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ABSTRACT 

A strategy to obtain sets of initial configuration to design freeform reflector surfaces is presented. This strategy brings 
the initial configuration of the reflector surface using a collection of elemental facets defined by Bezier surfaces and able 
to face the optimization process of the illumination system.   
 
The purpose of this communication is to provide initial configurations to obtain a set of parameters defining the freeform 
facets described by Bezier curves. Those parameters can be modified by a global optimization process of the lighting 
system. This task can be accomplished using a set of simple geometric elements that are the basis for calculating a first 
approximation to the facet surface. The proposed strategy provides a simple geometric design method to perform valid 
initial configurations for lighting systems with reflective surfaces that can be further optimized.  
 
The method to calculate the geometry of every single facet is based on ray tracing and uses a merit function to find the 
parameters defining the Bezier curve that best meets specifications in each elementary facet. 
 
Applying this method to 2D tangential and sagital axes, a network of control points are obtained for describing a Bezier 
surface compatible with any standard optical optimization tool and suitable for viewing with CAD tools. 
 
Keywords: non imaging optics, optical design freeform, reflector, faceted mirror  
 
 

1. INTRODUCTION  

 
An optical design process is defined by a merit function, a quality criteria and an optimization algorithm. These are the 
basic tools to lead the optical system to the final required conditions1. 
 
It is common knowledge among designers that, if the optimization process starts from a bad initial configuration, the 
system requires long time to achieve a satisfactory result and the design success is not always guaranteed. Having a 
quick and simple strategy able to construct a set of valid initial conditions could be a powerful tool on the optimization 
processes, specially on those requiring a big initial population, as methods based on genetic algorithms2.  
 
Reflector design process follows a completely different path than classical optical design. It is mainly based on energy 
contribution and its spatial and uniform distribution, thus reflector designs are supported on the relationship among three 
optical design basic elements: source, mirror and target3,4. This relationship will establish the geometrical relations 
among the elements, and also will lead to the criteria to reach the appropriate merit function. 
 
On a reflector design process three essential steps are key point in order to obtain the final reflector geometry : 

-Segmentation process that leads to mirror facets. Source and target segmentation are associated to the mirror 
segmentation process and it must be accompanied by an algorithm linking the segments of each three optical 
design basic elements . 
- Position and orientation of every single facet. 
- Facet local geometry in order to obtain the final goal of energetic distribution on the target.  



 
 

 

 

 
The benefits of using segmented optical surfaces in non imaging optics  is widely documented on literature 3 4 5 6 7 8. The 
need of faceting the mirror is for locally adjust the geometric parameters of the facets, thus the illumination goal at the 
target could be reached. 
 
Different segmentation criterion might be defined for each of the three elements to accomplish different energetic 
distribution criteria. It must be taken into account that initial conditions could be on a wide range of possibilities, as near 
of far target for instance, thus the criteria must be flexible in order to adapt to any situation. Source segmentation criteria, 
is, in general defined by the geometry and type of the source, while target segmentation is defined by the final goals of 
the illumination system. 
  
In this way, a process to build faceted optical surfaces from a geometrical structure is defined. There are several 
segmentation methods described by different authors9 10 but on all of them, two criterion must be taken into account: 
 

- Each facet must contribute on a similar way to the final result. 
- Size variation between consecutive facets must be smooth. 

These two criterion lead to a segmentation process based on energetic distribution more than purely geometric criteria ( 
fgure 1). A relationship algorithm linking source, mirror and target segment must be also defined  
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Figure 1: Example of segmentation methods. Segmentation method based on concentric division  a) Geometric criteria: 
equiangular division b) energetic criteria :segments of equal area based on golden ratio  

 
 
Once the segmentation criterion are set, depending on the design environment conditions, the facet position in terms of 
pitch and tilt, must be described . The spatial orientation must be set in terms that, on the first approach of a principal 
ray, the facet achieves the defined relationship between source, mirror and target. 
 
However the aim of this paper is to get initial shape configurations for the elementary surfaces, so we avoid the 
discussion about surfaces’ size and segmentation. 
 
The third step and the main objective of this contribution is to completely define the geometry of each facet, that is, to 
describe each curvature in order that the illumination on the target achieves the required conditions.   In literature, we 
find mainly geometries based on conics surfaces11. This has the advantage of simplicity but introduces a difficulty when 
the complete mirror has to be described mathematically in order to be manufactured, so we characterize the facets local 
geometry by Bezier curves. Afterwards the local geometry can be modified by a global optimization process of the 
lighting system.  
  



 
 

 

 

2. OBJECTIVE 

 
The objective of the communication is to set the geometrical parameters of the individual mirror’s freeform facets as 
initial conditions for further optimization. The freeform facets are described by means of Bezier surfaces that can be 
modified by a global optimization process2.Dealing with Bezier surfaces instead of conical surfaces has the advantage 
that can be represented and modified with commercial CAD tools because Bezier surfaces are easily transcribed as B-
Splines or NURBS 12 13. Once the surface is finally optimized, if defined by the standard Bspline parameters, it can be 
automatically transcribed to manufacturing tools in order to build them, being a fundamental tool for quick 
implementation into any engineering process.   
   
The facets are treated as singulars and are defined on an individual way but under global conditions. These conditions 
come from the segmentation process and from the algorisms linking source, mirror and target segments described on 
previous steps.   

3. PROCEDURE 

The freeform facet Bezier surface to be defined is a 3x3 bicubic tensorial surface with 4x4 control points. A method is 
defined to find the surface’s control points. It is a constructive method based on 2D Bezier curves  calculated on strategic 
planes previously selected.  The Bezier curves are defined under optical and energetic criterion.  
 

In order to calculate the facet’s local geometry ,the process starts from a flat reflector surface which outline is previously 
set on the mirror segmentation process. The proposed calculation method allows to transform a flat facet to a new Bezier 
surface that accomplish the optical features described by the algorisms linking source, mirror and target. In order to 
generate the Bezier surface, target and source are considered both as point objects, and the four corners of the flat 
starting facet will be the four corners of the new Bezier surface. 

A Bezier surface can be obtained from the Bezier curves contained on it, that is, given 4 Bezier curves and its control 
points, the Bezier surface containing them can be defined by the appropriate combination of control points. Taking into 
advantage a segmentation of the space enclosed into the solid angle formed by the point source and the facet is done, 
cutting the solid angle into two horizontal and four vertical slices (figure 2). Each of those slices are considered as 
strategic planes for calculation purposes. On each of those plans, a 2D algorithm is applied to obtain the best reflecting 
Bezier curve that gives the maximum concentration of energy around target from rays coming from the source. The 
obtained curves are 3rd order Bezier curves, that is, with 4 control points. With the six Bezier curves obtained, one for 
each defined slice, a mesh of control points is obtained, that combined properly, define a univocal Bezier surface 
containing those defined Bezier curves. In this way a surface is described by means of CAD compatible parameters, thus 
the surfaces can be easily introduced on optical software to optimize the system or on mechanical software to build it up.  



 
 

 

 

 
 

Figure 2: Position of point source S, point target T and the initial flat surface outlined by points R1, R2, R3 y R4. Vertical 
and horizontal axis are showed in blue lines. The continuous blue line is one of the principal horizontal axis in which a plane 
is defined and the 2D algorithm is applied in order to find the best Bezier curve. P0 and P3 are the ends of the Bezier curve, 
while P1 and P2 are the two control points that are calculated by using he proposed 2D algorithm. 

 

3.1 Algorithm on 2D  

On the following sections, the steps to obtain the best reflecting Bezier curve that gives the maximum concentration of 
energy around target from rays coming from the source are explained. 

3.1.1 Ray tracing through Bezier curves  

The first step is to develop the 2D ray tracing algorism through Bezier curves that follow equation (1)  

ሻݐሺܤ  ൌ ሺ1 െ ሻଷ ଴ܲݐ ൅ 3ሺ1 െ ሻଶݐ ݐ ଵܲ ൅ 3ሺ1 െ ଶݐሻݐ
ଶܲ ൅ ଷݐ

ଷܲ. (1) 

where P0, P1, P2, P3 are the control points of the curve an t the parameter to go along through the curve. Being the 
equation of a Bezier curve a continuous function in all points, the derivative can be found as  

ሻݐԢሺܤ  ൌ ଶݐ3 ଵܥ ൅ ଶܥݐ2 ൅ ଷܥ (2) 

Where the C1 , C2 , C3  are the following coefficients  

ଵܥ  ൌ ሺെ ଴ܲ ൅ 3 ଵܲ െ 3 ଶܲ ൅ ଷܲሻ ଶܥ ൌ 3 ଴ܲ െ 6 ଵܲ ൅ 3 ଶܲ ଷܥ ൌ െ3 ଴ܲ ൅ 3 ଵܲ  ܦ ൌ ଴ܲ (3) 

 

so the tangent line on any point of the curve can be found.  Thus, given a point source, a fan of rays covering a segment 
of the Bezier curve is defined, the impact point  Q of the ray on the Bezier curve is calculated and consequently a 
direction ሬܴԦ for each ray is obtained ( figure 3) . On the other hand, the derivative of the surface on each impact point 
allows to calculate the direction of the ray with respect the normal direction ሬܰሬԦ on the curve.   The incident angle ߠ  is 
calculated as follows  

 
sin ߠ ൌ

ห ሬܴԦ ר ሬܰሬԦห

ห ሬܴԦหห ሬܰሬԦห
 

(4) 

 

The reflecting direction ߠ’ is calculated using the Snell law in mirrors, ߠ݊݅ݏ ൌ െ sin  Ԣ applied toߠ Ԣ. Then a rotation ofߠ
ሬܰሬԦ gives the direction of the reflected ray ܴԢሬሬሬԦ. If the target is defined by a point  and a direction  forming a line, a 
collection of impact points coming from the reflected rays can be calculated.  



 
 

 

 

 

 

Figure 3: Snell law applied to a Bezier curve. Scheme of calculated values: impact point Q, derivative of the curve in Q, ሬܰሬԦ as 

the  normal direction of the curve in Q, incident angle ߠ, reflecting angle ߠ’, direction of the reflected ray ܴԢሬሬሬԦ and impact point 
I 

 

3.1.2 Design strategy in 2D  

 

Having set-up the basis of ray tracing through Bezier curves, the initial conditions design strategy can be defined. The 
start up point are four points laying in the strategic plane: source point ( S), target point  (T) and the two extreme points 
contained on the outline of the facet. The later points are defined as the end points of the desired Bezier curve (P0, P3). 
The goal is to find the two remaining Bezier control points (P1, P2) in order to obtain the best Bezier curve for the 
defined reflecting purposes.  

Prior to define the strategy, some parameters must be defined  

 Principal axis is the bisector of the lines SC and ST , being C the central point of the segment ଴ܲ ଷܲതതതതതത. 

 Shape parameter L is related to the local curvature degree of the Bezier curve. A high value of the shape 
parameter L leads to plane curves, whilst a low value of the shape parameter leads to more closed curvatures.  

 Progress factor K is a variable in the local optimization process. 

A perpendicular segment to the principal axis and centred on C is set up. The length of the segment is fixed by the shape 
parameter L and it is discretely moved through the axis following the progress factor K. In each progress step the points 
P1 and P2  are set as the ends of the segment, thus all parameters required to define a Bezier curve are obtained. (Figure 
4). Moving the segment along the principal axis, a collection of Bezier curves is obtained 

A fan of rays from the point source S is pointed towards each defined Bezier curve, so the reflecting rays and the impact 
diagram around the target is obtained for every single Bezier. Thus, using a weighted merit function of vicinity of the 
impact points with respect the point target T, the better Bezier curve is selected. 

The merit function used is 
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where N is the number of rays used, D(n) is the distance from every impact point to the target point T and and ε is a 
security factor to avoid singularities on the MF 

 

Figure 4: Two different curves obtained by displacing control points P1 and P2 along principal axis by a progress factor K . 
Distance between P1 and P2 is set by shape parameter L. 

 

3.2. From curves to surfaces , algorithm on 3D 

3.2.1. Description of bicubic 3x3 tensor product Bezier surface  
 
In this section some facts about Bezier surfaces are presented in order to better understanding the reflective surfaces 
constructive method  
 
The equation of a 3x3 Bezier surface is   
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(6) 

Where Pij are the control surface points ,  P(s,t) are points of the surface,  s and t are the parameters of the surface, and  
௜ܤ

ଷሺݏሻ and ܤ௝
ଷሺݐሻ are Bernstein polynomials which general formula is  

௜ܤ 
௠ሺݏሻ ൌ ቀ

݉
݅ ቁ ሺ1 െ  ௜ (7)ݏሻ௠ି௜ݏ

 
The control net of a 3x3 Bezier surface is a 4x4 control points mesh, thus the control points for a bi-cubic facet can be 
organized as follows   
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(8) 

 
The corresponding blending functions to express the surfaces in s and t parameters are  
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where each row and column can be seen as an iso-parametric Bezier curve. The whole surface can be thought as a 
collection of iso-parametric curves and the construction of such curves is described in terms of control curves. Control 
curves are auxiliary curves that do not lie on the surface. They consist of control points of the iso-parametric curves of 
equation 9 and their own control points are surface control points Pij ( equation 3). Thus, if one of the parameters is 
fixed, for instance s=c, the surface can be expressed as  
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(10) 

 
where R(c) is the control curve that do not lie on the surface and P(c,t) is an isoparametric curve.  
The curves defined by control points Pij ; j = 0; 1; 2;3 ( columns ) are the control curves  steered by parameter s , whilst 
the curves defined by control points Pij ; i = 0; 1; 2;3 ( rows) are the control curves  steered by parameter t 
 
There are four special iso-parametric curves : the ones defining the surface outline P(0; t), P(1; t), P(s; 0) and P(s; 1). 
They are Bezier curves defined by the columns or rows of corresponding control points, thus they are also control 
curves. In general, the only control points lying on the surface are the four corners ( P00, P03, P30, P33 )  
 
 
3.2.2 Constructive method to find the Bezier surface control points 
 
Sixteen control points are needed to build up a 3x3 tensor product Bezier surface. In this section, a constructive method 
to find those control points from several Bezier curves is explained.  
 
The strategic planes are set as slices of the solid angle formed by the point source S and the corners of the facet (fig 2). 
The horizontal direction is fixed as  ܵܶ,തതതതthe parallel direction to the segment between source S and target T.  The 
following six axis will be described in order to find six strategic planes:  

 
 Four axis of the facet contour , two horizontals and two verticals  
 Two complementary horizontal axis 

In each plane, the described 2D algorithm to find the best Bezier curve is applied. The obtained Bezier curves 
corresponding to the facet contour are the iso-parametric curves P(0; t), P(1; t), P(s; 0), and  P(s; 1) described on 
equation10  ( Figure 5b). These curves give the 12 periphery control points depicted in bold in equation 11 , thus, to 
obtain the complete mesh of control points  the four central underlined control points must be given.  
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(11) 

 
In order to find the central control points, two complementary horizontal axis are set to obtain two planes were Bezier 
curves will be find applying the 2D algorithm. The 2D algorithm needs the two end points of the curve to start the 
process , that is P0 and P3 as stated on equation (1).  For this purpose, two points of each vertical iso-parametric curves 
P(0; t), P(1; t) are considered. Thus, fixing  t=0.3, the first and last control point of one of the complementary horizontal 
axis are P0=P(0, 0.3) and P3=P(1 , 0.3) respectively .On a similar way , fixing  t=0.6, the first and last control point of 
the other complementary axis are P0=P(0, 0.3) and P3=P(1 , 0.3) respectively. To clarify notation the horizontal 
parametric curves will be stated as QH and the vertical parametric curves as QV  
 
Six Bezier curves have been obtained. The four horizontal Bezier curves  QH have their origin and final points lying on 
the two vertical  Bezier curves QV.  Q is the matrix of the control points of the QH iso-parametric curves.  
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(12) 

 
To find the central control points of the surface, only the four horizontal curves QH are necessary taking into account 
that the peripheral points of the matrix are both categories:   surface control points and iso-parametric curve control 
points.  
 
Isoparametric curves Bezier curves control points  Qij and the equivalence with surface control points Pij 

QH3 with t=1 Q03= P03 Q13= P13 Q23= P23 Q33= P30 
QH2 with t=0.6 Q02= P02 Q12 Q22 Q32= P31 
QH1 with t=0.3 Q01= P01 Q11 Q21 Q31= P32 
QH0 with t=0 Q00= P00 Q10= P10 Q20= P20 Q30= P30 

Table 1: Bezier curves control points  Qij and the equivalence with surface control points Pij 
 
The next step is to find  the remaining surface control points  P12 , P22 , P11  and P21 using the Qij curve control points 
through the construction of control curves (figure 5c).  
 
As stated on section 3.2.1 the auxiliary control curves are Bezier curves themselves defined by Bernstein polynomials. 
Taking the second and third control points of QH curves ( Q1i, Q2i i=0,1,2,3)  two control curves can be constructed. 
These two curves do not  lie on the surface, but their control points are surface control points. Taking advantage of this 
property , the remaining surface control points are calculated (figure 5d).    
 
The general expression of a Bezier surface is   
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(13) 

 
where s and t are parameters of the surface and Pij are surface control points.  
The isoparametric curves are calculated freezing s the parameter s , thus for s=ck values as  c0=0, c1=0.3, c2=0.6, c3=1 the 
coordinates of  four curves can be obtained  
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(14) 

 
On the other hand, four QH Bezier curves calculated via 2D algorithm of section 3.1 can be expressed following the 
equation 
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Thus, from equation 14 and 15 , it can be stated  the following equality 
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The Qkj values are known as Bezier control points ( table 1)  and the specific  ܤ௝

ଷሺܿ௞ሻ Bernstein coefficients can be 
calculated by equation 7 for  c0=0, c1=0.3, c2=0.6, c3=1. 
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Equaling term by term from equation  an14 and 15 a set of equations is obtained  
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ଷሺܿଵሻ

݆ ൌ 3 ՜ ܳଵଷ ൌ ଴ܤ૙૜ࡼ
ଷሺܿଵሻ ൅ ଵܲଷܤଵ

ଷሺܿଵሻ ൅ ଶܲଷܤଶ
ଷሺܿଵሻ ൅ ଷܤ૜૜ࡼ

ଷሺܿଵሻ

 

 

ܿଶ ൌ 0.6

ە
ۖۖ

۔

ۖۖ

݆ۓ ൌ 0 ՜ ܳଶ଴ ൌ ଴ܤ૙૙ࡼ
ଷሺܿଶሻ ൅ ଵܲ଴ܤଵ

ଷሺܿଶሻ ൅ ଶܲ଴ܤଶ
ଷሺܿଶሻ ൅ ଷܤ૜૙ࡼ

ଷሺܿଶሻ

݆ ൌ 1 ՜ ܳଶଵ ൌ ଴ܤ૙૚ࡼ
ଷሺܿଶሻ ൅ ଵܲଵܤଵ

ଷሺܿଶሻ ൅ ଶܲଵܤଶ
ଷሺܿଶሻ ൅ ଷܤ૜૚ࡼ

ଷሺܿଶሻ

݆ ൌ 2 ՜ ܳଶଶ ൌ ଴ܤ૙૛ࡼ
ଷሺܿଶሻ ൅ ଵܲଶܤଵ

ଷሺܿଶሻ ൅ ଶܲଶܤଶ
ଷሺܿଶሻ ൅ ଷܤ૜૛ࡼ

ଷሺܿଶሻ

݆ ൌ 3 ՜ ܳଶଷ ൌ ଴ܤ૙૜ࡼ
ଷሺܿଶሻ ൅ ଵܲଷܤଵ

ଷሺܿଶሻ ൅ ଶܲଷܤଶ
ଷሺܿଶሻ ൅ ଷܤ૜૜ࡼ

ଷሺܿଶሻ

 

 

ܿଷ ൌ 1

ە
ۖ
۔

ۖ
݆ۓ ൌ 0 ՜ ܳଷ଴ ൌ ଷܲ଴ܤଷ

ଷሺ1ሻ ൌ ૜૙ࡼ

݆ ൌ 1 ՜ ܳଷଵ ൌ ଷܲଵܤଷ
ଷሺ1ሻ ൌ ૜૚ࡼ

݆ ൌ 2 ՜ ܳଷଶ ൌ ଷܲଶܤଷ
ଷሺ1ሻ ൌ ૜૛ࡼ

݆ ൌ 3 ՜ ܳଷଷ ൌ ଷܲଷܤଷ
ଷሺ1ሻ ൌ ૜૜ࡼ

 

 
 
Where the bold Pij points are the required points, whilst the underlined Pij points are known Bezier surface control points  
This can be expressed as matrix products   
ܵܤ  כ ܲܵ ൌ ܳܵ െ ௖ܤ כ ௖ܲ (18) 
 
Where  

ܵܤ ൌ ቆ
ଵܤ

ଷሺܿଵሻ ଶܤ
ଷሺܿଵሻ

ଵܤ
ଷሺܿଶሻ ଶܤ

ଷሺܿଶሻ
ቇ ܲܵ ൌ ቆ

ଵܲ଴

ଶܲ଴

ଵܲଵ

ଶܲଵ

ଵܲଶ ଵܲଷ

ଶܲଶ ଶܲଷ
ቇ ܳܵ ൌ ൬

ܳଵ଴
ܳଶ଴

ܳଵଵ
ܳଶଵ

ܳଵଶ ܳଵଷ
ܳଶଶ ܳଶଷ

൰  
 

(19) 
௖ܤ ൌ ቆ

଴ܤ
ଷሺܿଵሻ ଷܤ

ଷሺܿଵሻ
଴ܤ

ଷሺܿଶሻ ଷܤ
ଷሺܿଶሻ

ቇ   ௖ܲ ൌ ൬
૙૙ࡼ
૜૙ࡼ

૙૚ࡼ
૜૚ࡼ

૙૛ࡼ ૙૜ࡼ
૜૛ࡼ ૜૜ࡼ

൰ 

 
Thus, Bezier surface control points  P12, P22, P11 and  P21 can be calculated solving the following matrix  
 ܲܵ ൌ ଵሾܳܵିܵܤ െ ௖ܤ כ ௖ܲሿ (20) 
Obtaining at last, all control points necessaries to build up the surface using equation 13 



 
 

 

 

 
 

 
a b 

 

c d 
Figure 4 Construction method of a Bezier surface from Bezier curves a) Bezier surface generated by Bernstein polynomials as a 
tensorial product surface.  b) Depicted in red QV vertical isoparametric curves ( fixed values: t=0 and  t=1). Points of QV 
curves have been used as ends of QH curves. Control points of QV curves are not represented on the figure. Depicted in yellow 
four QH horizontal Bezier iso-parametric curves generated with  fixed s values. Control points of QH Bezier curves also 
depicted in yellow. All the curves lie on the surface . c) Depicted in red, two central control curves that do not lie on the 
surface. Control points of QH Bezier curves lie on control curves. d)The red control points are the control points of the control 
curves. They are also control points of the surface. The 4 red points of the upper plane are the 4 control point calculated by the 
equation system.  

 
  



 
 

 

 

4. RESULTS 

 
Two examples are presented in order to see the improvement of the final spot diagram applying the proposed calculation 
method. 
 
The input data for each example are the four corners of the mirror P00,P03,P30,P33, and the position of source and target  
 
Position of source[-0.349 , 10.,0] Position of target= [0.52 ,  0,0]  Mirror’s dimension 3x3. All dimensions in mm 
 

 P0i P1i P2i P3i 
Pj3  (-1.50, 30, -1.5) (-1.50,30.10,-0.3) (-1.50, 30.10, 0.30) (-1.50, 30, 1.50) 
Pj2 (0.30,30.10,-1.51) (-0.30, 30.20, -0.30) (-0.30, 30.20, 0.30) (-0.30, 30.10, 1.51) 
Pj1 (0.30, 30.10, -1.51) (0.30, 30.20, -0.30) (0.30, 30.20, 0.30) (0.30, 30.10, 1.51) 
Pj0 (1.50, 30, -1.5) (1.51, 30.10, -0.3) (1.51, 30.10, 0.3) (1.50, 30, 1.50) 

  Table 2 : Best Bezier Surface’s control points 
 
 
Being  P00,P03,P30,P33 the four original corner points of the mirror  
 
 
 

a b 
Figure 5 Example A a) : Initial mirror with the reflected rays and spot diagram near the  target T. b) Best mirror with the 
reflected rays and spot diagram near the  target T. The spot diagram has been reduced significantly.  

 



 
 

 

 

Figure 6 Example A Calcluted 1D PSF by the vicinity of impact points to target. Blue line represents the results obtained with 
the best mirror found, The length of the spot diagram is significantly smaller than the initial device,  

 

5. CONCLUSION  

Within a general method to design freeform reflectors, the conditions to obtain initial configurations to start an 
optimization process are described.  A general outline on how to segment the three essential elements of the design, 
(source, target and mirror) is described, obtaining position and orientation of mirror’s facets.  A detailed description on 
how to obtain the geometry of the facets is presented.  
 
Departing from six points into the space as source, target, and four corners of a mirror, a method is described to find a 
Bezier surface that best fits with the algorithm linking source, target and mirror. The final result is a collection of Bezier 
surface control points that can be easily transcribed as B-Splines or NURBS in order to use those with commercial CAD 
compatible tools  
 
This process can be applied to every facet, thus acting locally facet by facet, a general initial configuration of the mirror 
is described.   
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