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Abstract: A method for the numerical implementation of the generalized Coddington equations for 
ophthalmic lens design is presented. The tracing method is performed surface by surface and includes 
both finite ray tracing and generalized ray tracing methods. While finite ray tracing is used to provide the 
main direction of propagation of the considered ray, generalized ray tracing provides the principal 
curvatures of the wavefront and its orientation after being refracted by the lens. Three-dimensional 
representation of sagital and tangential powers is attained for all directions of gaze, and results are shown 
for some case studies. The validation of the proposed approach is double-checked using the spherical lens 
case.  

1. Introduction 

The different combinations of parameters that define the ophthalmic lens design cause 
different performance of the lens off-axis [1-3]. The classical theory of ophthalmic lens 
design proposes that the condition of compensation of the refractive error should be kept 
over the surface defined by the position of the remote point at all directions of gaze [2,4-6]. 
Although the aperture of the eye may be considered as small in general, this ideal condition 
is impossible to attain in practice, as only the curvature of one surface is available to the 
designer. For directions of gaze outside the optical axis, the image of an object blurs due to 
the presence of oblique astigmatism and the associated changes in effective power. The 
image of eccentric object points generates both a tangential and a sagittal focal line which 
change with the oblique angle in different ways (Fig.1).  

 

Figure 1. Oblique astigmatism in an off-axis object point for the lens-eye system; the different 
behavior in the sagital and tangential planes induces two different foci, creating oblique astigmatism 

These foci can be obtained using the classical equations developed by Coddington in the 
early 19th Century [7]. In another approach, these foci can be obtained by wavefront 
tracing or generalized ray tracing. In this case the shape and orientation of the local 
wavefront in the vicinity of the principal ray becomes the parameter of interest.  

We have developed a detailed numerical implementation of the equations proposed for 
ophthalmic lens design using the generalized ray tracing approach [8-11] under a Matlab 
environment. The implementation is described and some results are presented. The 
validation is performed using Beam4, a commercial ray tracing software, and Primer, a 
software for ophthalmic lens design based on the classical Coddington equations [12].  
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2. Finite ray tracing 

When a ray arrives at a refracting surface, the directive vector of the refracted ray (r’) 
can be expressed as a linear combination of the incident ray vector (r) and the surface 
normal (n) as: 
    r' r n   (1) 

This expression is the vectorial Snell law for refraction, with   the ratio of refractive 
indexes and  defined as:      

   2 2 1 2
1 [1 ( ) ]( )r n r n         (2) 

3. Generalized ray tracing or wavefront tracing 

Generalized ray tracing explains what happens to the principal directions and principal 
curvatures of the wavefront after propagation and refraction [8-12].  For propoagation, it 
can be shown that the principal directions of the wavefront are unchanged, and that the 
centers of curvature are fixed. For refraction, the curvatures of the refracted wavefront can 
be calculated using the generalized ray tracing equations which provide the refracted 
wavefront curvatures and the related torsion of the principal directions. 

                        

 

 
Figure 2. (a) Outline for ray tracing. A surface S separates two media of constant refractive index 

n and n’. An incident ray, with direction vector r, intercepts the refracting surface at a point P, giving 
rise to a refracted ray whose direction vector is r’. n is the normal to S at P. (b) Generalized ray 

tracing. The representation includes the incoming and outgoing wavefronts W and W’.  
 

4. Ray tracing equations and wavefront equations for ophthalmic lens design 

The evaluation method used in ophthalmic lens design considers that light behaves as if 
the eye had a fixed aperture with the dimension of the pupil size placed at the center of 
rotation of the eye, which are the classical approximations used in the field. This concept 
significantly simplifies the lens design problem, as the optical system of the eye is ignored, 
replacing it by a remote surface and an aperture at the center of rotation of the eye [1,2]. As 
mentioned, the method to evaluate the performance of the given ophthalmic lens includes 
both a finite ray trace and an ulterior generalized ray tracing procedure.  

The position of the centers of curvature for the principal curvatures of the refracted 
wavefront associated with a particular ray will be interpreted as the sagital and tangential 
focal images. These directions of the focal images are determined by the principal directions 
of the refracted wavefront.  
 

5. Results and validation 

5.1. Calculated power distribution 

The described equations have been implemented in a Matlab code allowing the calculation 
of the three-dimensional tangential and sagittal power distribution of an ophthalmic lens. 
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Figure 3 shows the 3D off axis tangential and sagital power distributions in one positive 
and one negative spherical ophthalmic lens with parameters described in the Figure 
footnote, used as examples. The differences in the off-axis behavior of both types of lenses, 
and the departure of the sagital and tangential cups in this simple case, are made evident. 
Difference sincrease for larger angles of gaze.  

 
(a) 

 

 (b) 

Figure 3. (a). 3D tangential (exterior cup) and sagital (interior cup) power distributions for a +2.00 D 
back vertex power lens with center thickness of 3mm, refractive index of 1.5, radius of the anterior 

surface 71,44 mm and radius of the posterior surface 98.05 mm. Center of rotation of the eye is set 27 
mm behind the posterior surface. (b) 3D Tangential (exterior cup) and sagital (interior cup) power 
distributions for a -8.00 D back vertex power lens with central thickness of 1 mm, refractive index 

1.7, radius of anterior surface 215.38 mm, and radius of the posterior surface 62.19 mm; the center of 
rotation of the eye is set 30 mm behind the posterior surface of the lens. Vertical axis plots power in 

diopters; x and y director cosines fix a particular direction of gaze in space. 
 
5.2. Validation 

The proposed code has been validated usng two different approaches. On one side, 
the slopes of the refracted rays after incidence in the first surface have been 
calculated, and the director cosines in the X and Y directions after refraction 
compared with those of a commercial raytracing software. For its ease of use, we 
used Beam4, from Stellar Software [13]. Figure 4b compares the two-dimensional 
power distributions of sagital and tangential powers using classical Coddington 
equations, and the ones obtained using generalized raytracing. It may be seen how 
both methods yield equivalent results in the particular configuration of 
coincidence.  

 (a)  (b) 

Figure 4. (a). Finite raytracing. Values in Matlab (circle) and in Beam 4 (*) for the X director 
cosines of the refracted ray on the anterior surface of the lens. In the same plot, values in 

Matlab (circle) and in Beam 4 (point) for the Y director cosines of the same ray and surface. 
(b) Generalized raytracing. Tangential and sagital powers (lines) in Matlab by generalized 

ray tracing, and tangential (.) and sagital powers (*) obtained by classical Coddington 
equations, for diferents directions of gaze for the +2.00D lens case. Coincidence is complete.  
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Conclusion 

A generalized raytracing methodology has been implemented and programmed under a 
Matlab environment allowing calculation of 3D sagital and tangential power distributions 
in ophthalmic lenses. At present, the raytracing model is being extended to general surface 
shapes.. 

Agradecimientos 

Los autores desean agradecer al MICINN los proyectos DPI2009-13379 y DPI2011-
25525 que han financiado parcialmente este trabajo. 

 

Bibliografía 

[1] Fannin T and Grosvenor T 1996 Clinical Optics (Boston:Butterworth-Heinemann)  
[2] Jalie M 1984 The Principles of ophthalmic lenses (London: The Association of Dispensing 

Opticians)  
[3] Salvadó J and Fransoy B 1996 Tecnología óptica. Lentes oftálmicas, diseño y adaptación. 

(Barcelona: Edicions UPC) 
[4] Atchison D 1984 Spectacle Lens Design-Development and Present State. Aust. J. Optom. 

67 97-107 
[5] Grosvenor T 2004 Optometría de atención primaria (Barcelona : MASSON) pp 391-401 
[6] Atchison D and Tame S 1992. Performance of aspheric spectacle lenses. Clin. Exp. Optom. 

75  210-17  
[7] Kingslake R 1994 Who discovered Coddington's equations? Optics &Photonics News 5, Iss 

8 20-23 
[8] Landgrave J and Moya-Cessa J 1996 Generalized Coddington equations in ophthalmic lens 

design  J. Opt. Soc. Am. 13 1637-44  
[9] Stavroudis N and Fronczek R 1976 Caustic surfaces and the structure of the geometrical 

image. J. Opt. Soc. Am. 66 795-800.  
[10] Stavroudis O 1976 Simpler derivation of the formulas for generalized ray tracing J. Opt. 

Soc. Am. 66 1330-33.  
[11] Stavroudis O 1972 The Optics of Rays, Wavefronts, and Caustics (UK: Academic Press) pp 

137-169  
[12] Jalie M 2003 Ophthalmic Lenses and Dispensing (UK:Butterworth-Heinemann). 
[13] http://www.stellarsoftware.com/ 

 


