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1.1
Motivation: Why coupling lasers?

For some decades already, people have optically coupled semiconductor lasers with
each other. Initially, the main motivation has been to superpose the emission of sev-
eral lasers coherently, thereby boosting the output power. Different strategies have
been followed, like injection locking high-power lasers with low-power coherent seed
lasers, or to build laser arrays of edge-emitting lasers with laterally coupled lasers (see
e.g. [1] and references therein). Later also 2-dimensional arrays of Vertical-Cavity
Surface-Emitting Lasers (VCSELs) have been realized [1]. In the injection locking
approach the coupling was mostly unidirectional and via the coherent optical field.
In the case of laser arrays, the coupling can originate from different mechanisms, in-
cluding coupling via a shared carrier reservoir and/or the spatial overlap of the optical
fields. In either case the coupling times have been negligible or irrelevant for the ob-
served behavior. Nevertheless, besides the intended injection-locked stable emission,
both configuration also exhibited dynamical instabilities in the laser emission. For
an overview of the history and the physics of injection locking instabilities please see
[2]. The laterally coupled laser arrays can also exhibit dynamical instabilities (see
e.g. [3, 4]). Comparing the emission of the individual stripes in the laser arrays,
Winful et al. demonstrated one of the first examples for the possibility to synchro-
nize deterministic chaos [5]. In 1997 Hohl et al. found that weakly coupling two
nonidentical edge-emitting lasers face-to-face at a significant distance could lead not
only to locking of their optical frequencies, but also to the synchronization of their
relaxation oscillations, therefore affecting their dynamical behavior [6]. They found
that the coupled lasers can exhibit localized synchronization characterized by low
amplitude oscillations in one laser and large oscillations in the other. The laser inten-
sities exhibited periodic or quasi-periodic oscillations. A few years later, Heil et al.
and Fujino et al. found, that the non-negligible delay in the coupling of face-to-face,
mutually coupled lasers induces characteristic instabilities in their emission dynam-
ics and particular synchronization properties [7, 8]. This has inspired many studies
on the influence of delayed coupling on laser dynamics, as well as delay-coupled sys-
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tems in general. One key criteria for the classification of the dynamical behavior is
the amount of the coupling delay. Qualitatively different behavior has been found
for the cases of short [9] and long delays[7]. If the coupling delay τ is of the same
order as the relaxation oscillation period τRO of the laser (τ ∼ τRO), it is refered to
as the short delay regime. If τ ≫ τRO , it is denoted as the long delay regime. In
the following we concentrate on the long delay regime. This chapter covers aspects
of delay-induced instabilities, synchronization properties, modulation characteristics,
influence of noise and the potential application of delay-coupled lasers.

1.2
Dynamics of two mutually delay-coupled lasers

1.2.1
Dynamical instability

Starting point for the study of delay-coupled lasers has been the configuration of two
longitudinally delay-coupled semiconductor lasers in the long delay regime. A sketch
of this configuration is depicted in Figure 1.1.

Figure 1.1 Two face-to-face delay-coupled semiconductor lasers (BETTER FIGURE?)

The long delay regime, defined by τ ≫ τRO , is typically represented by geometric
coupling distances of l > 30cm, corresponding to coupling delays of τ > 1ns. We
first consider the symmetric situation, meaning very similar lasers, adjustment of their
wavelengths, identical operating conditions and symmetric bidirectional coupling. In
[7] it has been found that the delayed coupling induces chaotic intensity dynamics on
time scales ranging from sub-nanoseconds to microseconds. Figure 1.2 depicts a
typical intensity time series of one of the mutually coupled lasers.

The dynamics resembles the dynamics found for delayed optical feedback. In some
sense, these studies can be seen as an extension of the investigations of lasers with de-
layed feedback. The dynamics comprises similar Low Frequency Fluctuation (LFF)
behavior. However, here it does not originate from passive feedback, but from de-
layed coupling due to the respective other laser. HERE MORE, PLEASE! (Miguel?)
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Figure 1.2 Intensity dynamics induced by mutual delayed coupling under symmetric
conditions

1.2.2
Instability of isochronous solution

As a next step the intensity fluctuations of the two lasers have been compared with
respect to each other. Figure 1.3 depicts the intensity dynamics of both lasers.
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Figure 1.3 Comparison of the intensity dynamics of two delay-coupled lasers under
symmetric conditions

For ease of comparison the second time series is vertically flipped. The two lasers
exhibit correlated power dropouts and also correlated sub- nanosecond oscillations.
However, these oscillation do not occur at the same time. The maximum correlation
peak - reaching values of C > 0.9 - is obtained for a relative time shift, roughly
given by τ or −τ . Although the configuration is completely symmetric, the behavior
is not. The lasers are not identically synchronized and show different temporal dy-
namics. They exhibit a form of generalized synchronization in which their behaviors
are determined by the dynamics of the respective other laser, but how the dynam-
ics between the two lasers relates to each other could not been identified yet. It is
not given by a simple functional relationship. The maxima in the cross–correlation
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function occurring at +/− τ indicate that one laser follows the respective other laser
with a delay, however only showing similar, not identical, dynamics. Therefore, this
type of generalized synchronization has also been referred to as leader–laggard type
synchronization. While for completely symmetric conditions leader and laggard role
emerge spontaneously and can even change in time, the role can also be externally
controlled by introduction of slight asymmetries. One way to achieve this is by in-
troducing a relative spectral detuning of the emission of the two lasers. Already for
nominal detunings of only about 1GHz, being small to typical optical locking ranges
of larger than 10 GHz, the leader and laggards role can be fixed. For edge–emitting
lasers the laser with higher frequency becomes the leader in the dynamics [7, 10].

The emission dynamics of delay–coupled laser configurations – here in particular
for two mutually delay–coupled lasers – can be modeled (assuming single solitary
laser mode emission and low to moderate coupling) via a set of rate equations, re-
sembling the Lang–Kobayashi equations [11] for the laser with feedback:

dotE1,2(t) = ∓i∆E1,2 +
1

2
(1− iα)

[
gn,ini

]
E1,2 + κcE2,1(t− τ) , (1.1)

with κc being the coupling strength. E represents the slowly varying electric fields
around the symmetric reference frame (Ω2+Ω1)/2, and ∆ the detuning of the lasers
in this reference frame. (Ω1,2 is the free running optical frequency of laser 1 and 2,
respectively. The complementary equations for the excess carrier densities ni read:

ṅi = (p− 1)
Ith,i
e

− γeni −
(
Γ0 + gn,ini(t)

)
∥Ei∥2 , (1.2)

where, as before, Ei(t) refers to the optical field generated by laser i and gn,i the
differential gain of laser i. Ith,i is the bias current at the solitary threshold of laser i,
e is the electron charge, and p the pump parameter. ∥ · · · ∥ denotes the amplitude of
the complex field.

Only from the experimental studies, one might assume that asymmetries in the
setup or laser equations are the origin of the symmetry breaking, resulting in the
observed leader–laggard behavior. This can be tested in the modeling, where one can
choose perfectly symmetric conditions. As a result of the modelling, the same leader–
laggard behavior is being found, corresponding to the generalized synchronization
solution. Still, due to the symmetry of the system a symmetric solution has to exist,
and in the modeling one can even prepare the system to start in this solution. Without
noise, the system might even prevail inthis state for some time, however, as soon
as one laser experiences a tiny perturbation, the system escapes to the generalized
synchronized solution. The symmetric solution is unstable. This is shown in Figure
1.4.

Remarkably, this behavior, that the symmetric, isochronously synchronized solu-
tion is unstable in delay–coupled oscillators, holds not only for the chosen parameter
conditions, but for all considered parameter situations and even for a large class of
delay–coupled oscillators in general. It is only recently, that this general property has
been understood [? ? ].
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Figure 1.4 Intensity dynamics of two mutually delay–coupled lasers, obtained by
modelling. At t = 0 the system is prepared in the isochronously synchronized state. At
t = 200 a small perturbation is applied, resulting in the emergence of the leader–laggard
state. courtesy of Claudio Mirasso.

1.3
Properties of Leader–Laggard synchronization

1.3.1
Emergence of Leader–Laggard Synchronization

As we have seen above, when two mutually coupled lasers operate have the same
optical frequency, they synchronize with a lag, with a random change in the leader and
laggard role. To understand the emergence of this symmetry breaking in the system,
one can analyze the transition from unidirectional to bidirectional injection. This can
be accomplished, for instance, with the experimental setup shown in the left panel
of Fig. 1.5, in which the directionality of the coupling is varied in a controlled way,
by separating the coupling path into two unidirectional paths and adding a neutral-
density filter of varying transmittance to one of the paths. This allows one to see
the transition from stable unidirectional injection to chaotic synchronization with a
leader in the dynamics, and how this chaotic lag synchronization arises in the system.

In the unidirectional case the receiver laser (LD2) is stable at very low injection
levels, with an optical power close to that of the emitter laser. When the (unidirec-
tional) coupling is increased, the receiver laser goes from stable to oscillatory output.
This oscillation becomes more and more unstable if the coupling is increased further,
or by adding a reverse injection. When we depart from the unidirectional coupling
state by gradually increasing the injected light coming from the reverse path, chaos
arises in the system, with a clear symmetry breaking introduced by the time delay of
the coupling paths.

The transition to chaos can be observed in the output intensities of the two lasers.
The right panel of Fig. 1.5 shows the time traces of the two lasers (LD1 at the top and
LD2 at the bottom) and the corresponding cross-correlation functions for increas-
ing back injection. In the case of purely unidirectional injection [Fig. 1.5(a,b)] the
emitter laser is naturally stable, and the receiver laser exhibits small oscillations as
a result of the injection. The respective cross-correlation function has its maximum
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Figure 1.5 Left panel: experimental setup to examine the emergence of lag
synchronization. Two lasers LD1 and LD2 are optically coupled through two unidirectional
pathways running in opposite directions. A neutral-density filter in the path from LD2 to
LD1 allows to tune the coupling from purely unidirectional from LD1 to LD2, to purely
bidirectional. Right panel: (a,c,e) output intensities of LD1 (top) and LD2 (bottom) and the
corresponding cross-correlation functions (b,d,f) for increasing back injection from LD2 to
LD1 (from top to bottom).

at −τ1,2 (the flight time from LD1 to LD2). When the back injection is nonzero but
small, the cross-correlation function reveals a quasi-periodic state due to the very high
asymmetry in the couplings. The highest peak appears at −τ1,2, but several higher
harmonics occur at lags τ1,2 + τ2,1. Quasi-periodicity is revealed by growing peaks
at those lags in the cross-correlation function. The chaotic dynamics typical of sym-
metric coupling is observed in the weakly assymmetric coupling case [Fig. 1.5(e,f)],
and is characterized by a quick decrease to zero of the cross-correlation function
away from its maximum. The difference in the rates at which the envelope of the
cross-correlation peak decays characterizes the transition from a quasi-periodic to a
chaotic behavior. These results show that the symmetry-breaking behavior under-
lying the leader-laggard dynamics [7] emerges from a quasi-periodic state that later
transforms into a chaotic state with a well defined leader in the dynamics. The quasi-
periodic state is characterized by out-of-phase synchronized outputs, with a cross-
correlation function exhibiting a clear maximum at −τ1,2, and secondary peaks at
a distance equal to the sum of the external cavities, while in the chaotic case the
secondary peaks suffer a loss of correlation.

1.3.2
Control of lag synchronization

When the output of a semiconductor laser with feedback, operating in the LFF regime,
is introduced into a second laser, power dropouts are also induced in the latter, pro-
vided the two lasers are similar enough in their physical properties. The dropouts are
synchronized between the two lasers and, in general, the emitter laser leads the dy-
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namics (i.e. the dropouts in the emitter precede those in the transmitter) [12, 13] with
a time lag equal to the coupling time. If the coupling and feedback strengths are tuned
such that the total injection (feedback + coupling) is equal for the two lasers, and if
the feedback time is larger than the coupling delay, the emitter laser can anticipate
the receiver [14]. This synchronization state is, nevertheless much less common and
more difficult to reach than the usual lag synchronization state discussed here. In-
terestingly, a similar dynamics is observed in the case of two bidirectionally coupled
lasers, even in the absence of an external mirror, as we have seen above. We remind
the reader that when the two lasers have the same frequencies, the leader and laggard
roles alternate randomly between the two lasers, while in the presence of frequency
detuning the laser with higher frequency is the one leading the dynamics, again with
a time lag equal to the coupling time. In the bidirectional case, a well defined leader
also exists when one of the lasers is subject to feedback [15]; this behavior can again
be attributed to the existence of a frequency detuning between the lasers, which is in
this case induced by the feedback itself [16].

A question is then how is the transition between the unidirectional and bidirectional
coupling schemes. To that end, one can use the experimental setup shown in the left
panel of Fig. 1.6. In this scheme two semiconductor lasers, one of them subject
to optical feedback from an external mirror, are coupled optically via two distinct
paths through which light is made to travel in opposite directions with suitable optical
isolators. The directionality of the coupling can be varied in a controlled way by
tuning a neutral-density filter in one of the two paths.

The right panel of Fig. 1.6 shows the dynamical behavior of this system when cou-
pling varies from purely unidirectional to purely bidirectional. In the absence of
coupling from any of the two paths laser LD2 is stable, while laser LD1 operates
in the LFF regime due to the optical feedback from the external mirror M. When a
sufficient amount of light from LD1 is injected into LD2, the latter exhibits power
dropouts as well, following those of LD1 with a certain time lag (see plot a in the
right panel of Fig. 1.6). The time lag can be determined by comparing the times
at which synchronized power dropouts occur in the two lasers. A histogram of the
time differences between synchronized power dropouts corresponding to this regime
is shown in plot b. The lag is calculated as the difference between the dropout times
in LD1 and LD2. Therefore, a negative value corresponds to an advance of LD1 over
LD2, as expected and evident from the vertical dashed lines in plot a. Intuitively, this
lag is produced by the time needed by the light of one laser to affect the dynamics
of the other one. We note that another synchronized state is possible in this setup,
in which the lasers are synchronized at zero-lag (provided the feedback and coupling
times are equal) [18], but this requires a very careful tuning to make the coupling and
feedback strengths equal, and extremely similar lasers [12]; this regime is not shown
here.

When the light emitted from LD2 is allowed to reach LD1, it becomes possible
to control the strength of that coupling, varying the transmittivity of filter F2, while
keeping the amount of light injected from LD1 into LD2 constant. Plot c in the right
panel of Fig. 1.6 shows that for moderate transmittivities the situation does not change
much with respect to the purely unidirectional case (LD1 leads the dynamics a time
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Figure 1.6 Left panel: experimental arrangement of two semiconductor lasers coupled via
two independent unidirectional paths. Laser LD1 receives optical feedback from mirror M.
Right panel: Experimental output intensities (left column) and the corresponding histogram
of time differences between 1000 synchronized dropouts in the two lasers (right column)
for increasing transmittance of the filter F2 (from top to bottom). The time traces in the left
plots have been shifted vertically for clarity, with LD1 corresponding to the top trace and
LD2 to the bottom trace in each plot. Vertical dashed lines in those plots signal the
occurrence of a dropout in laser LD1. From Ref. [17].

∼ τc), even though a substantial amount of light from LD2 is already entering LD1.
For larger back-coupling, however (plot e) laser LD2 begins to have a certain influ-
ence and takes over the leader role randomly, leading to a bimodal and symmetric
histogram of time differences between dropouts (plot f). The situation resembles that
of two mutually coupled lasers without mirrors described above [7], even though that
case is perfectly symmetrical and the present one is not, since one of the lasers (LD1)
is subject to feedback but not the other. Finally, when the the amount of light being
coupled back from LD2 into LD1 is large enough, until the coupling is purely bidi-
rectional (plots g,h), laser LD2 takes over the leader role permanently: its dropouts
consistently precede those of LD1, again a time ∼ τc.

So, naturally, the question arose whether the zero-lag solution always has to be
unstable, or whether this can be overcome by modifying the coupling configuration.
This question resulted in the extension to a chain of three mutually delay–coupled
semiconductor lasers, as discussed in the following section.
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1.4
Dynamical relaying as stabilization mechanism for zero-lag
synchronization

1.4.1
Laser relay

We have shown in the previous Sections that the natural synchronized state of two
delay-coupled lasers is one in which one of the lasers leads the other one a time equal
to the flight time between the lasers. However, in many natural situations oscilla-
tions between distant dynamical elements can be isochronous even in the presence of
non-negligible coupling delays. A specially important example of this phenomenon
arises in the nervous system, where zero-lag synchronization has been observed be-
tween distant cortical regions [19, 20] and pairwise recordings of neuronal signals
[21]. The mechanism of this phenomenon, through which two distant dynamical ele-
ments can synchronize at zero lag even in the presence of non-negligible delays in the
transfer of information between them, has been debated for many years in the field of
neuroscience. Complex mechanisms and neural architectures have been proposed to
answer this question [22, 23, 24] that, however, exhibit limitations in the maximum
synchronization range (see e.g. [23]), and rely on complex network architectures
[24].

Coupling in mutually injected semiconductor lasers is naturally subject to delay.
Thus, coupled lasers can be used to explore potential mechanisms for zero-lag syn-
chronization. The left panel of Fig. 1.7 shows a simple mechanism, consisting of three
similar dynamical elements coupled bidirectionally in a series, in such a way that the
central element acts as a relay of the dynamics between the outer elements [25]. The
central laser, which does not need to be carefully matched to the other two, mediates
their dynamics. Without coupling, the three lasers emit constant power, representing
damped relaxation oscillators. In the presence of coupling, the lasers exhibit chaotic
outputs that, remarkably, are synchronized with zero lag between the outer lasers,
while the central laser either leads or lags the outer lasers. The right panel of Fig. 1.7
shows the time series of the output intensities (left column), in pairs, and the corre-
sponding cross-correlation functions Cij(∆t), defined in such a way that a maximal
cross-correlation at a positive time difference ∆tmax indicates that element j is lead-
ing element i with a time advance ∆tmax, and vice versa. In the situation shown
in the figure, the optical frequency of the central laser was slightly decreased with
respect to the outer lasers (negatively detuned) by adjusting its temperature, for opti-
mal synchronization quality. Zero-lag synchronization between the intensities of the
outer lasers can be clearly seen in Fig. 1.7(a), and also manifests itself in the cross-
correlation function shown in Fig. 1.7(d), which presents an absolute maximum at
∆tmax = 0 (i.e. at zero lag). The correlation between the central laser and the outer
ones [Fig. 1.7(b,c)] is not as high, and presents a non-zero time lag, as can be seen
from the cross-correlation functions shown in Fig. 1.7(e,f). This lag coincides with
the coupling time between the lasers. The fact that ∆tmax is negative means that the
central laser dynamically lags the two outer lasers. Therefore, the outer lasers are
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Figure 1.7 Left panel: a central laser (LD2) exchanges information between other two
(LD1 and LD3). The coupling time between the central and outer lasers are matched to
each other between both branches. Right panel: time series (a-c) and cross-correlation
functions (d-f) of the output intensity of the three laser pairs, for a negatively detuned
central laser. The time series of the central laser are shifted τc for an easier comparison.
Adapted from Ref. [25].

not simply driven by the central one. This zero-lag synchronization is quite robust
against spectral detuning of the lasers, even for positive detuning (in which case the
central laser leads the dynamics).

1.4.2
Mirror relay

A main argument, why zero-lag synchronization could be observed in the laser chain,
is that the relay laser in the center is redistributing the signals of the respective outer
lasers symmetrically. Consequently, the questions arises whether the central laser
could be replaced by a semi- transparent mirror as relay element. The corresponding
scheme is depicted in Figure 1.8.

Figure 1.8 Scheme of two mutually delay–coupled lasers with semi-transparent mirror as
relay.

The two semiconductor lasers are mutually coupled through a partially transparent
mirror placed in the coupling path between both lasers. Therefore, the light injected
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into each laser is the sum of its delayed feedback from the mirror and the light com-
ing from the respective other laser. For the numerical studies coupling coefficients
and feedback strengths were chosen such that the lasers operate in a chaotic regime.
In numerical investigations of this configuration identical synchronization between
the dynamics of both lasers was obtained for arbitrary coupling distances between
the lasers. For the laser being precisely in the center zero–lag synchronization was
found. Changing the position of the mirror turned out not to be relevant for the syn-
chronization quality. Even for strongly asymmetric positioning of the mirror identical
synchronization was still observed, then with a temporal offset given by the difference
of the corresponding delay times. Thus, identical and even zero–lag synchronization
can be achieved with different realizations of the relay element. A parameter which,
however, turned out to be critical for the semi- transparent mirror configuration for
obtaining good synchronization quality was phase differences between the optical
coupling and feedback phases. While the experiments in the all-optical scheme are
not easy to sufficiently control REF IDO ET AL. , using electro-optic systems suc-
cessful identical synchronization could be demonstrated experimentally[? ].

The results discussed above show that zero-lag synchronization can be achieved
in delay-coupled lasers with a relay element in the center. However, it is not clear
under which conditions this solution is stable, or whether it is even unconditionally
stable due to the common driving of the outer lasers through the relay element. A
detailed stability analysis showed the existence of unstable regimes, in particular for
not sufficiently strong coupling [? ]. In addition, it was found that even in large
regimes where the synchronization manifold is transversely stable, characterized by
negative transverse Lyapunov exponents, still bubbling can occur. Bubbling is the
phenomenon of eventual escapes from a synchronization manifold due to an invariant
set being transversely unstable. Responsible for the occurrence of bubbling are saddle
points, corresponding to destructive interference conditions of the optical field in the
outer lasers and the incoupled fields. These saddle points are not only crucial for the
onset of the coupling-induced dynamical instabilities, but also for eventual escapes
from the synchronization manifold, resulting in bubbling behavior.

1.5
Modulation characteristics of delay-coupled lasers

1.5.1
Periodic modulation

The power dropouts exhibited by a single semiconductor laser with optical feedback,
when operating in the regime of low-frequency fluctuations, have been shown to be-
come periodic when an external modulation is applied to the injection current [26, 27]
or to the feedback strength [28]. The laser response to an external harmonic modula-
tion, however, is greatly enhanced by coupling [29] (similarly to what is found in gen-
eral models of nonlinear media [30]). Coupling leads to a very efficient entrainment,
which means that less pump current modulation is needed, and thus the modulation
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is practically absent in the output of the coupled system (in contrast to what happens
in single lasers [26]. Thus in the presence of coupling the low-frequency dropouts
are not distorted, but only entrained.

Figure 1.9 shows the response of a system of two optically coupled lasers to a vari-
ation of the coupling strength, when one of the lasers is subject to a periodic modu-
lation of its pump current. At the maximum coupling (i.e. when the amount of light
that is injected in one laser from the other is maximum given the experimental condi-
tions, top row in the figure), the two lasers are synchronized (only the non-modulated
laser output is shown) and perfectly entrained to the periodic signal. For intermediate
values of coupling (middle row) the entrainment persists, and only when the coupling
strength is reduced more than 50% of its maximum value, the quality of the entrain-
ment is noticeably degraded (bottom row). The results are also given in terms of the
probability distribution function of the time intervals between consecutive dropouts.
The irregular shape of this function in Fig. 1.9(c) indicates loss of entrainment. Thus,
for large enough coupling the response of the two lasers to a pump modulation of one
of them is a perfect entrainment, with no direct evidence of the current modulation
in the output intensity of either laser, in contrast with the case of a single modulated
laser with feedback, in which case the laser is also fully entrained but the current
modulation is strongly present in the laser’s output [26, 31].
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Figure 1.9 Experimental time series of one of two optically coupled lasers, when the
coupling between the two lasers is decreased, which is accomplished by placing a neutral
density filter between the two lasers. Relative to the maximum coupling: (a) 100%, (b)
83.9% and (c) 45.8%. The right panels show the corresponding probability distribution
functions of the intervals between dropouts. From Ref. [31].

It is also interesting to examine the situation in which both lasers are subject to
external pump modulation with different frequencies. Let us consider, for instance,
the case of two harmonics of a common fundamental f0, defined by f1 = kf0 and
f2 = (k + 1)f0 with k > 1. This is the simplest example of a complex signal, and
previous experimental and theoretical studies have shown that certain nonlinear sys-
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tems subject to this type of complex signal respond at the fundamental frequency,
which is not present in the input. This phenomenon is known as the missing funda-
mental illusion, and has recently been interpreted in terms of an optimal response of
excitable systems to a suitable amount of noise, under the name of ghost stochastic
resonance [32].

Ghost resonant behavior occurring in isolated dynamical elements has been re-
ported experimentally in lasers [33, 34] and electronic circuits [35]. Experiments
have shown that the phenomenon also arises in two coupled lasers, both when the
lasers are stable in the absence of coupling [36] (so that the power dropouts are in-
duced by coupling), and when the lasers exhibit power dropouts even without cou-
pling [37] (so that the isolated lasers behave as bona fide excitable systems [38, 39]).
Recent studies in neuronal systems, both theoretical [40, 41] and experimental [42],
show that coupling is able to mediate the processing of distributed inputs in networks
of neurons (which possess independent dynamics even in the absence of coupling).
The experiments that we describe in what follows confirm the existence of this emerg-
ing property of excitable networks, using semiconductor lasers with optical feedback
as highly controllable excitable systems.

The behavior of a system of two bidirectionally coupled lasers for k = 2 and
f0 = 5 MHz is shown in Fig. 1.10 for increasing amplitudes of the modulation,
assumed equal for both signals. The figure shows the time trace of the intensity of

Figure 1.10 Experimental output intensity of one of two coupled lasers (a,b,c), the
corresponding probability distribution functions (d,e,f) of the time intervals between
consecutive dropouts (right column), and the corresponding RF-spectrum of the output
intensity (g,h,i) for increasing values of the modulation amplitude: (a,d,g)
A1 = A2 = 0.285 mA; (b,e,h) A1 = A2 = 0.643 mA; (c,f,i) A1 = A2 = 0.750 mA. The
input frequencies are f1 = 10 MHz and f2 = 15 MHz, corresponding to inter-pulse periods
T1 = 100 ns and T2 = 66.7 ns. The ghost frecuency is f0 = 5 MHz, corresponding to a
period T0 = 200 ns. Adapted from Ref. [37].

one of the two lasers on the left, and the probability distribution of the interval be-
tween dropouts on the right (the results are basically identical for the other laser, since
both lasers are synchronized). The inter-dropout probability distribution is computed
from a collection of 1000 dropouts in each case. For a small modulation amplitude
(top row in Fig. 1.10) the dropouts occur infrequently at different periods. As the
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amplitude grows (middle row), most inter-pulse intervals occur at a definite period
T0 corresponding to the fundamental frequency f0, which is not present in either of
the input signals. For larger amplitudes (bottom row), the input signals take over
and dropouts begin to occur at the (larger) input frequencies, reducing the response
of the system at the missing fundamental frequency. Therefore, a resonant behavior
is observed with respect to the modulation strength: for an intermediate modulation
amplitude, the system optimally processes the distributed inputs. We note that this
resonance is nontrivially arising from the interplay between the direct electrical mod-
ulation of the pump current and the indirect optical driving coming from the other
laser.

In the experimental conditions used, the lasers are detuned such that one of them
consistently leads the dynamics, with a time lag equal to the coupling time [7]. The
behavior of the system does not change if the input modulations are switched be-
tween the leader and laggard lasers. It is remarkable that the distributed signals are
processed irrespective of this underlying asymmetry in the coupled dynamics.

The subharmonic resonance presented above can also be observed at the level of the
RF-spectrum of the lasers’ outputs, as shown in the right panels of Fig. 1.10. Peaks
of the three frequencies involved, the two (higher) input frequencies f1 = 10 MHz
and f2 = 15 MHz and the fundamental frequency f0 = 5 MHz, are clearly observed
in the spectrum. The height of the peaks at f1 and f2 increases monotonically with
the modulation amplitude (from top to bottom), while the peak at f0 is highest at
an intermediate amplitude, which is a clear indicator of a resonance occurring at the
missing fundamental frequency [32].

1.5.2
Noise modulation

Over the last decades, much attention in the field of stochastic processes has been
paid to the question of how noise can lead to order [43, 44, 45]. In a seminal work,
Bryant and Segundo [45] showed that the introduction of white noise in a neuron
model produced an invariance in the firing times. In that study, repeating stimula-
tions of the neuron with the same segment of Gaussian-white noise current resulted
in a reproducible inter-spike time response. A similar study was made in neocortical
neurons of rats by Mainen and Sejnowski [46]. They showed that for constant stimuli
the spike trains were imprecise, whereas the introduction of fluctuations in the stim-
uli, resembling synaptic activity, produced spike trains with reproducible timing. In
lasers, a good example of the regularity introduced by noise was given by Uchida et
al. [47], who showed the reproducibility of a laser’s response to a noisy drive sig-
nal. Specifically, a noisy signal was sent repeatedly to a Nd:YAG microchip laser
and the system was capable, after a transient, to produce identical response outputs.
For small amplitude of the added noise, the outputs are not identical because the re-
laxation oscillations driven by internal noise dominate the laser output. There is an
optimal noise level for which the outputs are identical, because the common-noise-
driven signal overcomes the internal noise.

Another constructive effect of noise is inducing the synchronization of coupled
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systems. This topic has been studied theoretically in coupled chaotic systems [48, 49,
50], in experimentally in chaotic circuits [51]. The common feature in all these works
is that when a certain amount of common noise is introduced, the coupled systems
are driven to collapse onto the same trajectory. This property can be used to achieve
the isochronal solution in a symmetrical bidirectionally coupled semiconductor laser
system, by applying a common source of external noise to the pump current of both
lasers (see Fig. 1.11). For large enough noise intensity, the system reaches a common
output without lag between them, stabilizing the isochronal solution.

Figure 1.11 Experimental setup leading to noise-induced synchronization. Two
semiconductor lasers LD1 and LD2 are coupled by mutual injection, and subject to a
common noise source being applied to their pump currents.

The left panel of Fig. 1.12 shows the correlated dynamics of the two lasers when
the amount of common noise increases. The temperatures of the lasers are adjusted
such that their frequencies are as similar as possible, in order to optimize the mutual
injection. The pump currents and the bidirectional alignment are then optimized
by looking for the maximum enhancement of the output power due to the mutual
injection. The pump currents are fixed slightly above their solitary threshold, for
which the lasers operate in the LFF regime. This regime allow for an easy observation
and measurement of the isochrony during the experiments.

With the system symmetrically injected, the same noise source is introduced si-
multaneously into the pump current of the two lasers through an internal bias-T of
the laser mounts. In that way, the noise is superimposed to the DC operating level
set by the current controller. The left panel of Fig. 1.12 displays the output inten-
sities and the corresponding cross correlation functions for increasing values of the
noise level. The output intensities are displaced vertically for clarity, with the top
trace representing the output of LD1 and the bottom trace representing LD2. With-
out noise (plots a and b) LFF dynamics can be observed in the output intensities, and
the correspondent cross-correlation function shows a maximum at a lag equal to the
flight time τc between the lasers. The LFF dynamics starts to disappear as the noise
level increases (plot g), even though the cross-correlation still has its maximum at τc
(plot h). Finally, for a large enough noise level (plot i) a correlation peak arises at
zero lag (plot j). These results show that common noise is able to induce zero-lag
synchronization in mutually coupled lasers.

The zero-lag synchronized state represented in plots (i,j) of the left panel of
Fig. 1.12 are nevertheless markedly different from the intrinsic dynamics of the
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Figure 1.12 Left panel: experimental output intensities (a,c,e,g,i) and corresponding
cross correlation functions (b,d,f,h,j) for different values of injected noise level (increasing
from top to bottom). Right panel: Numerical cross-correlations functions for filtered (top)
and unfiltered (bottom) signals for a fixed noise intensity and varying values of the noise
correlation time (decreasing from top to bottom).

lasers. In particular, the cross-correlation of the signals shows a broadening of its
maximum peak. In order to determine the origin of this broadening, one can turn to
numerical simulations of the system, which allow for an arbitrarily large temporal
resolution of the dynamics and an infinite bandwidth of the noise being added to
the lasers’ pump currents. Indeed, experimental monitoring of the dynamics has a
resolution that is strongly limited by the bandwidth of the photodetectors and oscil-
loscope, and the bandwidth of the common noise is also limited by the frequency
filtering characteristics of the bias-T and laser mount. If we ignore bandwidth limita-
tions in our experimental system, we can simulate the output intensities for different
noise correlation times and compare the cross-correlation functions for filtered and
unfiltered signals, to find a value that shows isochrony for both kinds of signals. The
correlation time of the noise is known to play an important role on the dynamics of
chaotic lasers [52]. Numerical simulations can be performed on a Lang-Kobayashi-
type model of the two mutually coupled lasers [7].

The right panel of Fig. 1.12 shows the cross-correlation functions of the filtered (top
traces) and unfiltered (bottom traces) time series of the laser intensities, for decreasing
correlation times of the noise. The top trace in (a) corresponds to parameters that
approximately match the conditions of the experimental results shown in plots (i,j) of
the left panel of Fig. 1.12. The first thing that can be noted is that the zero-lag peak in
the cross-correlation is very small in the case of the unfiltered signals (bottom trace in
plot a of the right panel of Fig. 1.12). This shows that the noise acts only in the slow
dynamics of the system. As the bandwidth of the noise increases (i.e. its correlation
time decreases, from top to bottom in the right panel of Fig. 1.12), the zero-lag peak
in the cross-correlation of the unfiltered time series starts to increase in amplitude
with respect to the side peaks, until finally for a small enough time correlation (plot



Kathy Luedge, editor: Nonlinear Laser Dynamics: From Quantum Dots to Cryptography —
Chap. 1 — 2011/1/30 — 17:11 — page 17

17

d) zero-lag synchronization arises not only at slow time scales, but also in the fast
dynamics. This confirms that the non-zero correlation time of the noise is the cause
of the differences between both types of cross-correlations. For high correlation time
of the noise, the system only reacts to the fluctuations in its slow dynamics, whereas
in the limit of very low noise correlation time both dynamics can respond, for the
same noise strength.

1.5.3
Application: key exchange protocol

Coupled semiconductor lasers play an important role in many applications. Among
them longitudinal coupled-cavities lasers (e.g., C3 lasers) have been used for spec-
tral selection; coherent coupling allows for high output power with good spectral and
beam properties; laterally-coupled laser arrays have been realized to also achieve co-
herent coupling. As presented in the previous sections, a delay in the coupling path
introduces dynamical instabilities and particular synchronization properties which
can be harnessed for applications. Here, we would like to give a brief perspective of
suggested or foreseen applications. Delayed–coupling configurations are being con-
sidered for applications in encrypted communication. In [? ] a novel key exchange
protocol has been suggested, utilizing the synchronization properties of two mutu-
ally delay–coupled semiconductor lasers with the semi-transparent mirror as relay
element.

MIGUEL, CAN YOU ELABORATE ON THIS?
Finally, networks of delay-coupled lasers are currently being studied for the realiza-

tion of novel information processing concepts, being inspired by neuronal systems.
They are expected to represent a suitable reservoir for the realization of a Liquid State
Machine. This illustrates that delay effects might become very useful, improving ex-
isting applications or allowing for novel applications.

1.6
Conclusion

Delay-coupled semiconductor lasers show a rich phenomenology of dynamical prop-
erties and synchronization scenarios. They represent well-controllable test-beds to
study these systems which are being recognized to be of interest in more and more
areas of science.

PLEASE MORE
In addition, we illustrated the application potential of the reported configurations.
PLEASE MORE
The configurations discussed in this chapter represent only a few possibilities

among many more. Motivated by the described coupling configurations, more com-
plicated network arrangement of many delay–coupled lasers or other delay-coupled
oscillators could be relaized. They represent a very promising and challenging field
of study. These approaches might help us to understand certian aspects of brain
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dynamics, and even more to explore and realize bio-inspired concepts of information
processing like Reservoir Computing.
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