApAA  , and 
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total derivatives of the function ))(( SypA . For the last line of Eq. (49) we have applied the formula for 

the p -th derivative of a product, )()(

0

)()( jjpp

j

p gf
j

p
fg 

 







 . Eq. (49) represents a recursion scheme 

where in each equation containing )0()1(
p , )0()2(

p , …, )0()(k
p , only )0()(k

p  (in the last term for 
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kj  ) is unknown provided that all previous equations for )0()1(
p , )0()2(

p , …, )0()1( k
p  are already 

solved. A formal solution for )0()(k
p , expressed in terms of its predecessors, is 

 


























1

1

)()(1)(

1)1(

.2),0(
1

1
)0(

1,)0(

k

j

jjkk k
j

k

k

pAAp

bAp

 (50) 

Although quite different in appearance at first glance, Eq. (50) yields exactly the same solutions as Eq. 

(48). 

 

3.1.6.  Solutions for the General Refraction Equations  

In the result for )0()1(
p , the first rows of both Eqs. (48),(50) involve 

1)( 
0A . For obtaining 

1)( 
0A , we evaluate Eq. (44) for 0p   and apply Eqs. (37), yielding 
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The last component of )0()1(
p , which is the refractive surface slope, is obtained as 

 /)''()0()1(

S nnw  . This is formally correct since we have not yet made any assumption about the 

angles  , ' . If, however, we claim that 0)0()1(

S w , we will obtain the refraction law 

0sin'sin'''   nnnn . Exploiting this in all further calculations, the final result for )0()1(
p  is  
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For the orders 2k  we apply Eqs. (50). The derivatives 

0
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y
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d
pAA  , etc. are directly 

obtained by total derivative of  Eq. (44) with respect to Sy , evaluating for 0S y  and again applying 

Eqs. (37). For the orders 2k  only the results )0()(

S

kw

 

for the refractive surface are interesting, 

therefore we directly provide those results. The resulting second-order law is (omitting the argument ‘ )0(

’) 
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which is well-known as the Coddington equation and reveals to be a special case of our results. The 

resulting novel higher-order laws can be written in a similar fashion 
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with the remainder terms kR  which are given for orders 4,3k  explicitly as 
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with 
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and ' , ' , ' , '  are obtained from  ,  ,  ,  , respectively, by interchanging 'nn  , 

'  , '  ,   .  

Eq. (54) holds likewise for the derivatives and for the coefficients ka ,In , ka ,Out' , ka ,S  due to Eqs. 

(32)-(35). In terms of local aberrations, Eq. (54) reads (after substituting  , '  by the cosines) 

 k

k

k

k

kk REEE   cos'cos' , (58) 
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where in kR  all wavefront derivatives are expressed in terms of local aberrations, which describes for the 

first time the relation between the local aberrations of the refracting surface and the incoming and 

outgoing wavefront.  

3.1.7.  Generalization of the Coddington Equation  

Although application of Eq. (48) or Eq. (50) provides a solution for )0()(

S

kw  up to arbitrary order 

k , it is very instructive to analyze the solutions more closely for one special case. We observe that the 

expressions in Eqs. (55),(56) for 3R  (or 4R ) will vanish if we set 0)(

In jw  and 0' )(

Out 
jw  for all lower 

orders kj   (for 3k  or 4k , respectively). This leads to the assumption that the following 

statement is generally true: if only aberrations for one single given order k  are present while for all lower 

orders kj   we have 0)(

In jw  and 0' )(

Out 
jw , then 0kR , which means for fixed order k  that Eq. 

(54) will be valid for vanishing remainder term. This assumption can in fact be shown to hold generally. 

To this purpose, we start from the recursion scheme in Eq. (50) and show that only the term 

containing 
)1(

p  can contribute to the sum if all aberrations vanish for order less than k . For doing so, it is 

necessary to exploit two basic properties of the derivatives 
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pAA of the matrix A  

for the orders 11  km . As can be shown by element wise differentiation of the matrix A , the 

highest wavefront derivatives present in ))(( S

)( ym
pA  (see Eq. (44)) occur in the terms proportional to 

, and those are proportional to either 
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follows that 

i) The highest possible wavefront derivatives present in 
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mw  or 
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Out' mw . 

ii) If all wavefront derivatives even up to order )1( m  vanish, then 
)(m

A  itself will vanish. This is 

in contrast to A  itself which contains constants and therefore will be finite even if all wavefront 

derivatives vanish. 

Analyzing the terms in Eq. (50), we notice that the occurring derivatives of the matrix A  are 
)1( k

A , 

)2( k
A , … , 

)2(
A , 

)1(
A  for )1(,...,2,1  kj , respectively. It follows from property i) that the highest 

occurring wavefront derivatives in these terms are 2,3),...,1(, kk , respectively. Now, if all wavefront 

derivatives up to order )1( k  vanish, it will follow from property ii) that all the matrix derivatives 

)2( k
A , … , 

)2(
A , 

)1(
A  must vanish, leaving only 

)1( k
A . Therefore all terms in Eq. (50) vanish, 

excluding only the contribution for 1j . We directly conclude that 
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For evaluating 
)1( k

A  we set mk :1 , and it is straightforward to show by induction that if all 

aberrations vanish for order less or equal to m , then 
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where 
)1(

Iny , 
)1(

Out'y  and 
)1(  have been substituted by their solutions  , '  and ns  wherever they occur, 

respectively (see Eq. (52)). Inserting )0()(m
A  for 1 km  and 

1)0( 
A  from Eq. (51)  into Eq. (59) 

yields directly that 
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for all orders 2k . 

The resulting refraction equation in the situation of Eq. (61) in terms of local aberrations reads 

  k

k

k

kk EEE cos'cos'  , (62) 

which is indeed Eq. (58) for 0kR . 

 

3.2.  Mathematical Approach in the 3D Case 

 

3.2.1.  Wavefronts and Normal Vectors  

Although more lengthy to demonstrate than the 2D case, conceptually the 3D case can be treated 

analogously to the 2D case. Therefore, we will only report the most important differences. Analogously to 

Eq. (31), the incoming wavefront is now represented by the 3D vector  

 



















),(

),(

In

In

yxw

y

x

yxw  (63) 



Derivation of analytical refraction, propagation and reflection equations for Higher Order Aberrations of wavefronts 

54  3.2 Mathematical Approach in the 3D Case 

where ),(In yxw  is given by Eq. (8), and the relation between the coefficients and the derivatives is now 

given by a relation like Eq. (5). The connection between coefficients and local aberrations is now given 

by 
TT

yyxyxx aaanSSS ),,(),,( 2,0,In1,1,In0,2,In2 e  ,  T

yyyxyyxxyxxx EEEE ),,,(3e

Taaaan ),,,( 3,0,In2,1,In1,2,In0,3,In , etc. (see Eq. (26) for ke ). The outgoing wavefront and the refractive 

surface are treated similarly. 

For treating the normal vectors, we introduce the analogous functions to Eq. (36) as 
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such that the normal vector to a surface 
Tyxwyxyx )),(,,(:),( w  is given by     
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In the intersection point we have now 
T)1,0,0()0,0(In n , 

T)1,0,0()0,0('Out n , 
T)1,0,0()0,0(S n , 

and the derivatives corresponding to Eq. (37) can directly be obtained from Eq. (64).  

 

3.2.2.  Ansatz for Determining the Refraction Equations 

The starting point for establishing the relations between the wavefronts and the refractive surface 

is now given by equations analogous to Eq. (39), with the only difference that x  and y  components are 

simultaneously present, and that the original 3D rotation matrix from Eq. (2) has to be used. 

The vector of unknown functions is now given by 
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and the 3D analogue to Eq. (39) leads now to 

   0pf SSSS ,),,( yxyx  (67) 
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where f  is the 3D analogue to Eq. (41). 

One important difference compared to the 2D case is that there are two arguments with respect to 

which derivatives have to be taken. This implies that the dimension of the linear problems to solve grows 

with increasing order: while there are only 6 different unknown functions, the first-order problem 

possesses already 12 unknown first-order derivatives, then there are 18 second-order derivatives, etc. 

Another implication of the existence of two independent variables is that from the very beginning there 

are two different first-order equations 
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where the different inhomogeneities are given as column vectors 
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The structure of xb  arises because there is no respective tilt in this coordinate direction between the 

wavefronts and the refractive surface. 

The Jacobian matrix )),(( SS yxpA  with elements jiij pfA  /:  is the same for both equations 

and analogous to Eq. (44) but now of size 66 . It is practical to provide it in block structure notation 
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where 0  is a 23  block with entry zero, 
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and a similar block expression for Out'A . The other two blocks are given as column vectors 
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3.2.3.  Solutions for the General Refraction Equations 

The direct solutions analogously to Eq. (48) are now given by 
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where 
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pAA , etc. The fact that there are two starting equations (68) 

reflects itself in the existence of two formally different solutions for the mixed derivatives, e.g. 
)1,1(

p . 

However, since both starting equations originate from one common function f  in Eq. (67), for each 

),( yx kk
p  both solutions must essentially be identical, as can also be verified e.g. for 

)1,1(
p  directly by some 

algebra. 

In analogy to Eqs. (51),(52) for the 2D case, we provide here the explicit results 
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and, after application of Eqs. (69),(73) the solutions 
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The general result for the refraction equation can be written in the way 

 
yx

yxyyxyyx

kk

kkkkkkkk
Rnwwnw ,

),(

In

),(

Out

),(

S '''   , (76) 

It is interesting to note that only yk  but not xk  occurs in the exponents of the cosines. This is a 

consequence of the fact that the refraction takes place in the zy   plane whereas in x
 
the direction no 

tilting cosines occur at all. Summarizing all components of Eq. (76) for a fixed value of yx kkk   and 

applying Eqs. (5),(28),(26) yields the refraction equation in terms of local aberrations,  

 kkkkkk reCeCe  '' , (77) 

where kr  is a vector collecting the remainder terms 
yx kkR ,  in Eq. (76) analogously to kR  in Eq. (58). Eq. 

(77) is the general refraction equation for aberrations of any order in the 3D case. 

 

3.2.4.  Generalization of the Coddington Equation  

Although Eq. (73) represents the full solution, we provide here a more detailed result for 

)0,0(
),( yx kk

p  in the case of vanishing wavefront derivatives 
),(

In
yx jj

w , 
),(

Out' yx jj
w

 

for all lower orders, i.e. for 

yxyx kkjj  . This works analogously to the treatment of Eqs. (49)-(61), with the only difference 

that the notation requires more effort.  

Analogously to Eq. (50) we obtain as result that 
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where again for 
),( yx kk

p  two formally different solutions occur which are essentially identical. We 

recognize that Eq. (78) (a) is a special case of Eq. (78) (b) for 0yk , 0yj , and similarly Eq. (78) (d) 

is a special case of Eq. (78) (c) for 0xk , 0xj . By means of a similar reasoning as in the 2D case it 

is found that if all lower order aberrations for yxyx kkjj   vanish, then Eqs. (78) will reduce to the 

lowest term, yielding 
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For finally evaluating Eqs. (78) we need the partial derivatives of the matrix A  under the 

assumption that all lower order aberrations for yxyx kkjj   vanish, which is given as   
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with the block 
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and a similar expression for the block 
),(

Out' yx mm
A . The other two blocks are given as column vectors 
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where 
)0,1(

Inx , 
)1,0(

Inx ,
)0,1(

Iny , 
)1,0(

Iny , etc. have been substituted by their solutions according to Eq. (75). 

Inserting 
),( yx mm

A  from Eqs. (80)-(82) and 1)( 
0A  from Eq. (74) into Eqs. (79) yields one common 

relation for 
),(

S
yx kk

w  for the various subcases in Eqs. (79) (omitting the argument ‘ )0,0( ’): 

 
),(

In

),(

Out

),(

S ''' yxyyxyyx kkkkkkkk
wnwnw    (83) 

for all orders 2k . 

Eq. (83) can be summarized in a similar fashion as Eq. (76) to a vector equation in the very 

appealing form 

 kkkkk eCeCe  ''  (84) 

which is Eq. (77) for 0r k . Eq. (84), an interesting result of the present thesis, is the refraction equation 

for aberrations of fixed order 2k  under the assumption that all aberrations with order lower than k  

vanish. 

 

3.3.  Results and Discussion 

 

The derived equations in the previous chapters 3.1 and 3.2 describe the solution for the refractive 

surface if the incoming and outgoing wavefront is given. Although this is a very interesting topic, as will 

be shown by example 3.4.1, another standard situation in optics is that a given wavefront hits a given 

refractive surface, and that the outgoing wavefront is the unknown quantity. Therefore, we provide in the 

following the derived refraction equations, solved for the outgoing wavefront’s aberration. 

 

3.3.1.  2D Case 

Eq. (62) describes the special case that for given order k  the aberrations of the incoming and 

outgoing wavefront for all orders less than k  are zero ( 0';0  jj EE  for kj  ). For calculation of 

the aberrations of the outgoing wavefront, Eq. (62) can be transformed to  
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 k

k

k

k

k EEE   cos'cos' . (85)  

We could generally show this statement to hold for all orders 2k  including as a special case for 2k  

the well-known Coddington and Vergence equation. Therefore Eq. (85) represents an interesting result of 

the present thesis.  

Also Eq. (58) for the general case can be transformed in such a way that kE '  of the outgoing 

wavefront is the unknown quantity to be determined 
 

 kk

k

k

k

k REEE   cos'cos' . (86) 

Eq. (86) is the general refraction equation for aberrations of any order in the 2D case. In kR  only 

aberrations jj EE ',  of order kj   occur. These aberrations can be determined by successively solving 

of Eq. (86) for lower orders. 

E.g., assume that the aberrations kE '  of the outgoing wavefront up to order 3k  ( ''2 SE  , 3'E

) are the unknown quantities, and the aberrations kE  of the incoming wavefront and kE  of the refractive 

surface are given (see Figure 18). In a first step the aberrations of order 2k  are calculated using Eq. 

(86), which is in this case identical with the well-known Coddington equation 
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In a second step the aberrations of order k = 3 are calculated using Eq. (86) and the results of Eq. (87) 
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In Figure 18 is the relation described by Eq. (88) exemplified. The incoming wavefront  Inw  hits the 

refractive surface  Sw  by the angle of incidence   and the outgoing wavefront  Out'w  emerges with 

the angle ' . The incoming wavefront, the refractive surface and the outgoing wavefront show 

aberrations of second order  ',, SSS  and third order  333 ',, EEE . The origins of these coordinate 

systems coincide in the chief ray’s intersection point with the refractive surface but they are fictitious 

separated for a better understanding. 
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Figure 18: The incoming wavefront  Inw  hits the refractive surface  Sw  by the angle of incidence   

and the outgoing wavefront  Out'w  emerges with the angle ' . The incoming wavefront, the refractive 

surface and the outgoing wavefront show aberrations of second order  ',, SSS  and third order 

 333 ',, EEE . The origins of these coordinate systems coincide in the chief ray’s intersection point with 

the refractive surface but they are fictitious separated in this figure for a better understanding. 

 

3.3.2.  3D Case 

Equivalently to the 2D case transforming Eq. (84) leads to kkkkk eeCeC ''
 
for the case that 

0e0e  jj ';  for kj  , a statement which we could generally show to hold for all orders 2k  

including the special case of the Coddington equation. 

In the general case Eq. (77) can as well be transformed in such a way that the unknown aberration 

vector k'e  of the outgoing wavefront is determined by the incoming wavefront and the refractive surface. 

 kkkkkk reeCeC  '' , (89) 

where in kr  only aberrations of order kj   occur. Therefore, kr  can be determined by successively 

solving of Eq. (89) for lower orders. Eq. (89) is the general refraction equation for aberrations of any 

order in the 3D case. 
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3.4.  Examples and Applications 

 

Two examples are provided, which demonstrate the advantage of the analytical nature of the 

derived equations. The first example reflects the interesting topic that a refractive surface has to be 

determined, which images an axial object point perfectly without any aberrations (up to the order 6k ). 

In this example a very big aperture-stop with a low f-number is chosen to demonstrate that the derived 

equations are suitable for describing the effects of a large pupil. The second example deals with another 

standard situation in optics that the incoming waverfront and the refractive surface are given and the 

outgoing wavefront is the unknown quantity. In this example a big angle of incidence is chosen to 

demonstrate that the derived equations can be used by oblique incidence. 

 

3.4.1.  Aspherical Surface Correction up to Sixth Order 

One important application of the derived equations is that they allow determining a refractive 

surface, which not only has a defined Power S , but also generates an outgoing wavefront which shows 

no deviation from an ideal sphere up to the order 6k .  

Because of the analytical nature of the equations it is not necessary to use an iterative numerical 

method. The task is to determine a rotationally symmetric aspherical surface S , which images an axial 

object point with the distance s  to the refractive surface to an axial image point with the distance 's  to 

the refractive surface (see Figure 19). 

 

 

Figure 19: One important application of the derived equations is that they allow determining a refractive 

surface, which not only has a defined Power S , but also generates an outgoing wavefront which shows 

no deviation from an ideal sphere up to the order 6k . The task is to determine a rotationally 

symmetric aspherical surface S , which images an axial object point with the distance s  to the refractive 

surface to an axial image point with the distance 's  to the refractive surface. 
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The object side vergence and the image side vergence are given by snS /  and by '/'' snS  , 

respectively, expressed in terms of the reciprocals of the object and image distance. Treating the 

rotationally symmetric problem as 2D problem in the y - z
 
plane, a sphere with radius r  is exactly 

described by 

  22 /11)( ryryf  , (90) 

whose series expansion up to the order 6k  is 

 ...
16

1

8

1

2

1
)( 6

5

4

3

2  y
r

y
r

y
r

yf . (91) 

Applying Eq. (91) once on )()( In ywyf  , sr   and secondly on )'(')'( Out ywyf  , 'sr   

(including in both cases the sign of s  or 's ) allows us to identify the wavefronts’ coefficients in the sense 

of Eqs. (32)-(35): 
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The solution for the desired refractive surface, described by the series 
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as in Eq. (34), will be found up to the order 6k  if we provide expression for the three coefficients 2,Sa

, 4,Sa  and 6,Sa  (the odd coefficients for ,...7,5,3k  are not present because of the rotational symmetry 

of the problem). 

Since the local aberrations of higher order have no influence on the local aberrations of lower 

order, the coefficient of second order 2,Sa  can be directly determined by Eq. (53). In the present case of 

orthogonal incidence we exploit that 0' , 1'   and nn '  , such that Eq. (53) reads as 

2,In2,Out2, '')'( ananann S   (equivalent to the vergence equation SSS  '  in Eq. (11)), yielding 
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For finding 4,Sa , we have to apply Eqs. (54)-(57). Due to the orthogonal incidence Eq. (57) simplifies to  
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and consequently Eq. (56) simplifies to 
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Inserting Eq. (96) into Eq. (54) and substituting 
)2(

Inw , 
)2(

Out'w  by the coefficients in Eq. (92) yields 
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Similarly, we find that 
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Eqs. (97), (98) complete the demanded solution, i.e. the coefficients 2,Sa , 4,Sa  and 6,Sa   of the aspherical 

refractive surface are determined such that an object point with the vergence S  is imaged to a point with 

the vergence 'S  without aberrations with order less or equal to 6k . 

The results of Eqs. (94), (97), (98) can be illustrated by a numerical example in which the 

refractive index of the first medium is 1n , the one of the second medium is 5168.1'n , and the 

object and image distance are given by mms 0.50  and mms 0.60' , respectively. Eqs. (94), (97), 

(98) then yield 
1

2,S 0876161.0  mma , 
3

4,S 00006550.0  mma ,  
5

6,S 00002147.0  mma . By 

means of a ray-tracing approach using the optical design package ZEMAX
®
, we have generated layout 

plots showing rays corresponding to these values. As a comparison, we have first traced rays through a 

spherical surface with radius mmar 4134.11/1 2,S   (see Figure 20). Paraxial the imaging is perfect, 

but the peripheral rays introduce large errors. Next, we have considered a parabolic surface with the same 

paraxial curvature 2,Sa  (see Figure 21), but now we have chosen a stop with semi-diameter 
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mmr 0.16stop   which is considerably larger than the surface radius in Figure 20. Again, the peripheral 

rays introduce large errors. 

 

 

Figure 20: Numerical example in which the refractive index of the first medium is 1n , the one of the 

second medium is 5168.1'n , and the object and image distance are given by mms 0.50  and 

mms 0.60' . Ray-tracing generated by the optical design package ZEMAX
®
 : Spherical surface with 

radius mmar 4134.11/1 2,S   and a aperture stop with a semi-diameter mmr 0.16stop  . Paraxial the 

imaging is perfect, but the peripheral rays introduce large errors. The vertical lines in the drawings are 

construction lines of ZEMAX
®
 and have no relevance in our context. 

 

 

Figure 21: Numerical example in which the refractive index of the first medium is 1n , the one of the 

second medium is 5168.1'n , and the object and image distance are given by mms 0.50  and 

mms 0.60' . Ray-tracing generated by the optical design package ZEMAX
®
 : Parabolic surface with 

local curvature 2,Sa  and a aperture stop with a semi-diameter mmr 0.16stop  . Paraxial the imaging is 

perfect, but the peripheral rays introduce large errors. The vertical lines in the drawings are construction 

lines of ZEMAX
®
 and have no relevance in our context. 

 

Although such a system has a very low f-number, it is now possible to reduce these errors 

dramatically by choosing a sixth-order asphere based on the locally determined values 2,Sa , 4,Sa  and 

6,Sa . Figure 22 shows that the errors are reduced to a level which is no longer visible on the scale of the 

plot. 
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Figure 22: Numerical example in which the refractive index of the first medium is 1n , the one of the 

second medium is 5168.1'n , and the object and image distance are given by mms 0.50  and 

mms 0.60' . Ray-tracing generated by the optical design package ZEMAX
®
 : Strongly reduced 

aberrations due to aspherical surface of 6
th
 order with coefficients 

1

2,S 0876161.0  mma , 

3

4,S 00006550.0  mma , and 
5

6,S 00002147.0  mma  and a aperture stop with a semi-diameter 

mmr 0.16stop  . The errors are reduced to a level which is no longer visible on the scale of the plot. The 

vertical lines in the drawings are construction lines of ZEMAX
®
 and have no relevance in our context 

 

3.4.2.  A spherical incoming wavefront hits a spherical refractive surface by oblique incidence 

In this example we use the derived equations to determine the aberrations of the outgoing 

wavefront up to order 6k  and compare them with the results calculated with ZEMAX
®
. 

Given are the spherical incoming wavefront with a vergence DS 10  and a spherical refractive 

surface with power DS 20 . The refractive index of the first medium is 1n , the one of the second 

medium is 5168.1'n , and the angle of incidence is  40 . Therefore, the vergence vector of the 

incoming wavefront and the power vector of the refractive surface have the appearances ),0,( SST s  

and ),0,( SST s , respectively. 

The aberrations of second order of the outgoing wavefront are determined by Eq. (14) 

ssCsC '' , yielding a vergence vector of the form )',0,'(' yyxx

T SSs . Numerical values for 

yyxx SS ','  are given in Table 2. 

The third-order error vectors 3e  and 3e  are 0, because the incoming wavefront and the refractive 

surface are spherical. Then Eq. (89) simplifies to 333 '' reC   (the vector 3r  is shown in Appendix B as 

a function of the given vergence S  and the quantities yyxx SS ','  determined before). Numerical values 

for 3'e  are given in Table 2. 

The error vectors of fourth order of the spherical incoming wavefront and  refractive surface have 

the appearances )3,0,,0,3( 333

4 SSS
T
e  and )3,0,,0,3( 333

4 SSS
T
e , respectively. Using Eq. (89) 
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leads to the resulting error vector of fourth order whose values are again given in Table 2. The 5
th
 and 6

th
 

order aberrations for the local wavefront aberrations are also numerically provided in Table 2. 

 

order 
wavefront aberration (sagitta) wave aberration (OPD) 

symbol 1000value  symbol 1000value  

2k  

xxS '  
1226176.8 mm  

OPD'xxS  
1226176.8 mm  

xyS '  0  
OPD'xyS  0  

yyS '  
1221464.17 mm  

OPD' yyS  
1221464.17 mm  

3k  

xxxE'  0  
OPD'xxxE  0  

xxyE'  
26818920 mm.  

OPD'xxyE  
26818920 mm.  

xyyE'  0  
OPD'xyyE  0  

yyyE'  
22.076540 mm  

OPD' yyyE  
20765402 mm.  

4k  

xxxxE'  
31557990 mm.  

OPD'xxxxE  
31543470 mm.  

xxxyE'  0  
OPD'xxxyE  0  

xxyyE'  
3054537.0 mm  

OPD'xxyyE  
3052970.0 mm  

xyyyE'  0  
OPD'xyyyE  0  

yyyyE'  
3148661.0 mm  

OPD' yyyyE  
3135341.0 mm  

5k  

xxxxxE'  0  
OPD'xxxxxE  0  

xxxxyE'  
40007130 mm.  

OPD'xxxxyE  
40000100 mm.  

xxxyyE'  0  
OPD'xxxyyE  0  

xxyyyE'  
40009460  mm.  

OPD'xxyyyE  
40021700  mm.  

xyyyyE'  0  
OPD'xyyyyE  0  

yyyyyE'  
40131230  mm.  

OPD' yyyyyE  
40238300  mm.  

6k  

xxxxxxE'  
50003390 mm.  

OPD'xxxxxxE  
5000078.0  mm  

xxxxxyE'  0  
OPD'xxxxxyE  0  

xxxxyyE'  
50002940  mm.  

OPD'xxxxyyE  
5000563.0  mm  

xxxyyyE'  0  
OPD'xxxyyyE  0  

xxyyyyE'  
50006630  mm.  

OPD'xxyyyyE  
5001228.0  mm  

xyyyyyE'  0  
OPD'xyyyyyE  0  

yyyyyyE'  
50047460  mm.  

OPD' yyyyyyE  
50095080  mm.  

Table 2: Numerical results for the local aberrations up to the radial order 6 of the outgoing wavefront 

calculated by the analytical equation (89) derived in this PhD thesis. Left column: values based on the 

wavefront sagitta; right column: OPD-based values, as defined by equation (96), and derived from the 

wavefront sagitta results shown in the left column using equation (324). 

 

As mentioned at the beginning of this thesis, our whole treatment is based on the description of 

aberrations by their wavefront sagitta. For completeness, it is important to provide also aberration results 
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in the OPD picture. In Appendix A: Relation between sagitta derivatives and OPD derivatives, we 

provide relations between sagitta derivatives and OPD derivatives. Analogously to Eq. (26), we define 

OPD-based vectors of aberrations for the wavefronts by  
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where 
),(

Out

),(

In ', yxyx kkkk
  are in this context OPD derivatives of the incoming and the outgoing wavefront 

which play the role of the generically used symbol 
),( yx kk

w  in Appendix A. The values of the aberrations 

OPD'ke  are listed in Table 1, too, together with their counterparts k'e . In accordance with Appendix A, 

OPD'ke  is equal to k'e  up to the order 3k . For 4k , the values of 
OPD'ke  and k'e  are slightly different, 

and for 5k , the deviations between the two pictures are considerable. We remark that this is the reason 

why it was necessary to treat the relations between the different coordinates simultaneously with the 

wavefront derivatives from the very beginning (see Eqs. (40), (66)). This confirms that the vector of six 

unknowns in Eq. (66) does not introduce additional complexity to the problem, but it is rather the only 

consistent way how to treat carefully the inherent complexity in such a way that numbers like in Table 2 

are meaningful. 

Apart from yielding exact values for the local derivatives, our method will also be suitable for 

computing Zernike coefficients over a full pupil size if local aberrations up to sufficiently high order are 

involved, as argued in chapter. 2.2. In Table 3, we provide the Zernike coefficients up to order 6k  for 

our example assuming a pupil with semi-diameter mmr 0.30  . The coefficients have been computed 

using Eqs. (115) and (116) for the order 6k . 
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order 

Symbol 

(OSA 

standard) 

Zernike coefficients 

(our method) 

Zernike coefficients 

(ZEMAX
®
) 

mvalue /  mvalue /  

2k  

2

2

c  0  
8104.2   

0

2c  672042.16  672048.16  

2

2c  251706.8  251718.8  

3k  

3

3

c  008734.0  008746.0  

1

3

c  092135.1  092042.1  

1

3c  0  
8109.2   

3

3c  0  
9108.5   

4k  

4

4

c  0  
8104.2   

2

4

c  0  
8108.1   

0

4c  036792.0  036794.0  

2

4c  003041.0  003034.0  

4

4c  003785.0  003780.0  

5k  

5

5

c  000060.0  000052.0  

3

5

c  000723.0  000719.0  

1

5

c  001026.0  001058.0  

1

5c  0  
8102.1   

3

5c  0  
8102.1   

5

5c  0  
8108.1   

6k  

6

6

c  0  
8102.1   

4

6

c  0  000000.0  

2

6

c  0  
8102.1   

0

6c  000089.0  000089.0  

2

6c  000085.0  000083.0  

4

6c  000005.0  000004.0  

6

6c  000005.0  000005.0  

Table 3: Zernike coefficients of the outgoing wavefront up to order 6k  assuming a pupil with semi-

diameter mmr 0.30  . Left column: values based on our analytical method computed using Eqs. (115) 

and (116); right column: values based on numerical ray-tracing (ZEMAX
®
). The agreement between both 

results is obvious. Apart from yielding exact values for the local derivatives, the derived analytical 

method is also be suitable for computing Zernike coefficients over a full pupil size if local aberrations up 

to sufficiently high order are involved. 

 

For comparison, we have also calculated the solution of the same problem with a ray-tracing 

approach using ZEMAX
®
 (see Figure 23) followed by a Zernike analysis. Those values are provided in 

Table 3 as a reference. The consistency of the results is obvious. We would like to stress again that our 

local aberration values are obtained by an analytical method and therefore by definition are exact. The 
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transformation of our local coefficients to Zernike coefficients, on the other hand, yields only a (however 

very good) approximation for their numerical values based on the assumption that the truncated subspaces 

of order 6k  describe the aberrations sufficiently well. But still, within this approximation, the results 

are analytical, such that a Zernike coefficient obtained as zero is exactly zero, whereas a ray-tracing value 

is always numerical by its nature resulting in small deviations from zero (see Table 3). 

 

 

Figure 23: Ray-tracing plot for example B generated by the optical design package ZEMAX
®
. Given are 

the spherical incoming wavefront with a vergence DS 10  and a spherical refractive surface with 

power DS 20 . The refractive index of the first medium is 1n , the one of the second medium is 

5168.1'n , and the angle of incidence is  40 .A spherical wavefront is refracted by a spherical 

surface under oblique incidence, giving rise for Coma in the outgoing wavefront. The box drawn around 

the refractive object are construction lines of ZEMAX
®
 and have no relevance in our context. 
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4. Description of a Wavefront in a rotated Coordinate System 

 

For calculating the aberrations of a spectacle lens or an entire optical system, it is necessary to 

describe the wavefront in different (rotated) coordinate systems, because the refracting planes, e.g. the 

refracting plane at the front surface and at the rear surface e.g. of a spectacle lens, are not identical. They 

are rotated around the chief ray. A rotation is also necessary to describe the aberrations relating to the 

horizontal or vertical axis or the axis defined by Listing’s law. Listing’s law describes the three 

dimensional eye movement when viewing in a diagonal gaze direction (tertiary position). It says that the 

rotation takes place around an axis which is perpendicular to the plane spanned by the vector in primary 

gaze direction and the vector in tertiary gaze direction [45,46]. The goal and also the advantage of the 

method is that the derived equations allow calculating the coefficients of the wavefront in the rotated 

coordinate system relating to the coefficients of the original wavefront directly without a coordinate 

transformation. 

 

4.1.  Rotated coordinate system 

 

By rotating the coordinate system about the angle α (see Figure 24), the coordinate transformation is 

described by 
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with the rotation matrix 
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Figure 24: Relation between the coordinates yx ~,~  and yx, . By rotating the coordinate system about 

the angle α, the coordinate transformation is described by 







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


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Therefore the wavefront w~  in the rotated coordinate system yx ~,~  is defined by 

 ))~,~(),~,~(()~,~(~ yxyyxxwyxw    (102) 

By taking the derivative of the wavefront w~  with respect to yx ~,~ , the new coefficients mkma ,
~  are 

determined in relation to the coefficients mkma , . 
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4.2.  Second order aberrations 

 

For second order aberrations, it is known how to calculate directly the coefficients mkma ,
~  of the 

wavefront )~,~(~ yxw in the rotated coordinate system )~,~( yx  [7,8]. 

The vector of second order aberrations is 
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If the coordinate system is rotated by the angle α, the new second order aberrations s~ (in the rotated 

coordinate system )~,~( yx ) will be calculated by  

 

sRs 2 )(~    (105) 

with 
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4.3.  Higher order aberrations 

 

The dependence of the new coefficients mkma ,
~  on the old coefficients mkma ,  can be described 

by  
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The resulting rotation matrix has a block structure, which shows that the coefficients mkma ,
~  of order k 

depend only on the coefficients mkma ,  also of order k. The rotation matrix for the first 15
 
coefficients 

)15( N
 
up to order )4( k

 
is  
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The matrix elements of the block structures )(kR  for the first order )1( k  is the known rotation 

matrixes )(1 R  
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and for the second order aberrations )2( k
 
the known rotation matrixes )(2 R  
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For third order )3( k , the rotation matrixes is given by )(3R  
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  (111) 

and for fourth order )4( k , the rotation matrixes is given by )(4 R  
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The equations (109) to (112) show that the block matrix elements )(, jie
 
of the rotation matrixes 

)(kR
 
have a point symmetry with )()( 2,2,    jkikji ee . 
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4.4.  Relation between Zernike series and power series 

 

The Zernike coefficients corresponding to a wavefront  are given by the integral 

 
, 
 

(114) 

where 
22: yxr  e,  cosx ,  siny  and 0r  is the pupil size.  

If the wavefront is given as a series like in Eqs. (8), (9), then the integral in Eq. (114) will be itself 

a series, i.e. a linear combination of coefficients . Summarizing up to given order k the coefficients 

 and  as vectors, a transition matrix  between the Zernike subspace and the Taylor series 

subspace of order k can be defined by  

 
  

 
(115) 

Also if representations of such a matrix are given in a similar form also in the literature [2,35,51], 

the prefactors of the underlying power series in literature will not be in detail the same as in our case. 

Therefore we provide an explicit expression for  here for order k = 3, given by  
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  (116) 

 

The rotation can also be executed in the Zernike space. Therefore the wavefront (Eq. (63)) has to 

be expanded with Zernike polynomials (Eq. (117)) in polar coordinates.  

  















2sin6),(

2cos6),(

123),(

sin2),(

cos2),(

1),(

2

2,2

2

2,2

2

0,2

1,1

1,1

0,0

















Z

Z

Z

Z

Z

Z

  (117) 

with  even)(,),(),(
0

kmZcyxw
k

k

km

m

k

m

k 


 

   (118) 

Because of the representation of the Zernike polynomials in polar coordinates, the rotation rule 

for Zernike coefficients is very simple [35]. The vector of the Zernike coefficients is transformed by 

rotation with 
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The rotation matrix in block matrix description is directly based on the elementary rotation matrix in Eq. 

(100). For 15N  the rotation matrix has the form: 
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Every block in Eq. (120), which relates to the same radial order, has a frame.  

To calculate the rotation matrix ),( NPotR , it is necessary to transform ),( NZernikeR
 
onto 

the coefficient system of the power series expansion with Eq. (116) 
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It follows, that 

)(),()(),( 1 NNNN ZernikePot TRTR   ,  (122) 

with a block structure of the form 
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where the block matrixes are identical with the ones of Eq. (113). 
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5. Derivation of the Propagation Equations 

 

5.1.  Mathematical Approach in the 2D Case 

 

5.1.1.  Description of Wavefronts in the 2D case 

The wavefronts themselves are each described by power series expansions. Any point on the 

original wavefront is given by the vector 

  (124) 

where in the 2D case  is the curve defined by 

  (125) 

The normal vectors and their derivatives are described as in chapter 3.1.3 and obey the same relations as 

Eqs. (36)-(38). Since the normal vector of the original wavefront and the normal vector of the propagated 

wavefront are equal, the normal vector will be labeled generally with . 

In application on the functions of interest, , this means that . 

Further, the first derivatives are given by  

  (126) 

and similarly for the higher derivatives. 

 

5.1.2.  Ansatz for Determining the Propagation Equations 

Once the local aberrations of the original wavefront are given, its corresponding coefficients  

are directly determined, too, and equivalently the wavefront’s derivatives. It is our aim to calculate the 

propagated wavefront in the sense that its derivatives and thus its  coefficients (see Eqs. (124),(125)) 

are determined for all orders  for the order  of interest, and to assign values to its 

corresponding local aberrations.  
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system are fixed, a neighboring ray scans the original wavefront 
 
and hits it at an intercept , 

then propagates to the propagated wavefront , where the brackets  shall denote the entity of 

vectors described by Eq. (124). As shown Figure 25, and consistently with our notation, we denote as  

the projection of the neighboring ray’s intersection with  onto the  axis and analogously, the 

projection of the intersection with  onto the  axis is denoted as . 

 

 

Figure 25: Propagation of a wavefront  about the distance  to the propagated wavefront . 

The chief ray and the coordinate system are fixed, a neighboring ray scans the original wavefront 
 

and hits it at an intercept , then propagates to the propagated wavefront , where the brackets 

 shall denote the entity of vectors described by Eq. (124). Consistently with our notation, we denote as 

 the projection of the neighboring ray’s intersection with  onto the  axis and analogously, the 

projection of the intersection with  onto the  axis is denoted as .
 

 

The vector  (see Eq. (124)) points to the neighboring ray’s intersection point with 

the original wavefront, and the propagated wavefront’s OPD referred to the original wavefront measured 

along the ray is denoted by . Correspondingly the vector from the original wavefront to the propagated 

wavefront is . Hence, the vector to the point on the propagated wavefront itself, , must be 

equal to the vector sum . This yields the fundamental equation: 
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  (127) 

From Eq. (127), it is now possible to derive the desired relations order by order. Although only the 

propagated wavefront is of interest, in Eq. (127) additionally the quantities  and  are also unknown. 

However, those are not independent from each other: if any one of them is given, the other one can no 

longer be chosen independently. The coordinate  is used as independent variable, and  is 

considered as a function of it.  

Eq. (127) represents a nonlinear system of two algebraic equations for the two unknown functions 

 and . Even if we are only interested in a solution for the function , we cannot 

obtain it without simultaneously solving the equations for both unknowns order by order. Introducing the 

vector of unknown functions as  
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and observing that the initial condition  has to be fulfilled, it is now straightforward to 

compute all the derivatives of Eq. (127) up to some order, which yields relations between the curvatures, 

third derivatives etc. of the original and propagated wavefront. Rewriting these relations in terms of series 

coefficients  and solving them for the desired coefficients  yields the desired result. 

Rewriting Eq. (127) leads to  
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Before solving Eq. (129), we distinguish if the independent variable  enters into Eq. (129) explicitly 

like in the first component of the vector , or implicitly via one of the components of Eq. 
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 , (130) 

where 
 

are the components of . Setting now , Eq. (130) allows 

rewriting the fundamental system of Eq. (129) in a more compact way as  

  (131) 

as can be verified explicitly by component wise comparison with Eq. (129). 

Solving Eq. (130), (131) for the function  is formally identical to solving Eq. (42) in 

chapter 3. The only difference is now the name of the independent variable is  instead of  in 

chapter 3. Taking the total derivative of Eq. (131) with respect to  and applying the principles from the 

theory of implicit functions leads to the system of differential equations 
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where the matrix with elements  is the Jacobian matrix  of  with respect to its vector 

argument , evaluated for . The Jacobian  reads 
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, , etc., and additionally  are themselves functions of 

. 

The derivative vector  in Eq. (132) shall be summarized as 

 , (134)  
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Similarly as in chapter 3 we conclude that we can write  with argument  only and  

without argument at all because  is constant. 

Eq. (132) can then be written in the form 

 . (135) 

 

5.1.3.  Solving techniques for the fundamental equation 

For solving Eq. (135) for , we can apply identically the same steps as in Eqs. (47)-(50)) in 

chapter 3, with the only difference that here the independent variable is named  instead of , and that 

the initial condition reads here  instead of  as it was the case in chapter 3. The 

equations as a function of the independent variable  are shown in Appendix C (Eqs. (326)-(329)). 

Hence in this chapter, we directly provide a formal solution for , expressed in terms of its 

predecessors, by the equations 

  (136) 

where . 

 

5.1.4.  Solutions for the General Propagation Equations 

In the result for , the first rows of Eq. (136) involve . For obtaining , we 

evaluate Eq. (133) for  and apply Eq. (37) in chapter 3, yielding 

 

 (137) 

The final result for  is  

  (138) 
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The first derivative of the -coordinate, which is the first component  of , is a dilation depending 

on the curvature of the original wavefront and the propagated optical path length , such that 

. The slope of the propagated wavefront vanishes, , as does the slope of the original 

wavefront due to . 

For the orders  we apply Eq. (136). The derivatives  , etc. are 

directly obtained by total derivative of Eq. (133) with respect to , evaluating for  and again 

applying Eq. (37). For the orders  only the results 

 

for the propagated wavefront are of 

interest, therefore we directly provide those result. The resulting second-order law is (omitting the 

argument ‘ ’) 

  (139) 

with  (140) 

 

which is well-known as the propagation equation and reveals to be a special case of the results. The novel 

resulting higher-order laws can be written in a similar fashion 

 

 

(141) 

Eq. (141) can be generalized for  to 

  (142) 

where in  the dependence of  on all wavefront derivatives  of lower order ( ) is 

summarized. 
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5.1.5.  Special case 

Although application of Eq. (136) provides a solution for  up to arbitrary order , it is 

very instructive to analyze the solutions more closely for one special case. We observe that the 

expressions in Eq. (142) for  will vanish if we set  for all lower orders  (for  or 

, respectively). 

This leads to the assumption (for ) that the following statement is generally true: if only 

aberrations of one single given order  are present while for all lower orders  we have , 

then  and , which means for fixed order  that Eq. (142) will be valid for 

vanishing remainder term and the aberration of the propagated wavefront will be equal to the aberration 

of the original wavefront independent of the propagation distance . 

To this purpose, we start from the recursion scheme in Eq. (136) and show that only the term 

containing  can contribute to the sum if all aberrations vanish for order less than . For doing so, it is 

necessary to exploit two basic properties of the derivatives of the matrix  

for the orders . As can be shown by element wise differentiation of the matrix , the 

highest wavefront derivatives present in  (see Eq. (133)) are proportional to . 

Evaluating  at the position  shows that  cannot contain any higher wavefront 

derivatives than . It follows that 

i) The highest possible wavefront derivatives present in  are . 

ii) If all wavefront derivatives even up to order  vanish, then  itself will vanish. 

This is in contrast to  itself which contains constants and therefore will be finite even if all 

wavefront derivatives vanish. 

Analyzing the terms in Eq. (136), we notice that the occurring derivatives of the matrix  are , 

, … , ,  for , respectively. It follows from property i) that the highest 

occurring wavefront derivatives in these terms are , respectively. Now, if all 

wavefront derivatives up to order  vanish, it will follow from property ii) that all the matrix 

derivatives , … , ,  must vanish, leaving only and  . Therefore all terms in 

Eq. (136) vanish, excluding only the contribution for  and . We directly conclude that 
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   (143) 

This leads directly to 

  (144) 

In the term 

  (145) 

 

only wavefront derivatives  and  occur. Therefore  for  because  and  

vanish. Eq. (144) can then be written in the form 

  (146) 

To evaluate  in Eq. (146) the second derivative of  has to be calculated.  reads if all 

derivatives of the wavefront  vanish for order less or equal to  

  (147) 

For evaluating  for  we set , and it is straightforward to show by induction 

that if all aberrations vanish for order less or equal to , then 

 , (148) 

where  has been substituted by their solution , wherever it occurs, respectively (see 

Eq.(138)). Inserting  for  and  from Eq. (136) into Eq. (146) yields directly that 
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  (149) 

for all orders .  

 

5.2.  Mathematical Approach in the 3D Case 

 

5.2.1.  Wavefronts and Normal Vectors  

Although more lengthy to demonstrate than the 2D case, conceptually the 3D case can be treated 

analogously to the 2D case and analogously to Eqs. (63)-(74) in chapter 3. Therefore, we will only report 

the most important differences. Analogously to Eq. (124), the original wavefront is now represented by 

the 3D vector  

  (150) 

where  and the relation between the coefficients and the derivatives is defined as described in 

chapter 3. The connection between coefficients and local aberrations is now given by multiplying the 

coefficient with the refractive index. 

For treating the normal vectors, we use the same function  

 , (151) 

as in chapter 3 and make use of the fact that the normal vector  to a surface 

 is given by . In the intersection point we have now 

, and the derivatives corresponding to Eq. (37) can directly be obtained from Eq. 

(151).  

 

5.2.2.  Ansatz for Determining the Propagation Equations 

The starting point for establishing the relations between the original and the propagated wavefront 

is now given by equations analogous to Eq. (127), with the only difference that  and  components are 

simultaneously present. 

The vector of unknown functions is now given by 
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  (152) 

and the 3D analogue to Eq. (127) leads now to 

  (153) 

where  is the 3D analogue to Eq. (130). 

Since Eq. (153) is formally identical to Eq. (67) in chapter 3, the solving procedure from chapter 

3 can be directly applied. In particular, we have to deal with two first-order equations 

  (154) 

which correspond exactly to Eq. (68) in chapter 3. Of course, the explicit expressions how  and  

depend on their arguments now lead to different expressions for the column vectors of the 

inhomogeneities  

 ,     . (155) 

and for the Jacobian matrix  with elements  which is now given by 

 (156) 

 

5.2.3.  Solutions for the General Propagation Equations 

The formal analogy of Eqs. (49) to Eqs. (69) in chapter 3 can be exploited by making use of the 

solving techniques developed in chapter 3. Equivalently either Eqs. (73) or Eqs. (78) from chapter 3 can 

be directly applied. The only difference to chapter 3 is now that again the explicit expressions for the 

Jacobian and its inverse, which have to be inserted in those Eq. (73) or Eq. (78) from chapter 3, have 

another appearance, here given by  
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(157) 

with  

and after inserting Eqs. (155) in Eqs. (73), (78), we obtain for the order  the solutions  

 ,        (158) 

For the orders  we apply Eq. (78). The derivatives  etc. are 

directly obtained by total derivative of Eq. (156) with respect to  and , evaluated for  and 

. For the orders  only the results 

 

for the propagated wavefront are 

interesting, therefore we directly provide those result. The resulting second-order law is (omitting the 

argument ‘ ’) 

  (159) 

which is well-known as the propagation equation and reveals to be a special case of the results. If the 

coordinate axes coincide with the directions of principal curvature of the wavefront, which means that 

, Eq. (159) can be simplified to 

  (160) 

The resulting higher-order laws can be written in a similar fashion 
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  (161) 

Eqs. (159)-(161) show that the result for  can be derived from the result of  by interchanging  

and . 

 

5.2.4.  Special Case  

Analogously to the special situation that leads to Eq. (149) in the 2D case, it is possible to find a 

corresponding special case in the 3D case. By a similar reasoning as in the 2D case and as in chapter 3, it 

is found that if all lower order aberrations for  vanish, then Eq. (78) will reduce to the 

lowest term, yielding 
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  (162) 

The result in Eqs. (162) is similar as Eq. (73) in chapter 3, but it differs due to different conditions under 

which the matrix  or one of its derivatives vanish. For finally evaluating Eqs. (162) we need the partial 

derivatives of the matrix  under the assumption that all lower order aberrations for  

vanish, which is given as  

  (163) 
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where , , , , etc. have been substituted by their solutions according to Eq. (158). 

Inserting  from Eqs. (163) and  from Eq. (157) into Eqs. (162) yields one common 

relation for  for the various subcases in Eqs. (162) (omitting the argument ‘ ’): 

  (164) 

for all orders . 

 

5.3.  Results 

 

5.3.1.  2D Case 

Eq. (141) holds likewise for the derivatives and for the coefficients , and  due to Eqs. 

(124),(125). In terms of local aberrations and substituting  and , Eq. 

(141) reads  

 , (165) 

Eq. (165) can be generalized for  to 

  (166) 

where in  all wavefront derivatives  of lower order ( ) are expressed in terms of local 

aberrations. 
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If only aberrations for one single given order  are present while for all lower orders  we 

have , then  and , which means for fixed order  that Eq. (166) will be valid for 

vanishing remainder term and the aberration of the propagated wavefront will be equal to the aberration 

of the original wavefront independent of the propagation distance . 

  (167) 

Although the primary interest is to describe the relation between the aberrations of the original 

and propagated wavefront, our approach also delivers simultaneously the relation between the coordinates 

of the original and propagated wavefront as described in Eq. (128) (see Figure 26). 

The relation between the coordinates is very interesting for example to calculate the changing boundary 

of the wavefront by propagation as done approximately in [44]. 
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Figure 26: Propagation of a wavefront  about the distance  to the propagated wavefront 

Although the primary interest is to describe the relation between the aberrations of the original and 

propagated wavefront, our approach also delivers simultaneously the relation between the coordinates of 

the original and propagated wavefront. The relation between the coordinates is very interesting for 

example to calculate the changing boundary of the wavefront by propagation 

 

5.3.2.  3D Case 

Eq. (159) can be summarized to a vector equation in terms of local aberrations and substituting 
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also shown in terms of local aberrations. 

The vector equation (170) is identical with the well-known propagation matrix equation (19) 
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 (171) 

with  

 If the coordinate system is chosen in such a way that the x- and y- axis coincide with the 

directions of principal curvature of the wavefront, then the equations can be simplified. For doing so, the 

coefficients  of the original wavefront have to be rotated around the axis  of the wavefront (the 

direction of one principal curvature) with 

  (172) 

Then Eqs. (170) and (171) can be simplified to 
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and also for the radial order  an appealing equation can be derived 
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  (175) 

Afterwards the coefficients of the propagated wavefront have to be re-rotated to the original coordinate 

system. The resulting coefficients are then of course identical to the coefficients calculated by Eqs. (170) 

and (171). 

Eq. (174)-(175) can be generalized for  to the novel equation 

  (176) 

where  is a vector collecting the remainder terms  analogously to  in Eq. (166) and with  

  (177) 

The result of the special case treated in Eqs. (162)-(164) can be summarized in a similar fashion as Eq. 

(176) to a vector equation in the very appealing form 
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which is Eq. (176) for . Eq. (178), an interesting result of the present thesis, is the propagation 

equation for aberrations of fixed order  under the assumption that all aberrations with order lower 
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than  vanish, which means that the aberration of the propagated wavefront will be equal to the 

aberration of the original wavefront independent of the propagation distance . 

As written in the 2D case our primary interest is to describe the relation between the aberrations 

of the original and propagated wavefront. Our approach also delivers simultaneously the relation between 

the coordinates of the original and propagated wavefront as described in Eq. (152) . The relation between 

the coordinates is very interesting for example to calculate the changing boundary of the wavefront by 

propagation as done approximately in [44]. 

The functions ),( ppo yxx  and ),( ppo yxy  describing the relation between the coordinates of the 

original and the propagated wavefront can be described by power series expansion with 
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Analogously to the definition of the vectors for aberrations in Eq. (26), similar vectors kx  and ky  of 

dimension 1k  can be defined (omitting the argument (0,0)). 
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The solutions for the derivatives of 
)(

o

k
y  are given by the Eqs. (329) and reads for the special 

case that the coordinate system is chosen in such a way, that the x- and y- axis coincide with the directions 

of principal curvature of the wavefront. 
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5.4. Examples and Applications 

 

One important application of the derived equations is that they allow determining the aberrations 

of a wavefront by propagation, which not only has a defined Power , but also shows aberrations of 

higher aberrations. Because of the analytical nature of the equations it is not necessary to use an iterative 

numerical method.  

We use the derived equations (173)-(175) to determine the aberrations of the propagated 

wavefront up to the radial order     and compare them firstly with the results calculated by the 

analytical wavefront approach described by Dai et al in [36,44]. One approximation with significant 

influence of the analytical wavefront approach described by Dai et al is that the transformation of the 

coefficients was solved without solving simultaneously the coordinate dependence. As we show in the 

examples, and as is also stated in [44], it is absolutely necessary to solve both dependencies 

simultaneously if wavefronts are containing both low-order and high-order aberrations. 

Secondly we compare our results with the results calculated by a numerical ray-tracing approach 

using the optical design package ZEMAX
®
 followed by a Zernike analysis. 

We would like to stress again that our local aberration values are obtained by an analytical 

method and therefore by definition are exact. The transformation of our local Taylor coefficients to 

oS
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Zernike coefficients, on the other hand, yields only an (however very good) approximation for their 

numerical values based on the assumption that the truncated subspaces of order     describe the 

aberrations sufficiently well. But still, within this approximation, the results are analytical, such that a 

Zernike coefficient obtained as zero is exactly zero, whereas a ray-tracing value is always numerical by 

its nature resulting in small deviations from zero (see Table 4 to Table 7).  

The necessary transformation between Zernike and Taylor coefficients, itself being state of the 

art, is in our case also accompanied by the transformation from an OPD wave aberration to a wavefront 

aberration referring to the sagitta, which is in detail discussed in chapter 3. The logical flow of the 

transformations is illustrated in Figure 38 in Appendix C. 

The examples A1 and A2 are characterized by the specific feature that the first and second 

derivatives are zero which means that the coefficients of Taylor monomials of first and second order are 

also zero (see Table 11 in Appendix C). This implies that the low-order aberrations LOA (radial order 

k<3) expressed as Taylor monomials are zero while in the examples B1 and B2 low-order and high-order 

aberrations do occur (see Table 12 in Appendix C). In the examples A1 and B1 only rotationally 

symmetric aberrations are present while in the examples A2 and B2 also non rotational-symmetric 

aberrations like coma, trefoil, secondary astigmatism etc. occur. 

The value of the propagation distance d is 20 mm, of the pupil diameter  is 6 mm and of the 

refractive index  is 1 in all four examples. 

For giving some more insight how the resulting values are obtained within our framework, we 

provide explicit formulas for the Taylor coefficients in the case of the rotationally symmetric examples 

A1 and B1. In this case all the odd order coefficients vanish, and we obtain directly for order n = 2 from 

Eq. (170) 

  (183) 

For order  it follows from Eq. (175) that 

 , (184) 

and for order  it follows from the general solution in Eq. (176) after some algebra that 
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,  

 (185) 

 

Example A1: 

Given is the original wavefront expressed with Zernike polynomials. The coefficients of the 

Zernike polynomials are zero except defocus , spherical aberration  and secondary spherical 

aberration , their values being chosen such that the second-order local aberrations vanish, which means 

that the coefficients of Taylor monomials of first and second order are also zero (see Table 11 in 

Appendix C). In this example only rotationally symmetric aberrations are present. 

In this case the equations derived by Dai et al [44] are a very good approximation as also stated in 

the conclusion by Dai et al [44]. The approximation made by Dai et al [44] is solving the transformation 

of the coefficients without solving simultaneously the coordinate dependence. This approximation will be 

in first order correct if the local second order wavefront aberrations are zero. As shown in Eq. (169) in the 

2D case and Eq. (181) in the 3D case, the coordinates ),( oyxo  of the original wavefront and the 

coordinates ),( pyxp  of the propagated wavefront are then in first order equal because 1xx  and 

1yy . 

The values of the original wavefront and the resulting values of the propagated wavefront derived 

by all three methods are provided in Table 4. The consistency between the results of all three methods is 

obvious. The local aberration values are obtained by an analytical method and therefore by definition are 

exact. The transformation of our local Taylor coefficients to Zernike coefficients, on the other hand, 

yields only an (however very good) approximation for their numerical values based on the assumption 

that the truncated subspaces of order 6k  describe the aberrations sufficiently well. But still, within this 

approximation, the results are analytical, such that a Zernike coefficient obtained as zero is exactly zero, 

whereas a ray-tracing value is always numerical by its nature resulting in small deviations from zero (see 

Table 4). 

The logical flow of the transformations is illustrated in Figure 38 in Appendix C, which includes 

the steps transformation of the Zernike OPD representation of the original wavefront to Taylor OPD 

representation, then transforming the Taylor OPD representation to Taylor wavefront sagitta 

representation, then propagation of the Taylor wavefront sagitta representation using the derived 
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equations and transforming back to Taylor OPD representation and Zernike OPD representation of the 

propagated wavefront. Additionally, the values of the local aberrations before propagation (Taylor 

wavefront sagitta representation of the original wavefront) and after propagation (Taylor wavefront 

sagitta representation of the propagated wavefront) are provided in Table 11 (see Appendix C) 
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Zernike coefficients 

 
Original 

wavefront 
Propagated wavefront 

Radial 

order 

Symbol 

(OSA 

standard) 

 

Numerical Ray-

Tracing 
Analytical Wavefront-Tracing 

ZEMAX
®
 Dai [44] Our method 

k    
 

 

0 
 

-1.46532 -1.38629 -1.37962 -1.37911 

1  
0 0 0 0 

 
0 0 0 0 

2 

 0 0 0 0 

 -1.26853 -1.18718 -1.17953 -1.17894 

 0 0 0 0 

3 

 0 0 0 0 

 0 0 0 0 

 0 0 0 0 

 0 0 0 0 

4 

 0 0 0 0 

 0 0 0 0 

 -0.327046 -0.292971 -0.28882 -0.288494 

 0 0 0 0 

 0  0 0 

5 

 0 0 0 0 

 0 0 0 0 

 0 0 0 0 

 0 0 0 0 

 0 0 0 0 

 0 0 0 0 

6 

 0 0 0 0 

 0 0 0 0 

 0 0 0 0 

 0.000205909 0.00545139 0.00662599 0.00672247 

 0 0 0 0 

 0 
 

0 0 

 0 0 0 0 

Table 4: Zernike coefficients of the original and propagated wavefront in example A1: Propagated 

wavefront. Left column: values based on the ray-tracing package (ZEMAX
®
). Middle column: values 

based on method on the method derived by Dai et al [36,44]. Right column: values based on our 

analytical method. The consistency between the results of all three methods is obvious. 
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Example A2:  

In example A2 the original wavefront shows defocus, astigmatism, coma, trefoil, spherical 

aberration, secondary astigmatism, quadrafoil, secondary coma, secondary trefoil, secondary spherical 

aberration, secondary quadrafoil and tertiary astigmatism. Also in this example their values being chosen 

such that the second-order local aberrations vanish, which means that the coefficients of Taylor 

monomials of first and second order are also zero (see Table 11 in Appendix C). 

Also in this more complex example containing also non-symmetric aberrations the equations 

derived by Dai et al [44] are a very good approximation, because the coordinates ),( oyxo  of the original 

wavefront and the coordinates ),( pyxp  of the propagated wavefront are in first order identical based on 

the fact that 1xx  and 1yy  (see Eq. (169) and Eq. (181)). 

The values of the original wavefront and the resulting values of the propagated wavefront derived 

by all three methods are provided in Table 5. Also in this complex case the consistency between the 

results of all three methods is obvious.  

The logical flow of the transformations is illustrated in Figure 38 in Appendix C. Again, values of 

the local aberrations before propagation (Taylor wavefront sagitta representation of the original 

wavefront) and after propagation (Taylor wavefront sagitta representation of the propagated wavefront) 

are provided in Table 11 (see Appendix C). 
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Zernike coefficients 

 
Original 

wavefront 
Propagated wavefront 

Radial 
order 

Symbol (OSA 
standard) 

 

Numerical Ray-
Tracing 

Analytical Wavefront-Tracing 

ZEMAX
®
 Dai [44] Our method 

k      

0 
 

0.0675296 0.0716304 0.071439 0.0714675 

1  
-0.469074 -0.471531 -0.471178 -0.471169 

 
0 0 0 0 

2 

 0 0 0 0 

 0.0586014 0.0621846 0.0620453 0.062074 

 -0.00939598 -0.0122335 -0.0122895 -0.0123183 

3 

 0.00510456 0.0053063 0.00526967 0.00527765 

 -0.167062 -0.1684 -0.168264 -0.168248 

 0 0 0 0 

 0 0 0 0 

4 

 0 0 0 0 

 0 0 0 0 

 0.0152538 0.016233 0.0162035 0.0162148 

 -0.0024714 -0.00327439 -0.00325126 -0.00326303 

 0.0000898562 0.000141849 0.000138134 0.000140068 

5 

     

 0.0000541121 0.000100209 0.0000896324 0.0000894449 

 -0.000663872 -0.000959765 -0.000917853 -0.000905828 

 0 0 0 0 

 0 0 0 0 

 0 0 0 0 

6 

 0 0 0 0 

 0 0 0 0 

 0 0 0 0 

 0.000051976 0.000084556 0.0000778738 0.0000791508 

 -0.000019171 -0.00003832 -0.0000332 -0.000034846 

     

     

Table 5: Zernike coefficients of the original and propagated wavefront in example A2: Propagated 

wavefront. Left column: values based on the ray-tracing package (ZEMAX
®
). Middle column: values 

based on the method derived by Dai et al [36,44]. Right column: values based on our analytical method. 

The consistency between the results of all three methods is obvious. 
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6
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710*49.1  710*69.1 
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Example B1: 

Example B1 is similar to example A1. Also in this example the coefficients of the Zernike 

polynomials are zero expect defocus , spherical aberration  and secondary spherical aberration , 

which means only rotationally symmetric aberrations are present. But now the original wavefront is 

characterized by the specific feature that low order aberrations LOA (radial order k=2) expressed as 

Taylor monomials are non-zero (see Table 12). In this case the equations derived by Dai et al [44] are not 

a good approximation as also stated in the conclusion by Dai et al [44]. 

The values of the original wavefront and the resulting values of the propagated wavefront derived 

by all three methods are provided in Table 6. The consistency between the results derived by the optical 

design package ZEMAX
®
 and our analytical method is obvious while the results derived by the analytical 

method of Dai et al [44] differ strongly. The wrong results derived by the analytical method of Dai et al 

are based on the fact that in this method the coordinate change by propagation is not considered. This 

approximation will lead to wrong results, also in this simple case containing only rotationally symmetric 

aberrations, because low order and high aberrations order occur as stated by Dai et al [44] in their 

conclusion. As shown in Eq. (169) in the 2D case and Eq. (181) in the 3D case, the coordinates ),( oyxo  

of the original wavefront and the coordinates ),( pyxp  of the propagated wavefront are then in first order 

not equal because 1xx  and 1yy . 

The logical flow of the transformations is illustrated in Figure 38 in Appendix C. Again, values of 

the local aberrations before propagation (Taylor wavefront sagitta representation of the original 

wavefront) and after propagation (Taylor wavefront sagitta representation of the propagated wavefront) 

are provided in Table 12 (see Appendix C). 

  

0

2c 0

4c 0

6c



Derivation of analytical refraction, propagation and reflection equations for Higher Order Aberrations of wavefronts 

106  5.4 Examples and Applications 

Zernike coefficients 

 
Original 

wavefront 
Propagated wavefront 

Radial 
order 

Symbol (OSA 
standard) 

 

Numerical Ray-
Tracing 

Analytical Wavefront-Tracing 

ZEMAX
®
 Dai [44] Our method 

k      

0 
 

-50.1362 -34.3311 -26.5342 -34.3309 

1  
0 

 
0 0 

 
0 

 
0 0 

2 

 0 
 

0 0 

 -29.3453 -19.9117 -14.9908 -19.9115 

 0 0 0 0 

3 

 0 
 

0 0 

 0 0 0 0 

 0 0 0 0 

 0  0 0 

4 

 0 0 0 0 

 0 0 0 0 

 -0.309331 -0.069658 0.261713 -0.0695334 

 0 0 0 0 

 0 
 0 0 

5 

 0 
 0 0 

 0 0 0 0 

 0 0 0 0 

 0 0 0 0 

 0 0 0 0 

 0 
 0 0 

6 

 0 
 0 0 

 0 
 0 0 

 0 0 0 0 

 -0.000110975 0.000437634 0.00598868 0.000473857 

 0 0 0 0 

 0 
 

0 0 

 0 0 0 0 

Table 6: Zernike coefficients of the original and propagated wavefront in example B1: Propagated 

wavefront. Left column: values based on the ray-tracing package (ZEMAX
®
). Middle column: values 

based on the method derived by Dai et al [36,44]. Right column: values based on our analytical method. 

The consistency between the results derived by the optical design package ZEMAX
®
 and our analytical 

method is obvious while the results derived by the analytical method of Dai et al [44] differ strongly. 

 

 

mvalue / mvalue / mvalue / mvalue /
0

0c

1

1

c 810*18.1 

1

1c 810*18.1 

2

2

c 810*76.1 

0

2c
2

2c

3

3

c 910*88.5 

1

3

c

1

3c

3

3c 910*88.5 

4

4

c
2

4

c
0

4c
2

4c
4

4c 810*76.1 

5

5

c 810*76.1 

3

5

c

1

5

c

1

5c

3

5c

5

5c 810*76.1 

6

6

c 810*94.2 

4

6

c 810*18.1 

2

6

c

0

6c

2

6c

4

6c 810*18.1 

6

6c
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Example B2: 

Example B2 is similar to example A2 but here the original wavefront is also as in example B1 

characterized by the specific feature that the low order aberrations LOA (radial order k=2) expressed as 

Taylor monomials are non-zero (see Table 12). In this case the equations derived by Dai et al [44] are 

also not a good approximation. 

In contrast to example B1, in example B2 also non rotationally symmetric aberrations as coma, 

trefoil, secondary astigmatism etc. occur. 

The values of the original wavefront and the resulting values of the propagated wavefront derived 

by all three methods are provided in Table 7. Also this complex example shows an obvious consistency 

between the results derived by the optical design package ZEMAX
®
 and our analytical method. In 

contrast, the results derived by the analytical method of Dai et al [44] differ significantly. The wrong 

results derived by the analytical method of Dai et al are based on the fact that in this method the 

coordinate change by propagation is not considered. Also in this case the coordinates ),( oyxo  of the 

original wavefront and the coordinates ),( pyxp  of the propagated wavefront are in first order not equal 

because 1xx  and 1yy . 

The logical flow of the transformations is illustrated in Figure 38 in Appendix C. Again, values of 

the local aberrations before propagation (Taylor wavefront sagitta representation of the original 

wavefront) and after propagation (Taylor wavefront sagitta representation of the propagated wavefront) 

are provided in Table 12 (see Appendix C). 
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Zernike coefficients 

 
Original 

wavefront 
Propagated wavefront 

Radial 
order 

Symbol (OSA 
standard) 

 

Numerical Ray-
Tracing 

Analytical Wavefront-Tracing 

ZEMAX
®
 Dai [44] Our method 

k      

0 
 

-104.73 -53.8326 -3.35952 -53.8326 

1  
-4.9774 -0.595659 10.947 -0.595597 

 
0 

 
0 0 

2 

 0 0 0 0 

 -60.791 -31.0906 -0.77533 -31.0906 

 9.48371 2.41668 -10.2031 2.41668 

3 

 0.541095 0.0328263 -1.80039 0.0328297 

 -1.82051 -0.210901 4.23289 -0.210908 

 0 0 0 0 

 0 
 0 0 

4 

 0  0 0 

 0  0 0 

 -0.25745 -0.00801529 0.943405 -0.00801618 

 0.175173 0.00367726 -0.794462 0.003678 

 -0.0561936 -0.000561498 0.318015 -0.000561742 

5 

 -0.00501814 
 0.042954 

 

 0.0152086 0.00004036 -0.109211 0.000041581 

 -0.0330566 -0.000178401 0.202975 -0.000180914 

 0 
 0 0 

 0 
 0 0 

 0 
 0 0 

6 

 0 
 0 0 

 0 0 0 0 

 0  0 0 

 -0.00467708 
 0.033557188 

 

 0.00439538 
 -0.0364403  

 -0.00191776 
0 0.0179451  

 0.000655743  -0.00696252  

Table 7: Zernike coefficients of the original and propagated wavefront in example B1: Propagated 

wavefront. Left column: values based on the ray-tracing package (ZEMAX
®
). Middle column: values 

based on the method derived by Dai et al [36,44]. Right column: values based on our analytical method. 

Also this complex example shows an obvious consistency between the results derived by the optical 

design package ZEMAX
®
 and our analytical method. In contrast, the results derived by the analytical 

method of Dai et al [44] differ significantly. 

mvalue / mvalue / mvalue / mvalue /
0

0c

1

1

c
1

1c 810*35.2 

2

2

c
0

2c
2

2c

3

3

c

1

3

c

1

3c

3

3c 810*53.3 

4

4

c 810*70.4 

2

4

c 810*76.1 

0

4c
2

4c
4

4c
5

5

c 610*44.4 
610*81.4 

3

5

c

1

5

c

1

5c 810*18.1 

3

5c 810*18.1 

5

5c 810*53.3 

6

6

c 810*35.2 

4

6

c

2

6

c 810*76.1 

0

6c 610*28.1  610*57.1 

2

6c 710*12.2  810*95.1 

4

6c 710*47.4  710*70.3 

6

6c 710*70.1 
710*6.1 
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6. Derivation of the Reflection Equations 

 

6.1.  Mathematical Approach in the 2D Case 

 

6.1.1.  Coordinates in the 2D case 

For giving insight into the method with smallest possible effort, we first treat in detail a fictitious 

two-dimensional problem in which the third space dimension does not exist. Later we will transfer the 

corresponding approach to the three-dimensional case, i.e. the case of interest, but now we will for an 

instant drop the x  degree of freedom and consider the three coordinate frames ),( zy , )','( zy  and 

),( zy  spanning one common plane. Instead of a reflective surface in space there is now only a curve 

Tywy ))(,(  in that plane, and similarly the wavefronts are described by curves in that plane (which, for 

simplicity, shall still be called ‘surface’). All rays and normal vectors then lie in that plane, too. We 

summarize this situation in the term “2D”. If one likes to, one can imagine the problem to be posed as a 

3D one with the symmetry of translational invariance in x -direction, but this is by no means necessary 

since it is inherent to the mathematics of the two-component system that any ray deflection in a direction 

other that in the given plane cannot occur. 

The two-dimensional version of the rotation matrix takes the form 

 






 







cossin

sincos
)(R .  (186) 

 

6.1.2.  Description of Wavefronts in the 2D case 

The surfaces themselves are each described by power series expansions specified in the 

corresponding preferred frame. Any point on the incoming wavefront is given by the vector 

 









)(
)(

In

In
yw

y
yw  (187) 

where in the 2D case )(In yw  is the curve defined by 

 
k

k

k
y

k

a
yw 






0

,In

In
!

)(  (188) 
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Equivalently, we represent the reflected wavefront and the reflective surface in their preferred frames by 

the vectors 

 









)'('

'
)'(

Out

Out
yw

y
yw' ,       










)(
)(

S

S
yw

y
yw  (189) 

where 

 
k

k

k
y

k

a
yw '

!

'
)'('

0

,Out

Out 




 ,       
k

k

k
y

k

a
yw 






0

,S

S
!

)( , (190) 

As in Eq. (4), again the normalization factor !k  is chosen such that the coefficients ka ,In  are given by the 

derivatives of the wavefront  at 0y , 

 )0()( )(

In

0

In,In

k

y

k

k

k wyw
y

a 







 (191) 

In the 2D case the vector ke  in Eq. (26) reduces to a scalar 
k

k

k anwnE ,In

)(

In  , e.g. for second 

and third-order aberrations, we have 2

)2(

In2 anwnE  , 3

)3(

In3 anwnE  , etc.. A similar reasoning 

applies for the vectors k'e , ke  and yields the local aberrations kE ' , kE , connected to the coefficients 

ka ,Out' , ka ,S  by multiplication with the refractive index n  for the reflected wavefront and with the 

factor n2  for the reflective surface, respectively.  

Each surface has zero slope at its coordinate origin because by construction the z  axis points 

along the normal of its corresponding surface. Additionally, since all surfaces are evaluated at the 

intersection point, each of them has zero offset, too. In terms of series coefficients, this means that all the 

prism and offset coefficients vanish, i.e. 0,In ka , 0' ,Out ka , 0,S ka  for 2k .  

The normal vectors and their derivatives are described as in chapter 3 and obey the same relations 

as. (36)-(38). Since the normal vector of the original wavefront and the normal vector of the propagated 

wavefront are equal, the normal vector will be labeled generally with . 

 In application on the functions of interest, , this means that . 

Further, the first derivatives are given by  

  (192) 

and similarly for the higher derivatives. 

wn
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6.1.3.  Ansatz for Determining the Reflection Equations 

Once the local aberrations of two of the surfaces are given, their corresponding ka  coefficients 

are directly determined, too, and equivalently the surface derivatives. It is our aim to calculate the third 

surface in the sense that its derivatives and thus its ka  coefficients (see Eqs. (187)-(191)) are determined 

for all orders 02 kk   for the order 0k  of interest, and to assign values to its corresponding local 

aberrations.  

 

 

Figure 27: Local coordinates systems of the reflective surface, of the incoming wavefront and of the 

reflected wavefront. The true situation is that the origins of all coordinate systems coincide. Shown is the 

fictitious situation of separated origins by d and d’ for a better understanding of nomenclature. The sur-

face normal vectors along the neighboring ray are also drawn, referred to as Inn , Sn , Outn  in the 

common global system ),,( zyx . It might appear helpful for the reader to imagine for a short instant that 

the incoming wavefront is evaluated at a distance 0d  before the refraction, and that the outgoing 

wavefront is evaluated at a distance 0'd  after the refraction, measured along the chief ray. In this 

fictitious situation of separated intersections even along the chief ray (and therefore also separated origins 

of the coordinate frames) it is much easier to identify the various coordinates. 

 

Our starting point is the following situation. While the chief ray and the coordinate systems are 

fixed, a neighboring ray scans the incoming wavefront  Inw
 
and hits it at an intercept 0In y , then hits 

the reflective surface  Sw , and finally propagates to the reflected wavefront  Out'w  , where the brackets 
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.  shall denote the entity of vectors described by Eq. (187), (see Figure 27). Except for the limiting case 

0In y , the three points in space, SOutIn ,', www , do in general not coincide. As shown in Figure 27, 

and consistently with our notation, we denote as Iny  the projection of the neighboring ray’s intersection 

with  Inw  onto the y  axis. Analogously, the projection of the intersection with  Out'w  onto the 'y  

axis is denoted as Out'y , and the projection of the intersection with  Sw  onto the y  axis is called Sy . 

 

  

Figure 28: Shown is the fictitious situation of separated origins for a better understanding of the 

nomenclature. The vector )( InInIn yww   (see Eq. (187)) points to the neighboring ray’s intersection 

point with the incoming wavefront, and the wavefront’s OPD referred to the reflective surface along the 

ray is denoted by  , correspondingly the vector from the wavefront to the surface is In/ nn . Hence, 

the vector to the point on the surface itself, Sw , must be equal to the vector sum InInS / nww n . 

Transforming Sw  to its preferred frame by SS )( wRw   (see Eq. (1)) yields the first one of the 

fundamental equations in Eq. (193).  
 

It might appear helpful for the reader to imagine for a short instant that the incoming wavefront is 

evaluated at a distance 0d  before the reflection, and that the reflected wavefront is evaluated at a 

distance 0'd  after the reflection, measured along the chief ray. In this fictitious situation of separated 

intersections even along the chief ray (and therefore also separated origins of the coordinate frames) it is 

much easier to identify the various coordinates, as shown in Figure 27, Figure 28 and Figure 29. The true 

situation is 0' dd , which is relevant throughout the thesis. 

While in Figure 27 all quantities are drawn in their preferred frames, Figure 28 shows the quan-

tities concerning the incoming wavefront and the reflective surface in the common frame ),( zy . The 
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vector )( InInIn yww   (see Eq. (187)) points to the neighboring ray’s intersection point with the 

incoming wavefront, and the wavefront’s OPD referred to the reflective surface along the ray is denoted 

by  , whereas the absolute value   is determined by the optical path distance between the neighboring 

ray’s intersection point with the incoming wavefront and the reflective surface and the sign of   is 

determined by the relative position of the these intersection points. If the intersection point of the ray with 

the wavefront is before the intersection point of the ray with the reflective surface the OPD will be 

negative )0(  , and if the ray first intersects the reflective surface the OPD will be positive )0(  . 

Therefore the vector from the wavefront to the surface is In/ nn , determined by the product of the 

OPD and the normal unit vector of the incoming wavefront. Hence, the vector to the point on the surface 

itself, Sw , must be equal to the vector sum InInS / nww n . Transforming Sw  to its preferred frame 

by SS )( wRw   (see Eq. (1)) yields the first one of the fundamental equations in Eq. (193). 

 

 

Figure 29: Shown is the fictitious situation of separated origins for a better understanding of the 

nomenclature. The vector )'('' OutOutOut yww   (see Eq. (189)) points to the neighboring ray’s 

intersection point with the reflected wavefront, and the wavefront’s OPD referred to the reflective surface 

along the ray is denoted by ' , correspondingly the vector from the wavefront to the surface is 

OutOut '/'''/' nn nn   . Hence, the vector to the point on the surface itself, S'w , must be equal to the 

vector sum OutOutS '/''' nww n . Transforming S'w  to its preferred frame by SS )( wRw   (see Eq. 

(1)) yields the second one of the fundamental equations in Eq. (193). 
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Analogously we have SOutOut '''/'' wnw  n  for the reflected wavefront in the frame )','( zy , 

yielding the second equation in Eq. (193) (see Figure 29). The sum of the OPD from the ray’s intersection 

point with the incoming wavefront to the reflective surface )(   and the OPD from the reflective surface 

to the ray’s intersection point with the outgoing wavefront )'(  has to be constant, and in the true 

situation with 0' dd  yields 0'  . Therefore the condition for the reflected wavefront to be 

the surface of constant OPD is that '   for all neighboring rays. Inserting this condition and replacing 

'n  by n , we establish as starting point of our computations the fundamental equations 
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From Eq. (193), it is now possible to derive the desired relations order by order. For this purpose, 

it turns out to be practical to consider formally both wavefronts as given and to ask for the reflective 

surface )( SS yw  as the unknown function. Although only the surface is of interest, in Eq. (193) 

additionally the four quantities  , Iny , Out'y , Sy  are also unknown. However, they are not independent 

from each other: if any one of them is given, the other three ones can no longer be chosen independently. 

We use Sy  as independent variable and to consider the three other unknowns  , Iny , Out'y  as functions 

of it.  

We arrive at the conclusion that Eq. (193) represents a nonlinear system of four algebraic 

equations for the four unknown functions )( SS yw , )( SIn yy , )(' SOut yy , )( Sy . Even if we are only 

interested in a solution for the function )( SS yw , we cannot obtain it without simultaneously solving the 

equations for all four unknowns order by order. Introducing the vector of unknown functions as  
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and observing that the initial condition 0p )0(  has to be fulfilled, it is now straightforward to compute 

all the derivatives of these Eq. (193) up to some order, which yields relations between the curvatures, 

third derivatives etc. of the wavefronts and the reflective surface. Rewriting these relations in terms of 

series coefficients ka ,In , ka ,Out' , ka ,S  and solving them for the desired coefficients ka ,S  yields the desired 

result. 



Derivation of analytical refraction, propagation and reflection equations for Higher Order Aberrations of wavefronts 

6. Derivation of the Reflection Equations  115 

Rewriting Eq. (193) leads to  
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Before solving Eq. (193), we distinguish if the independent variable Sy  enters into Eq. (193) explicitly 

like in the first component of the vector 
Tywy ))(,( SSS , or implicitly via one of the components of Eq. 

(194). To this end, we follow the concept of chapter 3 and define the function 

  fp  ),(:RIRIRI S

44 y  by  
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where ),,',(),,,( SOutIn4321 wyypppp 
 
are the components of p . Setting now )( Sypp  , Eq. (196) 

allows rewriting the fundamental system of Eq. (104) in a more compact way as  

   0pf SS ),( yy  (197) 

as can be verified explicitly by component wise comparison with Eq. (193).  

The key ingredient of our method is that the relations between the derivatives of wavefronts and 

surfaces can be obtained by the first, second, etc. total derivative of Eq. (197) with respect to Sy , 

evaluated in the origin. The advantage of the form of Eq. (197) using Eq. (196) is that the various terms 

can be tracked in a fairly compact manner. 

The total derivative of  SS ),( yypf  in Eq. (197) is obtained by applying the principles from the 

theory of implicit functions. Hence, the total derivative is given by the partial derivatives of f  with 

respect to the components ip  of p , times the derivatives of )( Sypi , plus the partial derivative of f  with 

respect to the explicit dependence on Sy . This transforms the system of algebraic equations in Eq. (193) 

to the system of differential equations 
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where the matrix with elements jiij pfA  /:  is the Jacobian matrix A  of f  with respect to its vector 

argument p , evaluated for )( Sypp  . The Jacobian A  reads 
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where for convenience we have introduced , . In Eq. (199), the occurring 

expressions are understood as )( In
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In, ywnn yy  , etc, and analogously for the ‘Out’ quantities, and additionally SOutIn ,,', wyy   

are themselves functions of Sy .  

The derivative vector S/ yf i   in Eq. (198) shall be summarized as 
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Similarly as in chapter 3 we conclude that we can write  with argument  only and  

without argument at all because  is constant.. Eq. (198) can be written in the form 

 bppA )())(( S

)1(

S yy . (201) 

 

6.1.4.  Solving techniques for the fundamental equation  

Eq. (201) is the derivative of the fundamental equation in Eq. (197), and therefore it is itself a 

fundamental equation. But additionally, it allows a stepwise solution for the derivatives )0( S

)( yk
p  for 

increasing order k . Formally, Eq. (201) can be solved for )( S

)1( yp
 
by 

 sin  cos

A  )( pypΑ b

b
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Eq. (202) holds as a function of Sy , but of course for arbitrary Sy  both sides of Eq. (202) are unknown. 

However, evaluating Eq. (202) for 0S y  exploits that then the right-hand side (rhs) is known because 

0p )0(  is known! In the same manner, Eq. (202) serves as starting point for a recursion scheme by 

repeated total derivative and evaluation for 0S y . Remembering that b  is constant, we obtain 
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where 
111 )())0((   0ApAA , and    

0

1

S

S

)1(1

S

)(



 

y

y
yd

d
pAA  , …, 

   
0

1

S1

S

1
)1(1

S

)(








 

y

k

k
k

y
yd

d
pAA  are total derivatives of the function   1
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ypA . The reason why Eq. 

(203) really does provide solutions for )0()1(
p , )0()2(

p , …, )0()(k
p  is that in any row of Eq. (203) the 

entries on the rhs are all known assuming that the equations above are already solved. Although on the rhs 

there occur implicit derivatives )0()1(
p , )0()2(

p , … as well, they are always of an order less than on the 

left-hand side (lhs). For example, the second row in Eq. (203) reads in explicit form 
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 where 0S y  implies 0p  , and where on the rhs the highest 

occurring derivative of p  is )0()1(
p  which is already known due to the first row in Eq. (203). Generally, 

the highest derivative of p  occurring in  
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p , which is already known 

at the stage when )0()(k
p  is to be computed by Eq. (203). 

Although looking attractive and formally simple, applying Eq. (203) in practice requires still 

some algebra. One part of the effort arises because it is the inverse of A  which has to be differentiated 

with respect to p . The other part of the effort is due to the large number of terms, since the higher 

derivatives will involve more and more cross derivatives like ji pp  /2
. Both tasks are straightforward 

to be executed by a computer algebra package but nevertheless lengthy and not the best way how to gain 

more insight.  
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While cross-derivatives are inevitable, there exists an alternative recursion scheme for which it is 

sufficient to differentiate the matrix A  itself instead of its inverse 
1

A , which means an enormous 

reduction of complexity! To this purpose, we start the recursion scheme from Eq. (201) instead of Eq. 

(202). The first )1( k  total derivatives of Eq. (201) are 
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total derivatives of the function ))(( SypA . For the last line of Eq. (204) we have applied the formula for 

the p -th derivative of a product, )()(
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scheme where in each equation containing )0()1(
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p  (in the last term 

for kj  ) is unknown provided that all previous equations for )0()1(
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p  are 

already solved. A formal solution for )0()(k
p , expressed in terms of its predecessors, is 
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Although quite different in appearance at first glance, Eq. (205) yields exactly the same solutions as Eq. 

(203). 

 

6.1.5.  Solutions for the General Reflection Equations  

In the result for )0()1(
p , the first rows of both Eqs. (203),(205) involve 

1)( 
0A . For obtaining 

1)( 
0A , we evaluate Eq. (199) for 0p   and apply Eqs. (192), yielding 
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The final result for )0()1(
p  is  
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For the orders 2k  we apply Eqs. (205). The derivatives 
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directly obtained by total derivative of Eq. (199) with respect to Sy , evaluating for 0S y  and again 

applying Eqs. (192). For the orders 2k  only the results )0()(

S

kw

 

for the reflective surface are 

interesting, therefore we directly provide those result. The resulting second-order law is (omitting the 

argument ‘ )0( ’) 
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which is well-known as the Coddington equation and reveals to be a special case of our results. The 

resulting higher-order laws can be written in a similar fashion 
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with the remainder terms kR  which are given for orders 4,3k  explicitly as 
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with 
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Eq. (209) holds likewise for the derivatives and for the coefficients ka ,In , ka ,Out' , ka ,S  due to 

Eqs. (187)-(191). In terms of local aberrations, Eq. (209) reads (after substituting   by the cosin) 
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where in kk RnR 
~

 all wavefront derivatives are expressed in terms of local aberrations.  

 

6.1.6.  Generalization of the Coddington Equation  

Although application of Eq. (203) or Eq. (205) provides a solution for )0()(

S

kw  up to arbitrary 

order k , it is very instructive to analyze the solutions more closely for one special case. We observe that 

the expressions in Eqs. (210),(211), for 3R  (or 4R ) will vanish if we set 0)(
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jw  for all 

lower orders kj   (for 3k  or 4k , respectively). This leads to the assumption that the following 

statement is generally true: if only aberrations for one single given order k  are present while for all lower 

orders kj   we have 0)(
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jw , then 0kR , which means for fixed order k  that Eq. 

(209) will be valid for vanishing remainder term. This assumption can in fact be shown to hold generally. 

To this purpose, we start from the recursion scheme in Eq. (205) and show that only the term containing 
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p  can contribute to the sum if all aberrations vanish for order less than k . For doing so, it is necessary 

to exploit two basic properties of the derivatives 
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orders 11  km . As can be shown by element wise differentiation of the matrix A , the highest 

wavefront derivatives present in ))(( S
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pA  (see Eq. (199)) occur in the terms proportional to  , and 

those are proportional to either 
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pA  at the position 0S y  
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implies 0 , such that 
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A  cannot contain any higher wavefront derivatives than 
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follows that 
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ii) If all wavefront derivatives even up to order )1( m  vanish, then 
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A  itself will vanish. This is 

in contrast to A  itself which contains constants and therefore will be finite even if all wavefront 

derivatives vanish. 

Analyzing the terms in Eq. (205), we notice that the occurring derivatives of the matrix A  are 
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A  for )1(,...,2,1  kj , respectively. It follows from property i) that the highest 

occurring wavefront derivatives in these terms are 2,3),...,1(, kk , respectively. Now, if all wavefront 

derivatives up to order )1( k  vanish, it will follow from property ii) that all the matrix derivatives 
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A  must vanish, leaving only 
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A . Therefore all terms in Eq. (205) vanish, 

excluding only the contribution for 1j . We directly conclude that 
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For evaluating 
)1( k

A  we set mk :1 , and it is straightforward to show by induction that if all 

aberrations vanish for order less or equal to m , then 
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where 
)1(

Iny , 
)1(

Out'y  and 
)1(  have been substituted by their solutions  ,   and ns  wherever they occur, 

respectively (see Eq. (207)). Inserting )0()(m
A  for 1 km  and 

1)0( 
A  from Eq. (206) into Eq. (214) 

yields directly that 
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for all orders 2k . 

The novel resulting reflection equation in the situation of Eq. (216) in terms of local aberrations 

reads 
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which is indeed Eq. (213) for 0
~

kR . 

 

6.2.  Mathematical Approach in the 3D Case 

 

6.2.1.  Wavefronts and Normal Vectors  

Although more lengthy to demonstrate than the 2D case, conceptually the 3D case can be treated 

analogously to the 2D case. Therefore, we will only report the most important differences. Analogously to 

Eq. (187), the incoming wavefront is now represented by the 3D vector  
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where ),(In yxw  is given by Eq. (8), and the relation between the coefficients and the derivatives is now 

given by a relation like Eq. (5). The connection between coefficients and local aberrations is now given 

by 
TT
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Taaaan ),,,( 3,0,In2,1,In1,2,In0,3,In , etc. (see Eq. (27) for ke ). The reflected wavefront and the reflective 

surface are treated similarly. 

For treating the normal vectors, we introduce the analogous functions to Eq. (36) as 
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such that the normal vector to a surface 
Tyxwyxyx )),(,,(:),( w  is given by     
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In the intersection point we have now 
T)1,0,0()0,0(In n , 

T)1,0,0()0,0('Out n , 
T)1,0,0()0,0(S n , 

and the derivatives corresponding to Eq. (192) can directly be obtained from Eq. (219).  
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6.2.2.  Ansatz for Determining the Reflection Equations 

The starting point for establishing the relations between the wavefronts and the reflective surface 

is now given by equations analogous to Eq. (193), with the only difference that x  and y  components are 

simultaneously present, and that the original 3D rotation matrix from Eq. (2) has to be used. 

The vector of unknown functions is now given by 
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and the 3D analogue to Eq. (193) leads now to 

   0pf SSSS ,),,( yxyx  (221) 

where f  is the 3D analogue to Eq. (196). 

One important difference compared to the 2D case is that there are two arguments with respect to 

which derivatives have to be taken. This implies that the dimension of the linear problems to solve grows 

with increasing order: while there are only 6 different unknown functions, the first-order problem 

possesses already 12 unknown first-order derivatives, then there are 18 second-order derivatives, etc. 

Another implication of the existence of two independent variables is that from the very beginning there 

are two different first-order equations 

 
 

  y

x

yxyx

yxyx

bppA

bppA





),(),(

),(),(

SS

)1,0(

SS

SS

)0,1(

SS
 (222) 

where the different inhomogeneities are given as column vectors 
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f
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y
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f
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The structure of xb  arises because there is no respective tilt in this coordinate direction between the 

wavefronts and the reflective surface. 

The Jacobian matrix )),(( SS yxpA  with elements jiij pfA  /:  is the same for both equations 

and analogous to Eq. (199) but now of size 66 . It is practical to provide it in block structure notation 
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where 0  is a 23  block with entry zero, 
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and a similar block expression for Out'A . The other two blocks are given as column vectors 
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6.2.3.  Solutions for the General Reflection Equations 

The direct solutions analogously to Eq. (203) are now given by 
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where 
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pAA , etc. The fact that there are two starting equations (222) 

reflects itself in the existence of two formally different solutions for the mixed derivatives, e.g. 
)1,1(

p . 

However, since both starting equations originate from one common function f  in Eq. (221), for each 

),( yx kk
p  both solutions must essentially be identical, as can also be verified e.g. for 

)1,1(
p  directly by some 

algebra. 

In analogy to Eqs. (206),(207) for the 2D case, we provide here the explicit results 
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and, after application of Eqs. (223),(227) the solutions 
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The general result for the reflection equation can be written in the way 
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It is interesting to note that only yk  but not xk  occurs in the exponents of the cosines. This is a 

consequence of the fact that the reflection takes place in the zy   plane whereas in x
 
the direction no 

tilting cosines occur at all. Summarizing all components of Eq. (230) for a fixed value of yx kkk   and 

applying Eqs. (5),(27),(29) yields the novel reflection equation in terms of local aberrations,  

  kkkkk reeCe  ' , (231) 
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where kr  is a vector collecting the remainder terms 
yx kkRn ,

 in Eq. (230) analogously to kR  in Eq. (213)

. Eq. (231) is the general reflection equation for aberrations of any order in the 3D case. 

 

6.2.4.  Generalization of the Coddington Equation  

Although Eq. (227) represents the full solution, we provide here a more detailed result for 
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p  in the case of vanishing wavefront derivatives 
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for all lower orders, i.e. for 

yxyx kkjj  . This works analogously to the treatment of Eqs. (204)-(216), with the only difference 

that the notation requires more effort.  

Analogously to Eq. (205) we obtain as a result that 
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where again for 
),( yx kk

p  two formally different solutions occur which are essentially identical. We 

recognize that Eq. (232) (a) is a special case of Eq. (232) (b) for 0yk , 0yj , and similarly Eq. (232) 

(d) is a special case of Eq. (232) (c) for 0xk , 0xj . By means of a similar reasoning as in the 2D 

case it is found that if all lower order aberrations for yxyx kkjj   vanish, then Eqs. (232) will 

reduce to the lowest term, yielding 

 

)(2,0,)0,0(

)(0,0,

)()0,0(

)(0,2,)0,0(

)1,0()1,0(1),0(

)1,0()1,(1

)0,1(),1(1),(

)0,1()0,1(1)0,(

dkk

ckk

b

akk

yx

kk

yx

kk

kkkk

yx

kk

yy

yx

yxyx

xx

















pAAp

pAA

pAAp

pAAp

 (233) 

For finally evaluating Eqs. (232) we need the partial derivatives of the matrix A  under the assumption 

that all lower order aberrations for yxyx kkjj   vanish, which is given as   
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with the block 
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and a similar expression for the block 
),(

Out' yx mm
A . The other two blocks are given as column vectors 
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where 
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Inx , 
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Iny , etc. have been substituted by their solutions according to Eq. (229). 

Inserting 
),( yx mm

A  from Eqs. (234)-(236) and 
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0A  from Eq. (228) into Eqs. (233) yields one common 

relation for 
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w  for the various subcases in Eqs. (233) (omitting the argument ‘ )0,0( ’): 
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for all orders 2k . 

Eq. (237) can be summarized in a similar fashion as Eq. (230) to a vector equation in the very 

appealing form 

 )'( kkkk eeCe   (238) 

which is Eq. (231) for 0r k . Eq. (238), an interesting result of the present thesis, is the reflection 

equation for aberrations of fixed order 2k  under the assumption that all aberrations with order lower 

than k  vanish. 
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6.3.  Results and Discussion 

 

One standard situation in optics is that a given wavefront hits a given reflective surface, and that 

the reflected wavefront is the unknown quantity. Therefore, we provide in the following the derived 

reflection equations, solved for the reflected wavefront’s aberration. 

 

6.3.1.  2D Case 

Eq. (217) describes the special case that for given order k  the aberrations of the incoming and 

reflected wavefront for all orders less than k  are zero ( 0';0  jj EE  for kj  ). For calculation of 

the aberrations of the reflected wavefront, Eq. (217) can be transformed to  

 k

k

kk EEE )1(cos'  . (239) 

we could generally show this statement to hold for all orders 2k  including as a special case for 2k  

the well-known Coddington and Vergence equation. Therefore Eq. (239) represents an interesting result 

of the present thesis.  

Also Eq. (213) for the general case can be transformed in such a way that kE '  of the reflected 

wavefront is the unknown quantity to be determined 
 

 
kk

k

kk REEE
~

cos' )1(    . (240) 

  In kR  only aberrations jj EE ',  of order kj   occur. These aberrations can be determined by 

successively solving of Eq. (240) for lower orders. 

E.g., assume that the aberrations kE '  of the reflected wavefront up to order 3k  ( ''2 SE  , 3'E

) are the unknown quantities, and the aberrations kE  of the incoming wavefront and kE  of the reflective 

surface are given. In a first step the aberrations of order 2k  are calculated using Eq. (240), which is in 

this case identical with the well-known Coddington equation 

 SSS 1cos'  . (241) 

In a second step the aberrations of order k = 3 are calculated using Eq. (240) and the results of Eq. (241) 
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with       2'2

3
cos2

sin3~
SS

n
R 




. 

 

6.3.2.  3D Case 

Equivalently to the 2D case transforming Eq. (238) leads to kkkk eCee
1' 

 
for the case that 

0e0e  jj ';  for kj  , a statement which we could generally show to hold for all orders 2k  

including the special case of the Coddington equation. 

In the general case Eq. (231) can as well be transformed in such a way that the unknown aberration vector 

k'e  of the reflected wavefront is determined by the incoming wavefront and the reflective surface. 

 kkkkk reCee  1' , (243) 

where in kr  only aberrations of order kj   occur. Therefore, kr  can be determined by successively 

solving of Eq. (243) for lower orders. Eq. (243) is the general reflection equation for aberrations of any 

order in the 3D case. 

 

6.4.  Examples and Applications 

 

6.4.1.  Aspherical Surface Correction up to Sixth Order 

One important application of the derived equations is that they allow determining a reflective 

surface, which not only has a defined Power S , but also generates a reflected wavefront which shows no 

deviation from an ideal sphere up to the order 6k .  

Because of the analytical nature of the equations it is not necessary to use an iterative numerical 

method. The task is to determine a rotationally symmetric aspherical surface, which images an axial 

object point with the distance s  to the reflective surface to an axial image point with the distance 's  to 

the reflective surface (Figure 30). 
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Figure 30: One important application of the derived equations is that they allow determining a reflective 

surface, which not only has a defined Power S , but also generates a reflected wavefront which shows no 

deviation from an ideal sphere up to the order 6k . The task is to determine a rotationally symmetric 

aspherical surface S , which images an axial object point with the distance s  to the reflective surface to 

an axial image point with the distance 's  to the reflective surface.  

 

The object side vergence and the image side vergence are given by snS /  and by '/' snS  , 

respectively, expressed in terms of the reciprocals of the object and image distance. Treating the 

rotationally symmetric problem as 2D problem in the y - z
 
plane, a sphere with radius r  is exactly 

described by 

  22 /11)( ryryf  , (244) 

whose series expansion up to the order 6k  is 
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Applying Eq. (245) once on )()( In ywyf  , sr   and secondly on )'(')'( Out ywyf  , 'sr   

(including in both cases the sign of s  or 's ) allows us to identify the wavefronts’ coefficients in the sense 

of Eqs. (187)-(191): 
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The solution for the desired reflective surface, described by the series 

 ...
720242

)( 66,S44,S22,S
 y

a
y

a
y

a
ys  (247) 

as in Eq. (190), will be found up to the order 6k  if we provide expression for the three coefficients 

2,Sa , 4,Sa  and 6,Sa  (the odd coefficients for ,...7,5,3k  are not present because of the rotational 

symmetry of the problem). 

Since the local aberrations of higher order have no influence on the local aberrations of lower 

order, the coefficient of second order 2,Sa  can be directly determined by Eq. (208). In the present case of 

orthogonal incidence we exploit that 1,0    , such that Eq. (208) reads as )'( 2,In2,Out2
1

2, aaaS  , 

yielding  
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For finding 4,Sa , we have to apply Eqs. (209)-(213). Due to the orthogonal incidence Eq. (212) simplifies 

to  

 3,3,0,0   , (249) 

and consequently Eq. (211) simplifies to 
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Inserting Eq. (250) into Eq. (209) and substituting 
)2(

Inw , 
)2(

Out'w  by the coefficients in Eq. (246) 

yields 
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Similarly, we find that 
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Eqs. (251), (252) complete the demanded solution, i.e. the coefficients 2,Sa , 4,Sa  and 6,Sa   of the 

aspherical reflective surface are determined such that an object point with the vergence S  is imaged to a 

point with the vergence 'S  without aberrations with order less or equal to 6k . 

 

6.4.2.  Special examples 

The Eqs. (248). (251) and (252) are the solution for the coefficients 2,Sa , 4,Sa  and 6,Sa  of the 

aspherical reflective surface, such that an object point with the vergence S  is imaged to a point with the 

vergence 'S  without aberrations with order less or equal to 6k . Figure 31 shows the coefficients 2,Sa , 

4,Sa , and 6,Sa  of the aspheric reflective surface as a function of the object vergence snS / . For 

simplicity the image vergence 'S  is chosen to be 1D. We will discuss three special examples in detail. 

 

 

Figure 31: General overview: Solution for the coefficients ,  and  of the aspherical 

reflective surface, such that an object point with the vergence  is imaged to a point with the vergence 

 without aberrations with order less or equal to . For simplicity the image vergence 'S  is chosen 

by 1D. The solid black line shows the coefficient 2,Sa , the dashed red line the coefficient 4,Sa  and the 

dot-dashed blue line shows the coefficient 6,Sa . 
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The spherical mirror has ideal imaging properties if the object is imaged exactly on itself (

SSss  '' ). In this case Eqs. (248), (251), (252) yield  
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From the graph in in Figure 31 and Figure 32 the coefficients of the reflective surface can be 

derived. If D1S , which means 'SS   because D1'S , then will be 1

2,S 1  ma , 

3

4,S 3  ma  (Figure 32) and 5

6,S 45  ma  (Figure 31), which are the coefficients of a spherical 

surface, as shown in Eq. (246) (
s

a
1

2,S  , 
34,S

3

s
a   and 

56,S

45

s
a  ). 

 

 

 

Figure 32: Detailed view: Solution for the coefficients ,  and  of the aspherical reflective 

surface, such that an object point with the vergence  is imaged to a point with the vergence  without 

aberrations with order less or equal to .For simplicity the image vergence 'S  is chosen by 1D. The 

solid black line shows the coefficient 2,Sa , the dashed red line the coefficient 4,Sa  and the dot-dashed 

blue line shows the coefficient 6,Sa . 

A2. Parabolic mirror 

1.0 0.5 0.5 1.0
S

3

2

1

2,Sa 4,Sa 6,Sa

S 'S

6k

 [m-1] 

 [m-3] 

 [m-5] 

S [D] 



Derivation of analytical refraction, propagation and reflection equations for Higher Order Aberrations of wavefronts 

134  6.4 Examples and Applications 

The parabolic mirror has ideal imaging properties if the object or equivalently the image is placed 

in infinity ( 0S  or 0'S ). In this case Eqs. (248), (251), (252) yield  
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From the graph in Figure 31 and Figure 32 the coefficients of the reflective surface can be 

derived. If 0S , then will be 
1

2,S 5.0  ma  and 04,S4,S  aa . (Figure 32), which are the 

coefficients of a parabolic surface. 

 

A3. Plane mirror 

The plane mirror has ideal imaging properties if the object is imaged exactly behind the mirror 

with the same distance as the object is placed in front of the mirror ( SSss  '' ). In this case 

Eqs. (248), (251), (252) yield  

 ,  

     (255)

 

From the graph in in Figure 31 and Figure 32 the coefficients of the reflective surface can be 

derived. If D1S , which means that 'SS   because D1'S , then all coefficients will be zero (

04,S4,S2,S  aaa ,Figure 32), which are the coefficients of a plane surface. 

 

6.4.3. Numerical example  

The results of Eqs. (248), (251), (252) can be illustrated by a numerical example in which the 

refractive index of the first medium is 1n  and the object and image distance are given by 

mms 0.30  and mms 13043.9'  , respectively. Eqs. (248), (251), (252) then yield 

1

2,S 0714286.0  mma , 
3

4,S 000782314.0  mma , 
5

6,S 000042841.0  mma . By means of a 

ray-tracing approach using the optical design package ZEMAX
®
, we have generated layout plots showing 

rays corresponding to these values. As a comparison, we have first traced rays through a spherical surface 

with radius mmar 0.80/1 2,S   and a stop with semi-diameter mmr 0.16stop   (see Figure 33). 
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Paraxial the imaging is perfect, but the peripheral rays introduce large errors. Next, we have considered a 

parabolic surface with the same paraxial curvature 2,Sa  (see Figure 34). Again, the peripheral rays 

introduce large errors. 

 

 

Figure 33: Numerical example in which the refractive index of the first medium is  and the object 

and image distance are given by  and . Ray-tracing generated by the 

optical design package ZEMAX
®
: Spherical surface with radius  and a aperture 

stop with a semi-diameter mmr 0.16stop  . Paraxial the imaging is perfect, but the peripheral rays 

introduce large errors. The vertical lines in the drawings are construction lines of ZEMAX
®
 and have no 

relevance in our context. 
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Figure 34: Numerical example in which the refractive index of the first medium is  and the object 

and image distance are given by  and . Ray-tracing generated by the 

optical design package ZEMAX
®
: Parabolic surface with the same paraxial curvature 

 and a aperture stop with a semi-diameter mmr 0.16stop  . Paraxial the 

imaging is perfect, but the peripheral rays introduce large errors. The vertical lines in the drawings are 

construction lines of ZEMAX
®
 and have no relevance in our context. 

 

Although such a system has a very low f-number, it is now possible to reduce these errors 

dramatically by choosing a sixth-order asphere based on the locally determined values 2,Sa , 4,Sa  and 

6,Sa . Figure 35 shows that the errors are reduced to a level which is no longer visible on the scale of the 

plot. 
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Figure 35: Numerical example in which the refractive index of the first medium is  and the object 

and image distance are given by  and . Ray-tracing generated by the 

optical design package ZEMAX
®
: Strongly reduced aberrations due to aspherical surface of 6

th
 order with 

coefficients ,  and  

and a aperture stop with a semi-diameter mmr 0.16stop  . The errors are reduced to a level which is no 

longer visible on the scale of the plot. The vertical lines in the drawings are construction lines of 

ZEMAX
®
 and have no relevance in our context. 
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7. Propagation of OPD Aberrations 

 

The propagation of OPD aberrations can also be derived directly by the algorithm described in 

chapter 3 and 5. Equivalently to Figure 25, the propagation of the OPD aberrations is shown in Figure 36. 

 

7.1.  Mathematical Approach in the 2D Case 

 

7.1.1.  Description of Wavefronts described by their OPD  

Then the wavefronts themselves are each described by power series expansions. Any point on the 

original wavefront is given by the vector 
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where in the 2D case )(o ty  is the curve defined by 
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Equivalently, we represent the propagated wavefront by the vector 
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where 
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As in Eq. (4), again the normalization factor !k  is chosen such that the coefficients kb ,o  are given by the 

derivatives of the wavefront at 0ty , 
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The relation between the derivatives of the OPD of the wavefront )(k

o  and the local OPD aberrations 

OPD

koE ,
 reads for the 2D case 

ko

k
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OPD

ko bE ,

)(

,  , e.g. for second and third-order aberrations, we have 
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o2, o

OPD

o

OPD

o bES   , 3,

)3(

o3, o

OPD

o bE  , etc., equivalent to Eqs. (26). A similar reasoning applies 

for the local OPD aberrations 
OPD

kp
E

,
 connected to the coefficients kb ,p  for the propagated wavefront. 

 

7.1.2.  Normal Vectors and their Derivatives 

If the wavefront is described by their saggita as done in chapter 5, it will exist a relation between 

the normal of the wavefront ))(( )1( ywn  and the first derivation of the saggita of the wavefront )()1( yw . 

This relation is shown in Eq. (36). It is necessary to derive also an equivalent relation between the normal 

of the wavefront ))(( )1(

tw yn  and the first derivation of the OPD of the wavefront )()1(

tw y . The lower 

index w  has to be understood as a synonym for the original wavefront with the index o  or for the 

propagated wavefront with the index p . 

The starting point for deriving this relation is Eq. (319), which describes the relation between the 

OPD ))(( yytw  and the saggita )(yw  of the wavefront. 

Derivation of Eq. (319) with respect to y  reads 
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Inserting Eq. (320) and solving the derivatives leads to 
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From Eq. (262) follows directly 
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Inserting Eq. (263) into Eq. (36) leads to requested relation between the normal vector )( tw yn  of the 

wavefront and its OPD )( tw y . This relation is given by Ttwtw
tw
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where tww y /
)1(

 . In principle, we are interested in derivatives of )( tw yn  with respect to ty . 

Observing, however, that )( tw yn  depends on ty  only via the slope )(
)1(

tw y , it is very practical to 
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concentrate on this dependence )(
)1(

ww n  first and to deal with the inner dependence )(
)1(

tw y  later. To 

do this, we set 
)1(

wv   and to introduce the function 
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Since at the intersection point of the chief ray with the original wavefront all slopes vanish, only 

the behavior of that function  vn  for vanishing argument 0v  is of interest. It is now straightforward 

to provide the first few derivatives    
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In application on the functions of interest, ))(()( )1(

o tw yy nn   and this means that 
T

w )1,0()0( n . 

Further, the first derivatives are given by  
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and similarly for the higher derivatives. 

 

7.1.3.  Ansatz for Determining the Propagation Equations 

As shown in Figure 36 the vector )( oyoo ww   points to the neighboring ray’s intersection point 

with the original wavefront, and the wavefront’s OPD referred to the original wavefront along the ray is 

denoted by o . Hence, the vector 
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 pointing to the intersection point with the plane 0z , must be 

equal to the vector sum 
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Correspondingly the vector )( pypp ww   points to the neighboring ray’s intersection point with the 

propagated wavefront, and the wavefront’s OPD referred to the propagated wavefront along the ray is 
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denoted by p . Hence, the vector 
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The vector from the original wavefront to the propagated surface is wn n/ . Hence, the vector to the point 

on the propagated wavefront itself, 
pw , must be equal to the vector sum wop n nww / . This yields 

the fundamental equation: 
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Figure 36: Propagation of a wavefront  about the distance 
n

  to the propagated wavefront . The 

chief ray and the coordinate system are fixed, a neighboring ray scans the original wavefront 
 
and 

hits it at an intercept , then propagates to the propagated wavefront , where the brackets  

shall denote the entity of vectors described by Eq. (124). Consistently with our notation, we denote as  

the projection of the neighboring ray’s intersection with  onto the  axis and analogously, the 

projection of the intersection with  onto the  axis is denoted as . The wavefronts are described 

by their OPD o .and 
p  

 

From Eq. (269), it is now possible to derive the desired relations order by order. Although only 

the OPD of the propagated wavefront is of interest, in Eq. (269) additionally the quantities toy  and tpy  

are also unknown. However, those are not independent from each other: if any one of them is given, the 

other one can no longer be chosen independently. tpy  is used as independent variable and to consider 

toy  as function of it.  

Eq. (269) represents a nonlinear system of two algebraic equations for the two unknown functions 

)( tpp y  and )( tpto yy . Even if we are only interested in a solution for the function )( tpp y , we cannot 

obtain it without simultaneously solving the equations for both unknowns order by order. Introducing the 

vector of unknown functions as  
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and observing that the initial condition 
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)0(p  has to be fulfilled, it is now straightforward to 

compute all the derivatives of these Eq. (269) up to some order, which yields relations between the 

curvatures, third derivatives etc. of the OPD of the original and propagated wavefront. Rewriting these 

relations in terms of series coefficients kb ,o  and solving them for the desired coefficients kb ,p  yields the 

desired result. 

Before solving Eq. (269), we distinguish if the independent variable tpy  enters into Eq. (269) 

explicitly like in the first component of the vector 
Tyy ))(,( tpptp  , or implicitly via one of the 

components of Eq. (270). To this end, we define the function   fp  ),(:RIRIRI tp

22 y  by  
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where ),(),( pto21 ypp 
 

are the components of p . Setting now )( tpypp  , Eq. (271) allows 

rewriting the fundamental system of Eq. (269) in a more compact way as  

   0pf tptp ),( yy  (272) 

as can be verified explicitly by component wise comparison with Eq. (269).  

The key ingredient of the method is that the relations between the derivatives of the OPD of the 

original and propagated wavefront can be obtained by the first, second, etc. total derivative of Eq. (272) 

with respect to 
tpy , evaluated in the origin. The advantage of the form of Eq. (272) using Eq. (271) is 

that the various terms can be tracked in a fairly compact manner. 

The total derivative of  tptp ),( yypf  in Eq. (272) is obtained by applying the principles from the 

theory of implicit functions. Hence, the total derivative is given by the partial derivatives of f  with 

respect to the components ip  of p , times the derivatives of )( tpypi , plus the partial derivative of f  

with respect to the explicit dependence on 
tpy . This transforms the system of algebraic equations in Eq. 

(269) to the system of differential equations 
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where the matrix with elements jiij pfA  /:  is the Jacobian matrix A  of f  with respect to its vector 

argument p , evaluated for )( tpypp  . The Jacobian A  reads 
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In Eq.(274), the occurring expressions are understood as )( to
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w, ynn yy  , etc., and additionally 
pto ,y  are themselves functions of 

tpy . 

The derivative vector tpi yf  /  in Eq. (273) shall be summarized as 

 














0

1
:

tpy

f
b , (275)  

Both A  and b  are deduced from  tptp ),( yypf  and must in general themselves have the same kind of 

dependence, i.e.  
tptp ),( yypΑ  and  tptp ),( yypb . However, due to the special property of f  to be linear 

in 
tpy , b  is constant. Additionally, A  has no explicit dependence on 

tpy  besides the implicit 

dependence via )( tpyp . Hence we write b  without argument and
 

))(( tpypAA  , and Eq. (43) can be 

written in the form 

 bppA )())(( tp

)1(

tp yy . (276) 

 

7.1.4.  Solving techniques for the fundamental equation  

Eq. (276) is the derivative of the fundamental equation in Eq. (272), and therefore it is itself a 

fundamental equation. But additionally, it allows a stepwise solution for the derivatives )0( tp

)( yk
p  for 

increasing order k . Formally, Eq. (276) can be solved for )( tp

)1( yp
 
by 

 bpAp
1
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)1( ))(()(  yy . (277) 
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Eq. (277) holds as a function of tpy , but of course for arbitrary tpy  both sides of Eq. (277) are unknown. 

However, evaluating Eq. (277) for 0tp y  exploits that then the right-hand side (rhs) is known because 
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)0(p   is known! In the same manner, Eq. (277) serves as starting point for a recursion scheme by 

repeated total derivative and evaluation for 0tp y . Remembering that b  is constant, we obtain 
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where 
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ypA . The reason why 

Eq. (278) really does provide solutions for )0()1(
p , )0()2(

p , …, )0()(k
p  is that in any row of Eq. (278) 

the entries on the rhs are all known assuming that the equations above are already solved. Although on the 

rhs there occur implicit derivatives )0()1(
p , )0()2(

p , … as well, they are always of an order less than on 

the left-hand side (lhs). For example, the second row in Eq. (278) reads in explicit form 
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 where 0tp y  implies 
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p , and where on the rhs the 

highest occurring derivative of p  is )0()1(
p  which is already known due to the first row in Eq. (278). 

Generally, the highest derivative of p  occurring in  
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p , which is 

already known at the stage when )0()(k
p  is to be computed by Eq. (278). 

Although looking attractive and formally simple, applying Eq. (278) in practice requires still 

some algebra. One part of the effort arises because it is the inverse of A  which has to be differentiated 

with respect to p . The other part of the effort is due to the large number of terms, since the higher 

derivatives will involve more and more cross derivatives like ji pp  /2
. Both tasks are straightforward 

to be executed by a computer algebra package but nevertheless lengthy and not the best way how to gain 

more insight.  
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While cross-derivatives are inevitable, there exists an alternative recursion scheme for which it is 

sufficient to differentiate the matrix A  itself instead of its inverse 
1

A , which means an enormous 

reduction of complexity! To this purpose, we start the recursion scheme from Eq. (276) instead of Eq. 

(277). The first )1( k  total derivatives of Eq. (276) are 
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total derivatives of the function ))(( tpypA . For the last line of Eq. (279) we have applied the formula for 

the p -th derivative of a product, 
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Although quite different in appearance at first glance, Eq. (280) yields exactly the same solutions as Eq. 

(278). 

 

7.1.5.  Solutions for the General Propagation Equations 
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The final result for )0()1(
p  is  
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The first derivative of the 
toy -coordinate is a dilation depending on the curvature of the OPD of the 

original wavefront and the propagated optical path length  , such that )0()1(

toy
)2(

o21
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n




. The slope 

of the OPD of the propagated wavefront vanishes, 0)0()1( p , as does the slope of the OPD of the 

original wavefront due to 0)0()1( o . 

For the orders 2k  we apply Eqs. (280). The derivatives 
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directly obtained by total derivative of Eq. (274) with respect to 
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applying Eqs. (265). For the orders 2k  only the results )0()(
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for the propagated wavefront are of 

interest, therefore we directly provide those result. The resulting second-order law is (omitting the 

argument ‘ )0( ’) 
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which is well-known as the propagation equation and reveals to be a special case of the results. The 

resulting higher-order laws can be written in a similar fashion 
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Eq. (284) holds likewise for the derivatives and for the coefficients kb ,o , and kb ,p  due to Eqs. 

(257)-(260). In terms of local aberrations and substituting  / nd   and 
OPD

on
d S


1

1
 , Eq. (284) reads  
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Eq. (285) can be generalized to 
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where in 
OPD

kR
~

 all wavefront derivatives of lower order (<k) are expressed in terms of local aberrations.  

Table 8 shows the propagation equation for OPD aberrations up to order k = 6 and the propagation 

equations for wavefront (saggita) aberrations are shown for comparison in Table 9. 
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Propagation OPD aberration: 
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Table 8: Equations to calculate the OPD aberrations up to order k = 6 of the propagated wavefront as a 

function of the OPD aberrations of the original wavefront 
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Propagation Wavefront aberration: 
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Table 9: Equations to calculate the wavefront (saggita) aberrations up to order k = 6 of the propagated 

wavefront as a function of the wavefront aberrations of the original wavefront 

 

7.2.  Mathematical Approach in the 3D Case 

 

7.2.1.  Description of Wavefronts described by their OPD 

Although more lengthy to demonstrate than the 2D case, conceptually the 3D case can be treated 

analogously to the 2D case. Therefore, we will only report the most important differences. Analogously to 

Eq. (256), the original wavefront is now represented by the 3D vector  
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where in the 3D case ),(o tt yx  is the surface defined by 
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As in Eq. (4), again the normalization factors !k  and !m  are chosen such that the coefficients mkmb ,,o  are 

given by the derivatives of the wavefront at 0,0  tt yx , 
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Equivalently, we represent the propagated wavefront by the vector 
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with 
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7.2.2.  Normal Vectors and their Derivatives 

If the wavefront is described by their saggita as done in chapter 5, it will exist a relation between 

the normal of the wavefront )),(( )1( yxwn  and the first derivation of the saggita of the wavefront 

),()1( yxw . This relation is shown in Eq. (65). It is necessary to derive also an equivalent relation between 

the normal of the wavefront )),(( )1(

ttw yxn  and the first derivation of the OPD of the wavefront 

),()1(

ttw yx . The lower index w  has to be understood as synonym for the original wavefront with the 

index o  or for the propagated wavefront with the index p . 

The starting point for deriving this relation is Eq. (318). Equivalently the fundamental equation in 

the 3D case takes the form 
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Our question is now posed such that ),( tt yxw  is the unknown function of interest while ),( yxw  is 

given. In this case it is most practical to use x  and y  as the independent variable, such that the functions 

),(),,( tt yxyyxx  and consequently )),(),,(( tt yxyyxxw  enter into Eq.(292). 

Inserting 2)1,0(2)0,1()1,0()0,1( ),(),(1/)1),,(),,((),( yxwyxwyxwyxwyx T

w n , the 

third row of Eq. (292) can be solved for )),(),,(( tt yxyyxxw , yielding  
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2)1,0(2)0,1(
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Inserting then Eq. (293) into the first and second row of Eq. (292) leads to  
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Inserting Eqs. (294) into the arguments of w  in Eq. (293), yields 

2)1,0(2)0,1()1,0()0,1( ),(),(1),()),(),(),,(),(( yxwyxwyxwnyxwyxwyyxwyxwxw  . (295) 

Derivation of Eq. (293) with respects to x  and y  reads 
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Inserting Eqs. (294) and solving the derivatives leads to 
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The Eqs. (297) define a system of linear equations regarding )0,1(

w  and )1,0(

w . Solving this system 

of linear equations leads to 
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From Eqs. (298) follows directly 
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Inserting Eqs. (299) into Eq. (65) leads to the requested relation between the normal vector ),( ttw yxn  of 

the wavefront and its OPD ),( ttw yx . This relation is given by  
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where tww x /
)0,1(

  and tww y /
)1,0(

 . 

In principle, we are interested in derivatives of ),( ttw yxn  with respect to tx  and ty . Observing, 

however, that ),( ttw yxn  depends on tx  and
 ty  only via the slopes ),(

)0,1(

ttw yx  and ),(
)1,0(

ttw yx , it is 

very practical to concentrate on this dependence ),(
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www n  first and to deal with the inner 

dependence ),(
)0,1(

ttw yx  and ),(
)1,0(

ttw yx  later. To do this, we set 
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introduce the function 
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Since at the intersection point of the chief ray with original wavefront all slopes vanish, only the 

behavior of that function  vu,n  for vanishing arguments 0u  and 0v  is of interest. It is now 

straightforward to provide the first few derivatives 
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In application on the functions of interest, )),((),( )0,1(

o ttw yxyx nn   and this means that 

T

w )1,0,0()0,0( n . Further, the first derivatives are given by  
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and similarly for the higher derivatives. 

 

7.2.3.  Ansatz for Determining the Propagation Equation 

As shown in Figure 36 the vector ),( oo yxoo ww   points to the neighboring ray’s intersection 

point with the original wavefront, and the wavefront’s OPD referred to the original wavefront along the 

ray is denoted by o . Hence, the vector 
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 pointing to the intersection point with the plane 0z , 

must be equal to the vector sum 
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Correspondingly the vector )( pypp ww   points to the neighboring ray’s intersection point with the 

propagated wavefront, and the wavefront’s OPD referred to the propagated wavefront along the ray is 

denoted by p . Hence, the vector 
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The vector from the original wavefront to the propagated surface is wn n/ . Hence, the vector to the point 

on the propagated wavefront itself, 
pw , must be equal to the vector sum wop n nww / . This yields 

the fundamental equation: 
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The starting point for establishing the relations between the original and the propagated wavefront is now 

given by Eq. (306). This equation is analogous to Eq. (269), with the only difference that x  and y  

components are simultaneously present. 

The vector of unknown functions is now given by 
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and observing that the initial condition 
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Eq. (306), the 3D analogue to Eq. (269), leads now to 
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   0pf tptptptp ,),,( yxyx  (308) 

where f  is the 3D analogue to Eq.(271). 

The key ingredient of the method is that the relations between the derivatives of the OPD of the 

original and propagated wavefront can be obtained by the first, second, etc. total derivative of Eq. (308) 

with respect to 
tpx  and 

tpy , evaluated in the origin. The advantage of the form of Eq. (308) is that the 

various terms can be tracked in a fairly compact manner. 

The total derivative of  tptp ),( yypf  in Eq. (308) is obtained by applying the principles from the 

theory of implicit functions. Hence, the total derivative is given by the partial derivatives of f  with 

respect to the components ip  of p , times the derivatives of ),( tptp yxpi , plus the partial derivative of f  

with respect to the explicit dependence on 
tpx  and 

tpy . This transforms the system of algebraic equations 

in Eq. (306) to the system of differential equations 

One important difference compared to the 2D case is that there are two arguments with respect to 

which the derivatives have to be taken. This implies that the dimension of the linear problems to solve 

grows with increasing order: while there are only 3 different unknown functions, the first-order problem 

possesses already 6 unknown first-order derivatives, then there are 9 second-order derivatives, etc. 

Another implication of the existence of two independent variables is that from the very beginning there 

are two different first-order equations 
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where the different inhomogeneities are given as column vectors 
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The structure of xb  and yb
 
arises because the original and propagated wavefronts do not have a tilt. 

The Jacobian matrix )),(( tptp yxpA  with elements jiij pfA  /:  is the same for both equations 

and analogous to Eq. (274) but now of size 33 .  
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7.2.4.  Solutions for the General Propagation Equations 

The direct solutions analogously to Eq. (278) are now given by 
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pAA , etc. The fact that there are two starting equations (309) 

reflects itself in the existence of two formally different solutions for the mixed derivatives, e.g. 
)1,1(

p . 

However, since both starting equations originate from one common function f  in Eq. (308), for each 

),( yx kk
p  both solutions must essentially be identical, as can also be verified e.g. for 

)1,1(
p  directly by some 

algebra. 
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In analogy to Eqs. (281),(282) for the 2D case, we provide here the explicit results 
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and after application of Eqs. (310),(312) the solutions 
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For the orders 2k  we apply Eqs. (312). The derivatives 
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directly obtained by total derivative of Eq. (311) with respect to 
tpx  and 

tpy , evaluated for 0tp x  and 

0tp y . For the orders 2k  especially the results )0,0(
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p
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for the propagated wavefront are 

interesting, therefore we directly provide those result. The resulting second-order law is (omitting the 

argument ‘ )0( ’) 
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 (315) 

which are identical with the results of Eqs. (159) using Eqs. (324) to transform OPD aberrations to 

wavefront (saggita) aberrations. 

If the coordinate axis coincides with the directions of principal curvature of the wavefront, which 

means that 0)1,1(

o  , Eq. (315) can be simplified to 
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The resulting higher-order laws can be written in a similar fashion. Now for the special case that 

the coordinate axis coincide with the directions of principal curvature of the wavefront the third-order law 

is 
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8. Summary 

 

In the present thesis we have developed a general method for generating refraction, propagation 

and reflection equations for local wavefront aberrations of any order under arbitrarily oblique incidence 

conditions, which are published in [25,26,27]. The main advantage of the approach presented in this 

thesis is that it is based exclusively on analytical formulas which are novel. This saves much 

computation time compared to numerical iteration routines which would otherwise be necessary for 

determining the higher order aberrations. These results include as a special case the well-known scalar 

Vergence equation as well as the Coddington equation and the classical Transfer equation (order ), 

but extend these equations to aberrations of any arbitrary higher order . 

For convenience, we have distinguished between the two-dimensional and the three-dimensional 

problem in deriving the refraction, propagation and reflection equations. we have provided the general 

formulism and for the orders , we have provided explicit formulas for the resulting terms in the 

two-dimensional case. 

In chapter 3 we have demonstrated for the first time the derivation of analytical refraction 

equations for Higher Order Aberrations and in chapter 6 the derivation of analytical reflection 

equations for Higher Order Aberrations. The refraction and reflection equations are relations between 

an incoming wavefront, a refractive or reflective surface and an outgoing or reflected wavefront. In detail, 

we have defined local aberrations of those three surfaces in terms of local power series coefficients, 

which describe the surfaces in local coordinate systems aligned with the chief rays or the surface normal, 

respectively. The general refraction equations are established as a sequence of analytical relations 

between these series coefficients. We have been able to show that for each given order  it is 

possible to assign one equation taken from that sequence whose leading-order terms represent a 

straightforward generalization of the Coddington equation to the order , and which in general 

contains some additional terms whose order is always less than . A direct consequence is that if 

only aberrations of one single order  are present, then the generalization of the Coddington equation 

will be exact for that order , which reads for the two-dimensional problem
 

 in case of refraction and in case of reflection , 

and in the three-dimensional case the vector-valued version of which reads  for 

refraction and  for reflection. These results include as a special case the well-known 

scalar Vergence equation as well as the Coddington equation (order ), but extend these refraction 

equations to aberrations of any arbitrary higher order  which is done for the first time and 

published in [25,27]. 
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It is important to note that the formalism presented in this work in general allows to determine 

each of the three surfaces (incoming wavefronts, refractive or reflective surface, outgoing or reflected 

wavefront) up to an order , provided that the two other surfaces are given up to the same order .  

The standard situation is that an incoming wavefront and a refractive or reflective surface are 

given and that the outgoing or reflected wavefront is to be determined, as we have illustrated by 

examples. However, the reverse problem can likewise be treated. As we have shown explicitly in 

examples, if the incoming and the outgoing or reflected wavefront are both given without deviation from 

an ideal sphere up to the order , our equations directly allow to determine the refractive or 

reflective surface necessary for this imagery. 

In chapter 3 we have demonstrated for the first time the derivation of analytical 

propagation equations for Higher Order Aberrations. For propagation only analytical equations exist 

which are still restricted by some approximations. As is written by Dai et al [44], further study is 

necessary to obtain a unified formulation for wavefronts containing both low-order and high-order 

aberrations. In the present work we have succeeded to develop such a unified and novel analytical 

propagation method. These results include as a special case the classical scalar vertex correction 

formula as well as the well-known Transfer Matrix equation (order ), but extend these propagation 

equations to aberrations of higher order  which is done for the first time and published in [26]. 

The propagation equations are relations between the original wavefront and the propagated 

wavefront. In detail, we have defined local aberrations of those two wavefronts in terms of local power 

series coefficients, which describe the wavefronts in a general coordinate systems aligned with the chief 

rays normal. The general propagation equations are established as a sequence of analytical relations 

between these series coefficients. We have been able to show that for each given order  it is 

possible to assign one equation taken from that sequence whose leading-order terms represent a 

straightforward generalization of the Transfer equation to the order , and which in general 

contains some additional terms whose order is always less than . A direct consequence is that if 

only aberrations of one single order  are present, then the aberrations are not changed by 

propagation, which reads  for the two-dimensional problem, and the vector-valued version of 

which reads  in the three-dimensional case. 

In chapter 4 we have demonstrated how to calculate the aberration coefficients in a rotated 

coordinate system directly from the original aberration coefficients. Also in this chapter we have 

derived the relation between the coefficients of Zernike series polynomials and the coefficients of power 

series polynomials. In Appendix A: Relation between sagitta derivatives and OPD derivatives” are 

equations provided for transforming wavefront (sagitta) aberrations to OPD aberrations. The method, 

used in this thesis, has also the capability to derive directly the equations for Higher Order OPD 

aberrations. This is done exemplarily in the case of propagation in chapter 7 which is done for the 

first time. 
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With the method developed in this work, it is now possible to calculate in an analytical way 

the local Higher Order Aberrations of the outgoing or reflected wavefront directly from the 

aberrations of the incoming wavefront and the refractive or reflective surface and the aberrations 

of the propagated wavefront from the aberrations of the original wavefront. Although our method is 

based on local techniques, it yields results which are by no means restricted to small apertures, as shown 

theoretically as well as in two examples. 
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9. Appendix 

 

Appendix A: Relation between sagitta derivatives and OPD derivatives 

 

If a wavefront is given by its sagitta, then the OPD between the wavefront and a reference plane being 

tangential to the wavefront can determined from it, and vice versa. In particular, there exists a unique 

relation between the aberration coefficients in terms of the wavefront (by our definition the sagitta 

derivatives) and the aberration coefficients in terms of the aberration function (to be defined as the OPD 

derivatives). For simplicity, we establish this relation first in the 2D case. Formally, the situation can be 

imagined to be described by Figure 16 for the special case that the refractive surface is a plane and the 

incidence is orthogonal. Applying to any wavefront in this context, we generically call the wavefront 

sagitta  instead of , the coordinate in the tangential plane is  instead of , and the 

wavefront’s OPD is  instead of  (see Figure 37).  

 

Figure 37: Relationship between the sagitta  of a wavefront and its OPD given by the function 

. There exists a unique relation between the aberration coefficients in terms of the wavefront (by 

the definition the sagitta derivatives) and the aberration coefficients in terms of the aberration function (to 

be defined as the OPD derivatives). 

 

The first one of Eqs. (39) then takes the form 

 . (318) 

Our question is now posed such that  is the unknown function of interest while  is given. In 

this case it is most practical to use  as the independent variable, such that the functions  and 

consequently  enter into Eq. (318). Inserting  (see Eq. 

(36)), the second row of Eq. (318) can be solved for , yielding  
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 . (319) 

Inserting then Eq. (319) into the first row of Eq. (318) leads to  

 . (320) 

For obtaining a relationship between the derivatives  and the derivatives , 

we insert Eq. (320) into the argument of  in Eq. (319), yielding 

 . (321) 

As is generally the key ingredient in this thesis, we take now the subsequent derivatives of Eq. (321) and 

evaluate at the position . Making use of , this leads to 

  (322) 

which represents a system for determination of . Inserting the result for 

 in the successive equations in Eq. (322), then the one for , and so on, yields the result 

(omitting the argument ‘ ’) 

  (323) 

Eq. (323) shows that up to order  the OPD measure of aberrations is, apart from the prefactor , 

equal to the sagitta measure, but for orders , there occur more and more transformation terms. 

In the 3D case the procedure is analogous, and the result reads 
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  (324) 

For calculation of the relations between the OPD and saggita aberrations of the wavefront in the 2D case, 

the results of Eq. (323), describing the relations between sagitta derivatives and the OPD derivatives, can 

be transformed to relations between the wavefront and OPD aberrations, shown in Table 10. 

 

Relation between OPD aberrations and Wavefront aberrations 

OPD aberration Wavefront aberration 

        

   
       

   
    

    
  

  
 

   
    

     
    
  

 

Table 10: Relation between OPD aberrations and wavefront aberrations up to order 5 in the 2D case. the 

results of Eq. (323), describing the relations between sagitta derivatives and the OPD derivatives, can be 

transformed to relations between the wavefront and OPD aberrations 
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Appendix B 

 

The vector 3r  is given by 
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Appendix C 
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Local Aberrations (our method) 

 Example A1 Example A2 

Radial 

order 
Symbol Original wavefront Propagated wavefront Original wavefront Propagated wavefront  

k  1* kmvalue  
1* kmvalue  

1* kmvalue
 

1* kmvalue  

0 E
 

0 0 0 0 

1 
xE

 
0 0 0 0 

yE
 

0 0 0 0 

2 

xxE
 

0 0 0 0 

xyE
 

0 0 0 0 

yyE
 

0 0 0 0 

3 

xxxE
 

0 0 0 0 

xxyE
 

0 0 -99.919 99.9191 

xyyE
 

0 0 0 0 

yyyE
 

0 0 -311.92 311.924 

4 

xxxxE
 

-1.3049×106 -1.3049×106 50653 51253 

xxxyE
 

0 0 0 0 

xxyyE
 

-4.3498×105 -4.3498×105 19729 20752 

xyyyE
 

0 0 0 0 

yyyyE
 

-1.3049×106 -1.3049×106 68329 74167 

5 

xxxxxE
 

0 0 0 0 

xxxxyE
 

0 0 -1.9975×106 -2.6475×106 

xxxyyE
 

0 0 0 0 

xxyyyE
 

0 0 -2.1749×106 -2.9387×106 

xyyyyE
 

0 0 0 0 

yyyyyE
 

0 0 -1.1823×107 -1.6268×107 

6 

xxxxxxE
 

1.0761×1010 3.5133×1011 1.6856×109 2.2744×109 

xxxxxyE
 

0 0 0 0 

xxxxyyE
 

2.1522×109 7.0266×1010 4.6196×108 6.7583×108 

xxxyyyE
 

0 0 0 0 

xxyyyyE
 

2.1522×109 7.0266×1010 6.0316×108 9.3213×108 

xyyyyyE
 

0 0 0 0 

yyyyyyE
 

1.0761×1010 3.5133×1011 3.8114×109 6.1388×109 

Table 11: Values of the local aberrations based on our method before propagation (Taylor wavefront 

sagitta representation of the original wavefront) and after propagation (Taylor wavefront sagitta 

representation of the propagated wavefront) in examples A1 and A2.  
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Local Aberrations (our method) 

 Example B1 Example B2 

Radial 

order 
Symbol 

Original 

wavefront 

Propagated 

wavefront  
Original wavefront Propagated wavefront 

k  1* kmvalue  
1* kmvalue  

1* kmvalue
 

1* kmvalue  

0 E
 

0 0 0 0 

1 
xE

 
0 0 0 0 

yE
 

0 0 0 0 

2 

xxE
 

-21.669 -15.117 -41.247 -22.602 

xyE
 

0 0 0 0 

yyE
 

-21.669 -15.117 -50.877 -25.2174 

3 

xxxE
 

0 0 0 0 

xxyE
 

0 0 -749.20 -111.50 

xyyE
 

0 0 0 0 

yyyE
 

0 0 -3420.7 -416.53 

4 

xxxxE
 

-1.2881×106 -3.0828×105 -8.1744×105 -87851 

xxxyE
 

0 0 0 0 

xxyyE
 

-4.2937×105 -1.0276×105 -4.5578×105 -37337 

xyyyE
 

0 0 0 0 

yyyyE
 

-1.2881×106 -3.0828×105 -2.3047×106 -1.4236×105 

5 

xxxxxE
 

0 0 0 0 

xxxxyE
 

0 0 -7.6008×107 -1.8204×106 

xxxyyE
 

0 0 0 0 

xxyyyE
 

0 0 -1.2692×108 -2.2713×106 

xyyyyE
 

0 0 0 0 

yyyyyE
 

0 0 -1.0583×109 -1.4054×107 

6 

xxxxxxE
 

-5.0085×1010 1.9658×1010 -1.1937×1011 -2.1245×109 

xxxxxyE
 

0 0 0 0 

xxxxyyE
 

-1.0017×1010 3.9317×109 -4.9496×1010 -5.7487×108 

xxxyyyE
 

0 0 0 0 

xxyyyyE
 

-1.0017×1010 3.9317×109 -9.9092×1010 -7.6601×108 

xyyyyyE
 

0 0 0 0 

yyyyyyE
 

-5.0085×1010 1.9658×1010 -9.6626×1011 -5.0286×109 

Table 12: Values of the local aberrations based on our method before propagation (Taylor wavefront 

sagitta representation of the original wavefront) and after propagation (Taylor wavefront sagitta 

representation of the propagated wavefront) in examples B1 and B2. 
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Figure 38: Logical flow of the computation of the Zernike coefficients of a propagated wavefront for 

given Zernike coefficients of the original wavefront by the derived analytical method. 
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