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From the literature the analytical calculation of local power and astigmatism of a wavefront after refraction and
propagation is well known; it is, e.g., performed by the Coddington equation for refraction and the classical vertex
correction formula for propagation. Recently the authors succeeded in extending the Coddington equation to high-
er order aberrations (HOA). However, equivalent analytical propagation equations for HOA do not exist. Since
HOA play an increasingly important role in many fields of optics, e.g., ophthalmic optics, it is the purpose of
this study to extend the propagation equations of power and astigmatism to the case of HOA (e.g., coma and spheri-
cal aberration). This is achieved by local power series expansions. In summary, with the results presented here, it
is now possible to calculate analytically the aberrations of a propagated wavefront directly from the aberrations of

the original wavefront containing both low-order and high-order aberrations. © 2011 Optical Society of America
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1. INTRODUCTION

Aberrations play a decisive role in optics. In this work, we deal
with them in the framework of geometrical optics in which the
wavelength is neglected (1 — 0) with respect to diffraction
effects [1,2]. Also in this case, the notions of both rays and
wavefronts do still exist. A wavefront, in general defined as
a surface of constant phase, is in this limit a surface of con-
stant optical path length. A ray is a virtual infinitesimally small
bundle of light, the direction of which is defined by the normal
of the wavefront.

The analytical calculation of local power and astigmatism
of a wavefront after refraction, and also propagation, is per-
formed by the Coddington equation and the vertex correction
formula. Recently the authors extended the Coddington equa-
tion to higher order aberrations (HOA) [3]. Therefore, with
the equations in [3] it is possible to calculate analytically
the HOA of an outgoing wavefront directly from the aberra-
tions of the incoming wavefront and the refractive surface
after refraction.

For calculating the wavefront aberrations of an entire op-
tical system, it is necessary to propagate the wavefront from
the intersection point of the chief ray at the first surface along
the chief ray to the intersection point at the next surface, and
so on. In the special case of a spectacle lens, this means the
propagation from the front to the rear surface and further to
the vertex point sphere or the entrance pupil of the eye. For
second-order aberrations (power and astigmatism) the propa-
gation of a wavefront is known and described by the analytical
transfer equation, which can be described either in matrix
form [4-8] or by power vectors [9]. Hitherto, for determining
HOA, the propagation of the wavefront was calculated by ray
tracing [1,10-13], which is an iterative numerical method.
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The importance of wavefront driven correction of ocular
aberrations, which are often measured by an aberrometer,
has increased rapidly in recent years. The wavefront data
are determined at some device-specific plane and by the diam-
eter of the evaluated ray bundle. Depending on the desired
application, it is usually necessary to transform these raw data
to some other plane, e.g., the entrance pupil of the eye, the
cornea (as is relevant for LASIK or contact lenses), or the ver-
tex plane of a spectacle lens. The ray bundle’s diameter, in
turn, is determined by the pupil size of the eye.

While there exist various publications dealing with
analytical scaling transformations to a different pupil size
[14-21], rotating the pupil [14,20-22], displacing the pupil
[14,15,20-22], or deforming the pupil [21], only a few publica-
tions can be found that attempt to treat the wavefront propa-
gation in an analytical way. In [14,23], an analytical method is
described to calculate the propagation of a wavefront, but the
method is still restricted by some approximations. As is writ-
ten there, further study is necessary to obtain a unified formu-
lation for wavefronts containing both low-order and high-
order aberrations. In this work we have developed such a uni-
fied analytical propagation method in homogenous material.

2. METHODS AND THEORETICAL
BACKGROUND

A. Definitions and Notation

It turns out to be very practical to establish the treatment of
propagation, including HOA, on the basis of wavefront sagit-
tas in space and not directly with optical path difference
(OPD)-based aberrations. A connection between those two
pictures is provided in [3]. In contrast to [3], where three co-
ordinate systems were appropriate for describing refraction,
in the case of propagation where tilt is absent, it is practical to

© 2011 Optical Society of America
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use one common global Cartesian coordinate system (x,y, 2)
in order to describe the original wavefront and the propagated
wavefront. The system is defined by the intersection point of
the chief ray with the original wavefront and by the direction
of the chief ray, which defines the z axis. The orientation of
the x axis can be freely selected. The orientation of the y axis
is such that the system is right-handed (see Fig. 1).

In this publication the wavefront description, the relation
between the coefficients and the derivatives, and also the con-
nection between coefficients and local aberrations are de-
fined in the same way as used in [3].

B. Local Properties of Wavefronts

Considering the infinitesimal area around the optical axis,
or rather around the chief ray, leads to Gaussian optics (or
paraxial optics) [1]. For the aberrations of second order,
the propagation of a spherical wavefront with the power
S, (see Fig. 1) is described by the propagation or transfer
equation [4-9]:

—aa S0 1)
where

S, =n/s, is the vergence of the original wavefront.

S, = n/s, is the vergence of the propagated wavefront.

S, is the vertex distance of the original wavefront (distance
along the chief ray from the wavefront to the image point),
which is equivalent to the radius of curvature of the original
wavefront.

sp is the vertex distance of the propagated wavefront (dis-
tance along the chief ray from the wavefront to the image
point), which is equivalent to the radius of curvature of the
propagated wavefront.

n is the refractive index.

d is the propagation distance.

In the literature, the notion of vergence is usually extended
to three-dimensional (3D) space for describing the sphero-
cylindrical power of a wavefront in terms of 2 x 2 vergence
matrices [3,24,25] of the shape

" w[()Z.O) w(()Ll)
wl()l.l) w(()ZA,O)

image
point

Fig. 1. Propagation of a spherical wavefront w, with a vergence dis-
tance s, about the distance d to the propagated wavefront w,, with a
vergence distance s,,.
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for w,(x,y), and similarly for w,(x,y):
S So.xx So.xy wé2.0) wl()lil)
= =N . )
’ Soay  Souy wgl'l) wt()o,Z)
Sp.xx Sp,xy w](gz,O) wz()l,l)
S, = =n . 2)
Spay Spay w;(al’l) w]()o 2
The relation between the components of Eq. (2) and the
ophthalmic terms sph, cyl, axis are well known [3].
One well-established generalization of Eq. (1) relating the
components of Eq. (2) to each other is the “generalized pro-
pagation equation.” It describes the propagation of an astig-

matic wavefront [4-8], written in compact form in terms of
vergence matrices:

1
o =igs,> @

n-o

where we have introduced the unit matrix

1 0
1:(0 1). @)

In addition to the description in terms of vergence matrices,
an equivalent description is common in the 3D vector space of
power vectors [24,26]. In [9] also, the “generalized propaga-
tion equation” in terms of power vectors is described.

Analogously to the definition of the power vectors for aber-
rations of order k = 2, similar vectors e; of dimension k + 1
for aberrations of higher order k¥ > 2 have been defined [3].

C. Mathematical Approach in the Two-Dimensional (2D)
Case

1. Description of Wavefronts in the 2D Case

The wavefronts themselves are each described by power
series expansions. Any point on the original wavefront is given
by the vector

W, (y) = (wy(y)) ®)

where in the 2D case w,(y) is the curve defined by

= a
woy) =) ©)
k=0 "

The normal vectors and their derivatives are described as in
[3] and obey the same relations as therein in Egs. (22)-(24)
[Appendix A Egs. (Al) and (A2)]. Since the normal vector
of the original wavefront and the normal vector of the propa-
gated wavefront are equal, the normal vector will be labeled
generally with n,,.

In application on the functions of interest, n,(y) =
n(w" (y)); this means that n,,(0) = (0,1)7. Further, the first
derivatives are given by



2444 J. Opt. Soc. Am. A/ Vol. 28, No. 12 / December 2011

d _
s =0 =u00u? 0 = () 0. @

y=0

and similarly for the higher derivatives.

2. Ansatz for Determining the Propagation Equations
Once the local aberrations of the original wavefront are given,
its corresponding coefficients a; are directly determined, too,
and equivalently the wavefront’s derivatives. It is our aim to
calculate the propagated wavefront, in the sense that its deri-
vatives and thus its a; coefficients [see Egs. (5) and (6)] are
determined for all orders 2 < k < k for the order k, of interest,
and to assign values to its corresponding local aberrations.

In contrast to this general procedure, which is the same as
in [3], we now consider the following situation as a starting
point for treating propagation. While the chief ray and the co-
ordinate system are fixed, a neighboring ray scans the original
wavefront {w,} and hits it at an intercept y, = 0, then propa-
gates to the propagated wavefront {w,}, where the brackets
{-} shall denote the entity of vectors described by Eq. (5). As
shown in Fig. 2, and consistently with our notation, we denote
as y, the projection of the neighboring ray’s intersection with
{w,} onto the y axis, and analogously, the projection of the
intersection with {w,} onto the y axis is denoted as y,.

The vector w, = w,(¥,) [see Eq. (5)] points to the neighbor-
ing ray’s intersection point with the original wavefront, and
the propagated wavefront’s OPD, referred to the original
wavefront measured along the ray, is denoted by z. Corre-
spondingly the vector from the original wavefront to the
propagated wavefront is Tn,,. Hence, the vector to the point
on the propagated wavefront itself, w,,, must be equal to the
vector sum w,, = w,, + 'n,,. This yields the fundamental equa-

tion
Yo Lo Y
(wo(yo)) +nnw B (wp(j-’;p)) (8)

From Eq. (8), it is now possible to derive the desired relations
order by order. Although only the propagated wavefront is of
interest, in Eq. (8) additionally the quantities y, and y,, are also
unknown. However, those are not independent from each

T

n
Fig. 2. Propagation of a wavefront w, about the distance d = I to the
propagated wavefront w,,.
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other; if any one of them is given, the other one can no longer
be chosen independently. The coordinate y, is used as an in-
dependent variable, and ¥y, is considered as a function of it.

Equation (8) represents a nonlinear system of two algebraic
equations for the two unknown functions wj,(y,) and y,(y,).
Even if we are only interested in a solution for the function
wy,(Y,), we cannot obtain it without simultaneously solving
the equations for both unknowns order by order. Introducing
the vector of unknown functions as

P(y,) = ( %p ((ZI;)) ) ©)

and observing that the initial condition p(0) = (0, z/n)” has to
be fulfilled, it is now straightforward to compute all the deri-
vatives of Eq. (8) up to some order, which yields relations be-
tween the curvatures, third derivatives, etc., of the original
and propagated wavefront. Rewriting these relations in terms
of series coefficients a,; and solving them for the desired
coefficients a,,; yields the desired result.
Rewriting Eq. (8) leads to

0 yo"‘%nwy_yp
= L . 10
(0) (wo(yo) + %nw,z — Wy (yp) ( )

Before solving Eq. (10), we distinguish if the independent
variable y, enters into Eq. (10) explicitly, like in the first com-
ponent of the vector (y,, w, (yp))T, or implicitly via one of the
components of Eq. (9). To this end, we follow the concept of
[3] and define in this case the function (R?xR)—R2:

(p. yp) >t by

_ Yo + %nw.y(wgl)(yo)) - yp )
fe.9,) = (wowo) om0 ) —w, ) D

where (p;,p;) = (¥,,w,) are the components of p. Setting
p = p(¥,), Eq. (11) allows us to rewrite the fundamental sys-
tem of Eq. (10) in a more compact way as

fp(y).yp) =0, (12)

as can be verified explicitly by componentwise comparison
with Eq. (10).

Solving Eq. (12) for the function p(y,) is formally identical
to solving Eq. (28) in [3]. The only difference is that now the
name of the independent variable is y, instead of yg in [3].
Taking the total derivative of Eq. (12) with respect to y,
and applying the principles from the theory of implicit func-
tions leads to the system of differential equations

2 f; ) Ui
=D, +-—=0,
2 apij (Yp) 3,

i=12, (13)

where the matrix with elements A;;:=df;/dp; is the Jacobian
matrix A of f with respect to its vector argument p, evaluated
for p = p(y,). The Jacobian A reads

> Uy D, (@2
A= Byl Bw;7 _ 1+ %nq(y)ywt() ) 0 (14)
: oy s | T w(l) +1n(1) w(2) 1)
Ay, ow, 0 n W20
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In Eq. (14), the occurring expressions are understood as

1_1 2) — (2 — 1 1) —
W =W (y,), WP =W W)y My = My WS (1)), Niy=

ne y(wol) (¥,)), etc., and in addition, y, and w,, are themselves
functions of y,,.
The derivative vector df;/dy, in Eq. (13) shall be summar-

ized as
. A
b=z~ (o) (19

Similarly to [3], we conclude that we can write A with argu-
ment A(p(y,)) only and b without argument at all because b is
constant.

Equation (13) can then be written in the form

A" (y,) =Db. (16)

3. Solving Techniques for the Fundamental Equation

For solving Eq. (16) for p(y,), we can apply the same exact
steps as in Egs. (33)—(36) in [3], with the only difference that
here the independent variable is named y,, instead of yg, and
also that the initial condition here reads p(0) = (0, z/n)7 in-
stead of p(0) = 0 as was the case in [3]. The equations as a
function of the independent variable , are shown in Appen-
dix A [Egs. (A3)-(A6)]. Hence, in this paper, we directly pro-
vide a formal solution for p®* (0), expressed in terms of its
predecessors, by the equations

P (0) = AT,

Blok-1y
p®(0) = —A*IZ(. l)A(k’ﬁp(’)(O), k22, (17)
j=1\J—

k=1,

where Al = A(p(0))~! = A(0)"L.

4. Solutions for the General Propagation Equations

In the result for pV(0), the first rows of Eq. (17) involve
A(0)~L. For obtaining A(0)~!, we evaluate Eq. (14) for p = 0
and apply Eq. (23) in [3] [Eq. (A2) in Appendix A], yielding

0 ) (18)

742 1
A0) = (1—%’“)0 0 ) = A(0)! = ( er

-1

The final result for p(0) is

_1
Ip = (1—%v'f‘ ) (19)

The first derivative of the y, coordinate, which is the first
component p; of p, is a dilation depending on the curvature of
the original wavefront and the propagated optical path length

7, such that ¥V (0) =

ORYS

The slope of the propagated

1- (1/11)1,0,(72"
wavefront vanishes, w(l) (0) =0, as does the slope of the
original wavefront due to wf,l)(O) =0.

For the orders k 22, we apply Eq. (17). The derivatives
AD =L a5 AP (¥)))ly, =0, etc., are directly obtained by the total

derlvatlve of Eq. (14) with respect to y,, evaluating for y, = 0
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and again applying Eq. (A2). For the orders k > 2, only the re-
sults w,(,,k) (0) for the propagated wavefront are of interest;
therefore, we directly provide those results. The resulting sec-
ond-order law is [omitting the argument “(0)”]

= pul, (20)
with

1
f=—. (1)

1-Tw,
which is well known as the propagation equation and appears

to be a special case of the results. The resulting higher-order
laws can be written in a similar fashion:

T 2 1
R 3ﬁ<ﬁw9> ).

— 6w ‘2’)),

ﬂs(w@ +5p° w<3>(2w<4> +3ﬁ

(22)
Equation (22) can be generalized for 2 < k <6 to
“zwmﬁ+mx (23)

where i 1n Ry, the dependence of w ) on all wavefront deriva-
tives wo of lower order (j < k) is summarlzed

5. Special Case
Although application of Eq. (17) provides a solution for w(k) 0)
up to arbitrary order k, it is very instructive to analyze the so-
lutions more closely for one special case. We observe that the
expressions in Eq. (23) for R;, will vanish if we set wY = 0 for
all lower orders j < k (for k = 3 or k = 4, respectively).
This leads to the assumption (for £ > 2) that the following
statement is generally true: if only aberrations for one single
given order k are present, while for all lower orders j < k we

have w = 0, then ( =1 and R, = 0, which means

e
that for fixed order k Eq. (23) will be valid for the vanishing
remainder term and the aberration of the propagated wave-
front will be equal to the aberration of the original wavefront
independent of the propagation distance d.

To this purpose, we start from the recursion scheme in
Eq. (17) and show that only the term containing p can con-
tribute to the sum if all aberrations vanish for orders less than
k. For doing so, it is necessary to exploit two basic properties
of the derivatives A = dym A(p(yp))|y —o of the matrix A for
the orders 1 <m < k - 1. As'can be shown by elementwise dif-
ferentiation of the matrix A, the highest wavefront derivatives
present in A™ (p(yp)) [see Eq. (14)] are proportional to

w{™? Evaluating A(m) (p(y,)) at the position y,, = 0 shows
that A(m) cannot contain any higher wavefront derivatives
than w™*?. Tt follows that

i. The highest possible wavefront derivatives present in
A are (",

ii. If all wavefront derivatives, even up to order (m + 2),
vanish, then A™ itself will vanish. This is in contrast to A
itself, which contains constants and therefore will be finite
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even if all wavefront derivatives vanish.

Analyzing the terms in Eq. (17), we notice that the occur-
ring derivatives of the matrix A are A®D A®-2 A@ AD
for j =1,2,...,(k - 1), respectively. It follows from property
(i) that the highest occurring wavefront derivatives in these
terms are (k + 1)k, (k-1),...,3,2, respectively. Now, if all
wavefront derivatives up to order (k — 1) vanish, it will follow
from property (ii) that all the matrix derivatives
A®3  A@ AD must vanish, leaving only A®-D and
A%-2_ Therefore all terms in Eq. (17) vanish, excluding only
the contribution for j = 1 andj = 2. We directly conclude that

p? = -ATADAy, k=2,

2 k-1
) = _A-l Z( - ) AGDRD k3. (24)
j=1\J—

This leads directly to

p® = —AIADA-lp, k=2,
p® = A-1((k - DA®DATAD _AC-DYA-1p [ >3, (25)

In the term

~u (3)
A = (I—M’ o 0), (26)

w0

only wavefront derivatives wf,S) and wéz) occur. Therefore

A® =0 for k > 3 because wS and w’ vanish. Equation (25)

can then be written in the form

p® = A 12AWA-TAD _ A@)A-1p, k=3,

p® = —ATAW-DA-Th, otherwise. @7

To evaluate p® in Eq. (27), the second derivative of A has
to be calculated. A® reads, if all derivatives of the wavefront
vanish for orders less than or equal to m = 2,

(3) 4)
A(z) _ (—%(%/LUO + W, ) 0) (28)
wf,?’) 0
For evaluating A®-D fork - 1 > 2, we set k — 1=:m, and it is
straightforward to show by induction that if all aberrations
vanish for orders less than or equal to m, then

2™
A = (“’ ) 2
wi™Y (29)

where ygl) has been substituted by their solution W

wherever it occurs [see Eq. (19)]. Inserting A®™ (0) for m =
k -1 and A(0)~! from Eq. (18) into Eq. (27) directly yields that

(k)

wi = w (30)

for all orders k > 2.
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D. Mathematical Approach in the 3D Case

1. Wavefronts and Normal Vectors

Although it is more lengthy to demonstrate than the 2D case,
conceptually the 3D case can be treated analogously to the 2D
case and analogously to Eqs. (49)-(59) in [3]. Therefore, we
will only report the most important differences. Analogously
to Eq. (5), the original wavefront is now represented by the 3D

vector
X
wo(x,y)z( Y ) (3D
Wo (%, Y)

where w, (2, y) and the relation between the coefficients and
the derivatives are defined as described in [3]. The connection
between coefficients and local aberrations is given by multi-
plying the coefficient with the refractive index.

For treating the normal vectors, we use the same function,

n(u,v):=

1 -Uu
—— | v ], 32
x/1+u2+v2< 11)) o

as in [3] and make use of the fact that the normal vector
n,(r,y) to a surface w(r,y)=(r,y,w(x,y))T is given by
n(Vw). In the intersection point we now have
n,(0,0) = (0,0,1)7, and the derivatives corresponding to
Eq. (A2) can be directly obtained from Eq. (32).

2. Ansatz for Determining the Propagation Equations
The starting point for establishing the relations between the
original and the propagated wavefront is now given by equa-
tions analogous to Eq. (8), with the only difference that the x
and y components are simultaneously present.

The vector of unknown functions is now given by

%o (X, Yp)
p(xps yp) =1 % (xpv yp) , (33)
wp (xps yp)
and the 3D analogue to Eq. (8) now leads to
f(p(xp, yp)v Lps yp) =0, (34)

where f is the 3D analogue to Eq. (11).

Since Eq. (34) is formally identical to Eq. (52) in [3], the
solving procedure from [3] can be directly applied. In particu-
lar, we have to deal with two first-order equations:

A(p(xpv yp))p(LO) (xpa yp) = baw
A(p(.%’p, yp))p(()'l) (xps yp) = bys (35)

which correspond exactly to Eq. (563) in [3]. Of course, the ex-
plicit expressions regarding how f and p depend on their ar-
guments now lead to different expressions for the column
vectors of the inhomogeneities,

N , o ’
bx——E—(l 0 0)7, by_—@_(o 10, (36)

and for the Jacobian matrix A(p(x,.y,)) with elements
A;=df;/0p;, which is now given by
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0,1) 11)+n(10) (20))

1+ 2 (' ws
A(p(x,.y,) =

(0.1)

AR D

(11)+n

3. Solutions for the General Propagation Equations

The formal analogy of Eq. (35) to Eq. (63) in [3] can be
exploited by making use of the solving techniques developed
in [3]. Equivalently, either Eq. (58) or Egs. (63a)—(63d) from
[3] [Egs. (A7) and (A8) in Appendix A] can be directly applied.
The only difference from [3] is now that again the explicit ex-
pressions for the Jacobian and its inverse, which have to be
inserted into Egs. (58) or Egs. (63a)-(63d) from [3], have an-
other appearance, here given by

1 -z w0
A) = | _zqpltD 124902 o | > AW0)!
0 0 -1
(R L)
= 7 L D 1- %wg“” 0 ). (38)
0 0 -1

: _ -1
with y = detA(0) — - (e/nw” —((z/n)w)2- (r/n)w(OZ)Jr(r/n)211)(z0) 02y

and after inserting Eq. (36) in Egs. (A7) and (AS8), we obtain
for the order k = 2 the solutions

nn - rwgo 2 )

p190,0) =y  nrw™?

0

nrws

p*V(0.0) = 7| n(n - wi”) |- (39)
0

For the orders k 22, we apply Eq. (A8). The derivatives
ALY = & A(p(xp,yp))up_o 4,—0, etc., are directly obtained
by total denvatlve of Eq. (37) with respect to x,, and y,, eval-
uated for x, = 0 and y,, = 0. For the orders k =k, + k, > 2,

only the results ;k ) (0,0) for the propagated Wavefront

are interesting; therefore, we directly provide those results.
The resulting second-order law is [omitting the argument
“(0)”]

w;)Z,O) ( (w(l 1))2 ( wgo,z))wgz.()))’

w},l D _ ngl b

w,(,,o‘z) ( (wt 1))2 ( w(()2,0))w(()0.2))’ (40)
which is well known as the propagation equation and is re-
vealed to be a special case of the results. If the coordinate
axes coincide with the directions of principal curvature of
the wavefront, which means that w(1 D= =0, Eq. (40) can be
simplified to

r(n(Ol) (11)+ (10) (20))
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£ (0009002 4 101D 0
11 L () w? + Gy 0 | 37
0,1 0,1 0,2
) ( )+ (ngvz)wz() )+nwz wol 1)) -1
20 _ 1 20) a _g
oS et =0
’ (41)
0,2) 1 0,2)
wy = w,

0.2)
1- =W

The resulting higher-order laws can be written in a similar
fashion:

2
T T
wi =3 ((1 —;twf,o‘z)) w4~ w(1 D (3 (1 —;wa,oz)) wd?
T

T T B 2
+ﬁw(()1.l) (ﬁwf,o’s)wél’”)+3(1——wf,°’2)) EANY

2,1 21) , 7 1,1 1,2 3,0
w >=y3(wé M0 @ul? )

T 2 2
(2 (02)+w(2 0))w(2 1))+(%) (wgzl)wéO,Z)

_ 2(?1)(1‘1) (w(()l,Z) + wgS.O)) _wg2,0)w5)2.1))w20.2)

0.3)  (1,1)? 2,1 1.2 2,0
(,) é )_w((] )w((] )))

+w?
3 2
+ (n) (w(l 2) gl‘l) _(w((70 ,3) (2 0) +2w(0 ,2) 5)2 1))w(1 ,1)

+ w(O‘Z) (2w(1,2)w22,0) +w(()0,2)w(()3,0))w(()1,1)

022 (2,0), (2.1
wy? wi i),

—|—2wf,l"l) (wf,l"l)w

1.2 12, 7 1,1 2,1 0,3

wj >=y3(w§ (g @ )

_ (zw(2,0) +w(0’2))w§1’2))
2
+(n) (w(12) (2.0) —2(w 11)(w(21)+w(03))
w(O.Z)w(l.Z))w(Z.O) +w(3.0)w(1,1)2
+2w01 1)(w(1 1)w(1 2) —w,(,z 1) [()0‘2)))
T 3 2

+(7_L) (ng,l)wgl,l) _(w((JBO) (02)+2w(20) (()1,2))w(()1,1)

(2 0) (Zw(z .1) (()O,Z) +w§2’0)w§°’3))w§1’1)
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Culult),

2
w]()O,S) =3 ((1 _zwéz,m) (o 3) + (1 1) (3(1 _ngz.O)) w(()1,2)
n n
2
T i B (R p )

Equations (40)—(42) show that the result for wS? can be
derived from the result for wp by 1nterchangmg % and j.

4. Special Case

Analogous to the special situation that leads to Eq. (30) in the
2D case, it is possible to find a corresponding special case in
the 3D case. By similar reasoning to the 2D case and as in [3],
it is found that if all lower order aberrations for j, +j, < k, +
k, vanish, then Eq. (A8) will reduce to the lowest term,
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yielding

pte® = _ATAGLOA Ty 23k, =0,
pBY = AL2ALOATALD _AROA-Ty -k, =3k, =0,
p(2,1) — A_I(A(I‘O)A_IA(O’D

+AODAIACO _ ARONA-Ty =2k, = 1,

p(kl.k_,,) — _A—IA(kl—l,k,,)A—lbx’
— _A—IA(k,.ky—l)A—lby’

ky#0,ky %0,k +k,#3,

p(1.2) — A—I(A(O.I)A—IA(I,O)

+ACOATAOD _ AO)ATy - =1k, =2,
p©® = AL(ZAODA-TAOD _ AO2)A-Tp |k, =0,k, = 3,
pOh) = _ATACkDATy -k, =0k, 3. (43)

The result in Eq. (43) is similar to Eq. (568) in [3], but it dif-
fers due to different conditions under which the matrix A or
one of its derivatives vanishes. For finally evaluating Eq. (43),
we need the partial derivatives of the matrix A under the as-
sumption that all lower order aberrations for j, +j, < k, + k,
vanish, which is given as
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3. RESULTS

A. 2D Case
Equation (22) holds likewise for the derivatives and for the
coefficients a,;, and a,; due to Egs. (5) and (6). In terms

of local aberrations, and substituting d=7 and
p=1rm= @, Eq. (22) reads
Sp = ﬁsov EpB = ﬁ3E0_3,
d Si
Epy=p (Eo,4 + 35 (ﬂE(Z)S - n—ﬁ))
d d . S3
E,s=p (E(,,5 +56- By (2E0,4 +3p B - 6;))
Ep.6 = /36 (EO,G
d d S2E, ,
+ 5ﬁﬁ (3E0,3E‘0_5 + 21ﬁ5E(2,,3Eo.4 - 12 "n; + 2E2,
3+44g8 d\?2 1+48
- 9pSIEL s ——— + 21(/3%) By +983— i ))
(46)
Equation (46) can be generalized for 2 < k <6 to
Ey i = (Eox + Ry), (47)

where in R;, all wavefront derivatives E,; of lower order
(J < k) are expressed in terms of local aberrations.

If only aberrations for one single given order k are present
while for all lower orders j < k we have E,; = 0, then f =1

Am,.my

0
0

mx+my=2,

A(mx~m1/) — w((JWL_I.Jererl) w(()ma.,my) 0 (44)
_z l()ma,+2,my) _ %wgmx+1<my+1) 0
_ lw(()’m,qu‘merl) _lw(()mi,,my+2) ol m,+ m, > 2,
(()ml+1 my) w,(,m“ my+1) 0
with
(3,0) 2,1)
w (my+2,m,)) (my+1m,+1)
i w(()Z,l) + Wo B w?m) + W, ! (m,+1m,)
Ay, == @ ° 12 V= (w?m ’"“))’
o n Wo (my+1m,+1) Wy (my.my,+2) o
%V(w?lvz) ) + w(]m my %V(w((bﬁ) ) + me My, Wo
[ 0
here 257, 2, y§0, 4"V ete., have b bstituted b ~ -
where X, -, Yo, Yo -, Yo -, €LC, have been substtuted Dy and R;, = 0, which means that for fixed order k Eq. (47) will be

their solutions according to Eq. (39). Inserting A®=") from
Eq. (44) and A(0)~! from Eq. (38) into Eq. (43) yields one com-
mon relation for w, ™" for the various subcases in Eq. (43)
[omitting the argument “(0,0)”]:

(ke Key)

(kv Jey)
Wy w, Y

(45)

for all orders k =k, +k, > 2.

valid for the vanishing remainder term and the aberration
of the propagated wavefront will be equal to the aberration
of the original wavefront, independent of the propagation
distance d:

E

» (48)

k= Eon‘
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B. 3D Case
Equation (40) can be summarized as a vector equation in

terms of local aberrations and substituting d = :

d Sgl"y - SUM:SOyy
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also shown in terms of local aberrations.

Sp =V St n 2 S(? S ’ (49) The vector equation [Eq. (49)] is identical to the well known
ory TorvTe.y propagation matrix of Eq. (3). Equivalently, Eq. (42) can be
transformed to a vector equation in terms of local
with aberrations:
e, 3 = €,3, 50
23N by oy CBus + ) BBy +262) BBy | 60
P 362y 3Byl By
with Then Egs. (49) and (50) can be simplified to
P ﬂxy _ T w(z’o) w(l’l) -1
(ﬂxy ﬂyy =\1- E w((O)I,I) wgo’z) Puw 0 O
., s,=1 0 0 0 |s, (562)
_ (l_g(so.xx So.W)) . 0 0 ﬁyy
n Swy So.z/y
If the coordinate system is chosen in such a way that the x
and y axes coincide with the directions of principal curvature 3
. L P 0 0 0
of the wavefront, then the equations can be simplified. To do 0 2 5 0 0
s0, the coefficients a of the original wavefront have to be ro- es=| o 0" o0 |es (563)

tated around the axis a of the wavefront (the direction of one
principal curvature) with

=28,

1 0.xY )
a = -arctan| ———). 51
2 (S oyy — So..z-x ( )

Pre .. 0

3 gl
_ 2 2
€pa = Py

d

sy BB + BB 2
e 5 (Por By + BvaBo) + @By + BunEoy) - (255
3(ﬁmE él”?ﬂ/ + ﬁ?ﬂ/Eng/ —- ;g'y

BBy
0

0 o0 sy

and also, for the radial order k¥ = 4 an appealing equation can
be derived:

. (54)

S'4
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Table 1. Zernike Coefficients of the Original and Propagated Wavefront in Example A1
Zernike Coefficients
Original Wavefront Propagated Wavefront
Radial Order Symbol (OSA Standard) Numerical Ray Tracing Analytical Wavefront Tracing
ZEMAX Dai [23] Our Method
k value/um value/um value/um value/um
0 A -1.46532 -1.38629 -1.37962 -1.37911
cqt 0 0 0 0
! c 0 0 0 0
c? 0 0 0 0
2 A -1.26853 -1.18718 -1.17953 -1.17894
c3 0 0 0 0
? 0 0 0 0
ot 0 0 0 0
3
cl 0 0 0 0
a 0 0 0 0
ot 0 0 0 0
¢ 0 0 0 0
4 o -0.327046 -0.292971 -0.28882 -0.288494
e 0 0 0 0
c 0 —6.46 % 1078 0 0
fo 0 0 0 0
c? 0 0 0 0
5 et 0 0 0 0
ck 0 0 0 0
e 0 0 0 0
e 0 0 0 0
g8 0 0 0 0
et 0 0 0 0
cg? 0 0 0 0
6 A 0.000205909 0.00545139 0.00662599 0.00672247
2 0 0 0 0
ch 0 ~7.05 % 1078 0 0
e 0 0 0 0

“Propagated wavefront, left column: values based on ray tracing (ZEMAX); middle column: values based on method described in [14,23]; right column: values based

on our method.

Afterward, the coefficients of the propagated wavefront
have to be rerotated to the original coordinate system. The
resulting coefficients are then, of course, identical to the coef-
ficients calculated by Egs. (49) and (50).

Equations (53) and (54) can be generalized for 2 < k < 6 to

€k = Blc(eo‘k + rk)5 (55)

where r; is a vector collecting the remainder terms Ry ;.
analogously to R; in Eq. (47), and with

Bk=

k
xx

k-1 1

1 pgk-1
ﬂxxﬂ vy

(56)

ﬂyy

The result of the special case treated in Egs. (43)-(45) can
be summarized, in a similar fashion to Eq. (565), to a vector
equation in the very appealing form
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Table 2. Zernike Coefficients of the Original and Propagated Wavefront in Example A2*

Zernike Coefficients

Original Wavefront Propagated Wavefront
Radial Order Symbol (OSA Standard) Numerical Ray Tracing Analytical Wavefront Tracing
ZEMAX Dai [23] Our Method
k value/um value/um value/um value/ym
0 A 0.0675296 0.0716304 0.071439 0.0714675
1 ot -0.469074 -0.471531 -0.471178 -0.471169
c 0 0 0 0
c? 0 0 0 0
2 A 0.0586014 0.0621846 0.0620453 0.062074
c3 -0.00939598 -0.0122335 -0.0122895 -0.0123183
? 0.00510456 0.0053063 0.00526967 0.00527765
3 ot -0.167062 -0.1684 -0.168264 -0.168248
cl 0 0 0 0
a 0 0 0 0
ot 0 0 0 0
¢ 0 0 0 0
4 o 0.0152538 0.016233 0.0162035 0.0162148
e -0.0024714 -0.00327439 -0.00325126 -0.00326303
c 0.0000898562 0.000141849 0.000138134 0.000140068
b -2.28 1076 -5.3%10°6 -4.36 % 1076 -4.32 %1076
c? 0.0000541121 0.000100209 0.0000896324 0.0000894449
5 ot -0.000663872 -0.000959765 -0.000917853 -0.000905828
ck 0 0 0 0
e 0 0 0 0
e 0 0 0 0
g8 0 0 0 0
et 0 0 0 0
cg? 0 0 0 0
6 A 0.000051976 0.000084556 0.0000778738 0.0000791508
2 -0.000019171 -0.00003832 -0.0000332 -0.000034846
ch 1.45 % 1076 3.71 % 1076 2.88 % 1076 3.16 * 1076
a -6.65 % 1078 -2.00 * 1077 -1.49 % 1077 -1.69 % 1077

“Propagated wavefront, left column: values based on ray tracing (ZEMAX); middle column: values based on method described in [14,23]; right column: values based

on our method.

€k = €ok> (57)
which is Eq. (65) for r; = 0. Equation (57), an interesting re-
sult of the present paper, is the propagation equation for aber-
rations of fixed order k >3 under the assumption that all
aberrations with an order lower than k vanish, which means
that the aberration of the propagated wavefront will be equal
to the aberration of the original wavefront, independent of the
propagation distance d.

4. EXAMPLES AND APPLICATIONS

One important application of the derived equations is that they
allow us to determine the aberrations of a wavefront by

propagation, which not only has a defined power S, but also
shows aberrations of higher aberrations. Because of the ana-
lytical nature of the equations it is not necessary to use an
iterative numerical method.

We use the derived equations [Eqs. (52)-(54)] to determine
the aberrations of the propagated wavefront up to the radial
order k = 6 and compare them first with the results calculated
by the analytical wavefront approach described by Dai [14]
and Dai et al. [23]. One approximation with significant influ-
ence of the analytical wavefront approach described by Dai et
al. is that the transformation of the coefficients was solved
without simultaneously solving the coordinate dependence.
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Table 3. Zernike Coefficients of the Original and Propagated Wavefront in Example B1¢

Zernike Coefficients

Original Wavefront Propagated Wavefront
Radial Order Symbol (OSA Standard) Numerical Ray Tracing Analytical Wavefront Tracing
ZEMAX Dai [23] Our Method
k value/um value/um value/um value/um
0 A -50.1362 -34.3311 -26.5342 -34.3309
1 ot 0 1.18 % 1078 0 0
c 0 1.18 % 1078 0 0
c? 0 -1.76 x 1078 0 0
2 A -29.3453 -19.9117 -14.9908 -19.9115
c3 0 0 0 0
? 0 5.88 % 107 0 0
3 ot 0 0 0 0
cl 0 0 0 0
a 0 -5.88 % 1079 0 0
ot 0 0 0 0
¢ 0 0 0 0
4 o -0.309331 -0.069658 0.261713 -0.0695334
e 0 0 0 0
c 0 -1.76 % 1078 0 0
fo 0 1.76 * 108 0 0
c? 0 0 0 0
5 et 0 0 0 0
ck 0 0 0 0
e 0 0 0 0
e 0 1.76 x 1078 0 0
g8 0 2.94 %1078 0 0
et 0 -1.18 % 1078 0 0
cg? 0 0 0 0
6 A -0.000110975 0.000437634 0.00598868 0.000473857
2 0 0 0 0
ch 0 1.18 % 1078 0 0
e 0 0 0 0

“Propagated wavefront, left column: values based on ray tracing (ZEMAX); middle column: values based on method described in [14,23]; right column: values based

on our method.

As we show in the examples, and as is also stated in [23], it is
absolutely necessary to solve both dependencies simulta-
neously if wavefronts contain both low-order and high-order
aberrations.

Second, we compare our results with the results calculated
by a numerical ray-tracing approach using the optical design
package ZEMAX, followed by a Zernike analysis.

We would like to stress again that our local aberration va-
lues are obtained by an analytical method and therefore by
definition are exact. The transformation of our local Taylor
coefficients to Zernike coefficients, on the other hand, yields

only an (however, very good) approximation for their numer-
ical values based on the assumption that the truncated sub-
spaces of order k = 6 describe the aberrations sufficiently
well. Still, within this approximation, the results are analytical,
such that a Zernike coefficient obtained as zero is exactly
zero, whereas a ray-tracing value is always numerical by its
nature, resulting in small deviations from zero (Tables 1-4).

The necessary transformation between Zernike and Taylor
coefficients, itself being state of the art [27,28], is in our case
also accompanied by the transformation from an OPD wave
aberration to a wavefront aberration referring to the sagitta,
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Table 4. Zernike Coefficients of the Original and Propagated Wavefront in Example B2

Zernike Coefficients

Original Wavefront Propagated Wavefront
Radial Order Symbol (OSA Standard) Numerical Ray Tracing nalytical Wavefront Tracing
ZEMAX Dai [23] Our Method
k value/um value/um value/um value/um
0 A -104.73 -53.8326 -3.35952 -53.8326
1 ot -4.9774 -0.595659 10.947 -0.595597
cl 0 -2.35% 1078 0 0
c5? 0 0 0 0
2 A3 -60.791 -31.0906 -0.77533 -31.0906
2 9.48371 2.41668 -10.2031 2.41668
38 0.541095 0.0328263 -1.80039 0.0328297
3 3! -1.82051 -0.210901 4.23289 -0.210908
cl 0 0 0 0
s 0 -3.53 % 1078 0 0
ot 0 —4.70 % 1078 0 0
c? 0 1.76 x 1078 0 0
4 A4 -0.25745 -0.00801529 0.943405 -0.00801618
e 0.175173 0.00367726 -0.794462 0.003678
o -0.0561936 -0.000561498 0.318015 -0.000561742
;b -0.00501814 -4.44 % 1076 0.042954 —-4.81 %1076
loms 0.0152086 0.00004036 -0.109211 0.000041581
5 cit -0.0330566 -0.000178401 0.202975 -0.000180914
cl 0 -1.18% 1078 0 0
a 0 -1.18 % 1078 0 0
A 0 3.53 % 1078 0 0
g8 0 2.35% 1078 0 0
ot 0 0 0 0
cg? 0 -1.76 % 1078 0 0
6 A -0.00467708 -1.28 % 1076 0.033557188 -1.57% 1076
2 0.00439538 -2.12 % 1077 -0.0364403 1.95 %1078
c -0.00191776 4.47 % 10770 0.0179451 3.70 % 1077
I 0.000655743 -1.70 % 1077 -0.00696252 -1.6 %1077

“Propagated wavefront, left column: values based on ray tracing (ZEMAX); middle column: values based on method described in [14,23]; right column: values based

on our method.

which is discussed in detail in [3]. The logical flow of the trans-
formations is illustrated in Fig. 3.

Examples Al and A2 are characterized by the specific fea-
ture that the first and second derivatives are zero, which
means that the coefficients of Taylor monomials of first
and second order are also zero (see Table 5). This implies that
the low-order aberrations (LOA) (radial order k < 3) ex-
pressed as Taylor monomials are zero, while in examples
B1 and B2 low-order and high-order aberrations do occur
(see Table 6). In examples Al and Bl only rotationally sym-
metric aberrations are present, while in examples A2 and B2

non-rotationally symmetric aberrations like coma, trefoil, and
secondary astigmatism also occur.

The value of the propagation distance d is 20 mm, the pupil
diameter d is 6 mm and the refractive index » is 1 in all four
examples.

For giving some more insight about how the resulting va-
lues are obtained within our framework, we provide explicit
formulas for the Taylor coefficients in the case of the rotation-
ally symmetric examples Al and Bl. In this case all the odd
order coefficients vanish, and we directly obtain, for order
n = 2 from Eq. (49),
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Original wavefront Propagated wavefront

Zernike represen-
tation of OPD

Zemike represen-
tation of OPD

AppendixAin [3] — ]

Taylor represen- Taylor represen-
tation of OPD tation of OPD

7y
V\AppendixB in@E]—

Taylor represen- Q »| Taylor represen-

tation of sagitta tation of sagitta

New propagation method
in this paper
Fig. 3. Logical flow of the computation of the Zernike coefficients of
a propagated wavefront for the given Zernike coefficients of the ori-
ginal wavefront.

ﬂzxs 0,xx
s, = o | (58)
B ny 0,xx

For order n = 4, it follows from Eq. (54) that

ﬂéxE 0,200 3ﬂ§cxs ;41:»1
0
d
ep.4 = ﬁ:%xﬂg%yonxyy - ﬁ ﬂ?&xﬂ%y (Soxxso.yy)z ) (59)
0 0
ﬂéyEo,yyyy SﬂéyS3yy

and for order n = 6, it follows from the general solution in
Eq. (65) after some algebra that

d
E DXXLXXX = ﬁgx (E 0,XXXXLX +5 ﬁ (zﬁxT (nZE 0,202
- Sngx) - QSExT)) )

d
—p4 g2 512
E PaXXXYY — ﬂxxﬁ vy (E 0,2222YY + 76 (Gﬁ yyT E 0,007

+ ﬂxzsoxxS%yy (3ngx (’VL + d(3 - 2ﬂyy)so,xx + znﬂyy)
- 4’)’L3E 0..1,'@”:1:;5) + 4%3,5“1‘7 0.2XYY

X (ano.xxxx + 3S2xx((ﬂyy - 2)So.xx _ﬂyysoyy)))) ’

=F

E PAXITYY

D.XXYyyy E

(x(_’y)’ Ep pxxxxxx(x(_)y) (60)

YYYYYYy =

Example Al: Given is the original wavefront expressed
with Zernike polynomials. The coefficients of the Zernike
polynomials are zero except defocus cg, spherical aberration
02, and secondary spherical aberration cg, their values being
chosen such that the second-order local aberrations vanish. In
this case the equations derived by Dai et al. are a very good
approximation, as stated in the conclusion [23].

The values of the original wavefront and the resulting
values of the propagated wavefront derived by all three meth-
ods are provided in Table 1. The agreement between the re-
sults of all three methods is obvious. Additionally, we have
provided the values of the local aberrations before and after
propagation in Table 5.

Example A2: In this example the original wavefront shows
defocus, astigmatism, coma, trefoil, spherical aberration, sec-

Esser et al.

ondary astigmatism, quadrafoil, secondary coma, secondary
trefoil, secondary spherical aberration, secondary quadrafoil,
and tertiary astigmatism.

The values of the original wavefront and the resulting va-
lues of the propagated wavefront derived by all three methods
are provided in Table 2. Also in this more complex case, the
agreement between the results of all three methods is obvious.
Again, values of local aberrations are provided in Table 5.

FExample B1: This example is equivalent to example Al.
Also in this example, the coefficients of the Zernike polyno-
mials are zero except defocus cg, spherical aberration cg,
and secondary spherical aberration cg. However, now the ori-
ginal wavefront is characterized by the specific feature that
LOA (radial order k = 2) expressed as Taylor monomials
are nonzero (see Table 6). In this case the equations derived
by Dai et al. are not a good approximation, as stated in the
conclusion [23].

The values of the original wavefront and the resulting va-
lues of the propagated wavefront derived by all three methods
are provided in Table 3. The agreement between the results
derived by the optical design package ZEMAX and our analy-
tical method is obvious, while the results derived by the ana-
lytical method of Dai et al. [23] differ strongly. The wrong
results derived by the analytical method of Dai et al. are based
on the fact that in this method the coordinate change by pro-
pagation is not considered. This approximation will lead to the
wrong results if low- and high-order aberrations occur simul-
taneously, as stated by Dai et al. [23] in their conclusion.

Additionally, we have provided the values of the local aber-
rations before and after propagation in Table 6.

Example B2: This example is equivalent to example A2, but
here the original wavefront is also, as in example B1, charac-
terized by the specific feature that the LOA (radial order
k = 2) expressed as Taylor monomials are nonzero (see
Table 6). In this case the equations derived by Dai et al
[23] are also not a good approximation.

In contrast to example B1, in example B2 non-rotationally
symmetric aberrations such as coma, trefoil, and secondary
astigmatism occur.

The values of the original wavefront and the resulting va-
lues of the propagated wavefront derived by all three methods
are provided in Table 4. The agreement between the results
derived by the optical design package ZEMAX and our analy-
tical method is also, in this more complex example, obvious,
while the results derived by the analytical method of Dai et al.
[23] differ strongly.

Again, values of local aberrations are provided in Table 6.

5. SUMMARY

The equations in [3] describe the local higher-order aberra-
tions of a local wavefront after refraction, which allow us
to calculate analytically the HOA of an outgoing wavefront di-
rectly from the aberrations of the incoming wavefront and the
refractive surface after refraction in a very fast manner.

For propagation all hitherto existing analytical equations
are still restricted by some approximations. As is written by
Dai et al. [23], further study would be necessary to obtain a
unified formulation for wavefronts containing both low-
order and high-order aberrations. In the present work we have
succeeded in developing such a unified analytical propa-
gation method.
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Table 5. Local Aberrations of the Original and Propagated Wavefront
(Values Based on Our Method) in Examples Al and A2

Local Aberrations (Our Method)

Example Al Example A2
Radial Order Symbol Original Wavefront Propagated Wavefront Original Wavefront Propagated Wavefront
k value * m¥~1 value * m/1 value * m*-1 value * m#-1
0 E 0 0 0 0
1 E, 0 0 0 0
E, 0 0 0 0
E,. 0 0 0 0
2 E,, 0 0 0 0
E, 0 0 0 0
E, 0 0 0 0
3 E.y 0 0 -99.919 99.9191
E,, 0 0 0 0
Ey,y 0 0 -311.92 311.924
§ O— -1.3049 x 10° -1.3049 x 10° 50653 51253
E iy 0 0 0 0
4 E vy —4.3498 x 10° -4.3498 x 10° 19729 20752
Eyyy 0 0 0 0
Ey -1.3049 x 10° -1.3049 x 106 68329 74167
J j— 0 0 0 0
E iy 0 0 -1.9975 x 10% —2.6475 x 10°
5 E gy 0 0 0 0
J O — 0 0 —2.1749 x 10% —2.9387 x 10°
E oy 0 0 0 0
Eyy 0 0 -1.1823 x 107 -1.6268 x 107
E 1.0761 x 1010 3.5133 x 101 1.6856 x 10° 2.2744 x 10°
E vy 0 0 0 0
E gy 2.1522 % 10° 7.0266 x 1010 4.6196 x 108 6.7583 x 108
6 J D — 0 0 0 0
E gy 2.1522 x 10° 7.0266 x 101 6.0316 x 108 9.3213 x 108
E gy 0 0 0 0
Eyyyyuy 1.0761 x 1010 3.5133 x 10! 3.8114 x 10° 6.1388 x 10°

These results include, as a special case, the classical scalar
vertex correction formula as well as the well-known transfer
matrix equation (order k = 2) but extend these propagation
equations to aberrations of higher order (k > 2).

The propagation equations are relations between the original
wavefront and the propagated wavefront. In detail, we have de-
fined local aberrations of those two wavefronts in terms of local
power series coefficients, which describe the wavefronts in a
general coordinate systems aligned with the chief ray’s normal.
The general propagation equations are established as a se-
quence of analytical relations between these series coefficients.
We have been able to show that to each given order k > 2, it is
possible to assign one equation taken from that sequence

whose leading-order terms represent a straightforward general-
ization of the transfer equation to the order k, and which in gen-
eral contains some additional terms whose order is always less
than k. A direct consequence is that if only aberrations of one
single order k (k > 2) are present, then the aberrations are not
changed by propagation, which reads E, , = E, for the 2D
problem, and the vector-valued version of which reads e, ; =
e, in the 3D case.

For convenience, we have distinguished between the 2D
and 3D problems in deriving the propagation equations. We
have provided the general formalism, and for the orders
k <6, we have provided explicit formulas for the resulting
terms in the 2D case.
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Table 6. Local Aberrations of the Original and Propagated Wavefront
(Values Based on Our Method) in Examples B1 and B2

Local Aberrations (Our Method)

Example Bl Example B2
Radial Order Symbol Original Wavefront Propagated Wavefront Original Wavefront Propagated Wavefront
k value * m¥~1 value * m/1 value * m*-1 value * m#-1
0 E 0 0 0 0
1 E, 0 0 0 0
E, 0 0 0 0
E,. -21.669 -15.117 -41.247 -22.602
2 E,, 0 0 0 0
E, -21.669 -15.117 -50.877 -25.2174
E, 0 0 0 0
3 E.y 0 0 -749.20 -111.50
E,, 0 0 0 0
Ey,y 0 0 -3420.7 -416.53
§ O— -1.2881 x 10° -3.0828 x 10° -8.1744 x 10° -87851
E iy 0 0 0 0
4 E vy —4.2937 x 10° -1.0276 x 10° -4.5578 x 10° -37337
E 0 0 0 0
Ey -1.2881 x 10° -3.0828 x 10° -2.3047 x 10° -1.4236 x 10°
J j— 0 0 0 0
E iy 0 0 ~7.6008 x 107 -1.8204 x 10°
5 E gy 0 0 0 0
J O — 0 0 -1.2692 x 108 -2.2713 x 10°
E oy 0 0 0 0
Eyy 0 0 -1.0583 x 10? —1.4054 x 107
E -5.0085 x 1010 1.9658 x 1010 -1.1937 x 10! -2.1245 x 10°
E 0 0 0 0
E gy -1.0017 x 10%° 3.9317 x 10° -4.9496 x 1010 -5.7487 x 108
6 E gy 0 0 0 0
E opyy -1.0017 x 1010 3.9317 x 10° -9.9092 x 1010 -7.6601 x 108
E gy 0 0 0 0
By -5.0085 x 1010 1.9658 x 1010 -9.6626 x 101! -5.0286 x 10°

The main advantage of our approach is that it is
based exclusively on analytical formulas. This saves much
computation time compared to numerical iteration routines,
which would otherwise be necessary for determining the high-
er order aberrations.

With the method developed in this work, it is now possible
to calculate the local higher-order aberrations of the propa-
gated wavefront directly in an analytical way from the aberra-
tions of the original wavefront and the propagation distance.
Although our method is based on local techniques, it yields
results that are by no means restricted to small apertures,
as we have shown theoretically as well as in four examples.

0
n(0)==(1),
n® (()):(3)7

0

APPENDIX A: EQUATIONS DERIVED IN [3]

1 -0
o= (1) @
-1 0
1 = ) =
o) (o)’ o) (—1)’
0
n<4>(0):=(9), etc. (A2)



Esser et al.

PP, = Ap(y,))'b. (A3)

p(0) = AT,
OO = (A1) Db, ... pP(©0) = (AHEDb, (A4

where Al =Ap0) ! =A0)" and A HD =
2 A@E) My =0- - (ATHED = 2 AD) ]y, 0.

Ap(0) =b, (Aba)

ADpD(©0) + Ap®(0) = 0, (ABDb)

A@pD(©0) + 2ADp@(0) + Ap®(0) = 0..., (A5c)
k

f; (j - i )Aﬂc—ﬁpm 0 =0, k=22 (A5d)

pDO) =Ab, k=1,

k-1

RN
pHI(0) = A (]_ A0, k2 ao

=1

p19(0,0)=A"'b,, p®V(0,0)=A"'b,,
p*2(0,0)= (A0,
PV (0,0) = (A™H)ODb, = (A 10p,,
p®2(0,0)=(AH)ODp,...

(A H)E-10p k,#0.k, =0
prk) (0,0) = (A& k)b, = (A1) keky Db, [, 20,k, %0 .

(A") kD, Ky = 0.k, %0
(A7)
kel g 1
p®:9(0,0) = —A-! Z( .“ )A(kfjf-())p(iw)’
=i\ Je — 1
Ky 2.k, =0, (ASa)

peki) (0,0) = —A-1 Z kx -1 ky Aok, plnd,) |
A= Ju=1J\Jy

J217,20

Jutiy<kptky

(A8b)
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k, -1
=-A-l Z (k”)( Y ) Aledy7,) pUedy)
J20,21 Ju/ \Jy =1
JatTy<kptky
k,#0,k, %0, (A8¢)
k,-1
k, -1
p?%)(0,0) = -A~! i( N )A(O"“y’fy)p(%’,
j=i\gy -1
ky =0k, >2. (A8d)
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