

**Poster Board Number: 33** E-mail: ondategui@oo.upc.edu

## Purpose: To determine the agreement between 4 different clinical methods for measuring stereoacuity in near vision in two populations groups: children and university students.

## Introduction:

The coordination of two eyes in binocular vision is important to the visual perception of depth or for the agility to see three-dimensionally (stereopsis).

Stereoscopic visual acuity (SVA) can be measured several clinical test some one polarized, some o anaglyphs and other whit real disparity.

## **Methods:**

- Measurements were performed in healthy your subjects (n=55; 21.5±1.56 years old) and childr (n=64; 8.5±0.45 years old). None of the subjects h strabismus, amblyopia, ocular disease or previou history of eye surgery. Monocular best corrected visual acuity at far and near distances  $\geq$  than 0.0 logMAR were required.
- The methods used (*Figures 1 to 4*) were two polarized test: Randot (R), Titmus-Wirt (TW); an anaglyph test: TNO (TNO); and a real stereopsis' test: Frisby (F). All of them were performed following the specifications of each method and under controlled conditions of illumination (L≈450lux).
- For the analysis, the measures of stereopsis were transformed into a logarithmic scale.
- Finally, it was analyzed the agreement of the different stereoacuity results with the standards clinical pass/ fail criteria for each one.







Figure 4: Frisby test

# **Comparison of the measures of stereopsis** using 4 different methods

J.C. Ondategui-Parra<sup>1</sup>, R. Borras<sup>1</sup>, E. Peris<sup>2</sup>, Y. Sánchez<sup>2</sup>, S. Gómez-López<sup>1</sup>, J. Pujol<sup>1</sup>

<sup>1</sup>Davalor Research Center (DRC) – Universitat Politècnica de Catalunya (UPC), Terrassa, Barcelona, Spain. <sup>2</sup>University Vision Center (CUV) – Universitat Politècnica de Catalunya, Terrassa, Barcelona, Spain.

### **Results:**

- The table 1 shows the young and children sample's results comparing all the test two by two.

|            |        | Differences  |                  |               |          | T-student |          | Bland and Altman (CI 95%) |          |                   |          |
|------------|--------|--------------|------------------|---------------|----------|-----------|----------|---------------------------|----------|-------------------|----------|
| by         |        | Mean (Log)   |                  | Median ("arc) |          | P-value   |          | Lower limit (Log)         |          | Upper limit (Log) |          |
| one        |        | Young        | Children         | Young         | Children | Young     | Children | Young                     | Children | Young             | Children |
|            | R-TW   | -0,27 ± 0,11 | -0,28 ± 0,08     | 20            | 20       | <0,001    | <0,001   | -0,48                     | -0,43    | -0,06             | -0,13    |
|            | R-TNO  | -0,33 ± 0,31 | -0,32 ± 0,23     | 30            | 35       | <0,001    | <0,001   | -0,94                     | -0,78    | 0,27              | 0,14     |
|            | R-F    | 0,02 ± 0,16  | -0,05 ± 0,19     | 0             | 0        | =0,399    | =0,052   | -0,29                     | -0,43    | 0,33              | 0,33     |
| ing        | TW-TNO | -0,06 ± 0,30 | $-0,04 \pm 0,22$ | 20            | 20       | =0,112    | =0,152   | -0,65                     | -0,48    | 0,52              | 0,40     |
| ren<br>nad | TW-F   | 0,29 ± 0,09  | 0,23 ± 0,20      | 20            | 20       | <0,001    | <0,001   | 0,10                      | -0,16    | 0,47              | 0,62     |
| DUS        | TNO-F  | 0,35 ± 0,29  | 0,27 ± 0,27      | 40            | 40       | <0,001    | <0,001   | -0,21                     | -0,27    | 0,91              | 0,81     |
|            |        |              |                  |               |          |           |          |                           |          |                   |          |

- 2) and R vs F test (Graph 3 and 4).
- In both groups the concordance was ≥95% in TW vs TNO tests and TW vs F tests.
- In children was obtained a high concordance TNO vs F tests.



Graph 1: Bland and Altman comparison between Randot and Titmus-Wirt in young sample.

## **Conclusions:**

- measurement scales (R and TW), that difficult the analysis of the results.
- both groups.

## **References:**

The range of stereoacuity results in both groups were 20"-70" for R, 40"-70" for TW, 15"-480" for TNO and 20"-85" for F.

Results in young and children sample

In both groups the differences between the values converted into a log scale were not statistically significant for any test (p>0.05). • In both groups, applying the Bland & Altman analysis, the more reduced confidence interval at 95% were found comparing the R vs TW test (Graph 1 and





Graph 2:Bland and Altman comparison between Randot and Frisby in young sample.



and Titmus-Wirt in children sample.

1. Studying the relation between clinical tests of stereopsis is a complex task because (1) few tests allow the assessment of stereoacuity threshold due to the lower range of the results is imposed by the measurement tool; (2) the measurement scales are sometimes geometric progressions (TNO and F), or random

2. The clinical cut-off criteria showed a high agreement in all cases. The pair of stereoacuity tests that presented a higher agreement was TW and TNO tests in

1. Peyman, Alireza, et al. (2011). Correct method for statistical analysis of stereopsis in ophthalmology research. Graefes Arch Clin Exp Ophthalmol. 250:781 DOI 10.1007/s00417-011-1713-x 2. Garnham, L., et al. (2006). Effect of age on adult stereoacuity as measured by diferent types of stereotest. Journal of Ophthalmology. 90(1):91-5. 3. Howard, Ian P., Rogers, Brian J. (1995) Binocular Vision and Stereopsis. Oxford University Press Inc. Pags. 8-30 i 645-657. ISBN: 0-19-508476-4. MINISTERIO DE CIENCIA GOBIERNO DE ESPAÑA

Acknowledgements: This study was funded by the Spanish Ministry of Science and Innovation with the project grant DPI2011-30090-C02-01, the European Union and DAVALOR SALUD.



**E INNOVACIÓN** 



