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Design of adaptive digital filters for phase extraction in complex fringe

patterns obtained using the Ronchi test
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A powerful technique is presented for processing complex fringe patterns with high noise levels and arbitrary
distributions of spatial frequencies, which can successfully extract the phase information. Artifacts that arise from
phase extraction in local filtering approaches are avoided by using a simple design and implementation strategy
for the adaptive filter, based on the theory of digital filter design used in electronics, and applied to pixel rows
(or columns) in the fringe-pattern. The filter designed in this manner is then applied to phase extraction in an
experimental fringe pattern measured in a digital Ronchi test setup using a Carré phase-shifting procedure.
The filtering strategy has a very low computational cost and allows phase extraction in noisy ronchigrams
regardless their spatial frequency distribution, provided the fringes are still visible.
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1. Introduction

Fringe patterns have become a valuable source of

information in several optical metrology techniques,
from interferometry to deflectometry and fringe pro-
jection. This has led digital fringe-pattern processing to

become a key part of the complete metrology strategy
of the technique used, as it is required for yielding the
signal prepared for phase extraction [1], typically by

use of phase-shifting algorithms [2] or by spatial carrier
fringe-pattern analysis [3]. The generally accepted
approach involves some signal-smoothing processing

that simultaneously removes noise effects, so the signal
is driven towards its desired sinusoidal shape, allowing
accurate phase information to be extracted from the

fringe pattern. However, in certain measurement tech-
niques, the measurement strategy gives rise to a
number of artifacts which make the signal depart

from the sinusoidal shape required for phase-shifting
strategies. In the case of the Ronchi test, where a
grating of square transmittance is normally used to

sample the wavefront [4], the diffractive effects intro-
duced by the grating may prevent from using a phase-
shifting scheme, as they are spatially dependent on the

local curvature of the impinging wavefront [5].
A number of fringe-processing techniques have

been proposed in the literature [6]. A very successful

approach for fringe patterns that are spatially

monochromatic is fringe transform profilometry, con-

structed using fast Fourier transform (FFT)

filtering [7]. For fringe patterns which are locally

monochromatic, a number of strategies have been

proposed, such as using windowed Fourier trans-

forms [8], Gabor filters [9] and wavelet transforms [10],

among others. However, these filters present some

drawbacks regarding its phase extraction results.

Firstly, for signals of changing frequency the use of

local windowing strategies for filtering, which depend

on the position of the fringe in the image and on the

local frequency of the fringe pattern, complicates the

phase extraction procedure (notably the phase-

unwrapping step) [11,12] due to the effects of the

windowing procedure on the signal. Secondly, phase

shifting schemes are not valid in the case of signals

whose shape departs from the sinusoidal shape, and

which, in addition, depart from it depending on the

local curvature of the incident wavefront. These

alterations locally disturb the accuracy of the

measurement.
The method we present overcomes these drawbacks

by applying a digital filter designed to match the
spatial frequency distribution of each pixel row or
column in the image. The filter is applied once in each
direction, cancelling out the displacement of the fringes
introduced by each pass of the filter. With this simple
strategy, a low-order filter is enough to properly
attenuate the high-order components of the fringe-
pattern with a very low computational cost. The filter
is valid for fringe patterns with any noise level and with
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any distribution of spatial frequencies, and is general
enough to be applied for phase extraction in any
experimental technique yielding non-monochromatic
fringe-patterns, even in the case the involved signals
have a non-sinusoidal intensity distribution.

The paper is organized as follows. Section 2 gives a
brief introduction to digital filter design theory while it
discusses the methodology used for the adaptive filter
design which will be implemented. In Section 3, the
designed strategy is applied to a complex fringe pattern
obtained using a digital Ronchi deflectometry setup
[13,14], in which the properties of the filter are
discussed in detail. Next, a phase extraction procedure
using a classical Carré phase shifting algorithm is
performed, showing the capability of the filter to allow
phase extraction in complex fringe patterns. A com-
parison of the phase values obtained after applying to
the same fringe pattern the proposed filtering strategy
and a non-adaptive filtering strategy is shown, allow-
ing the quantification of the associated measurement
error. Section 4 discusses the main conclusions of
our work.

2. Introduction to digital filter design

Digital filter theory is intended to work on the
time-dependent signals used in electronics signal pro-
cessing. It provides a general methodology for filter
design which is relevant to the problem of fringe-
pattern processing. In the fringe-pattern processing
case, each line orthogonal to the fringes in the image
may be interpreted as a periodic signal with an
arbitrary distribution of spatial frequencies, deter-
mined by the size of the CCD array and of the
individual pixels, and by the distribution of the fringes
in the image. We aim to design a digital filter in the
spatial domain based on the well-established set of
procedures involved in digital filter design. Below, we
briefly review the theory of digital filter design. Only
the aspects most relevant to fringe pattern processing
are presented, as plenty of high-quality literature is
available on the topic [15–17].

2.1. Definitions

Our approach intends to reduce the high-frequency
components (in spatial terms) of each pixel row or
column in an image, which are processed in sequence
until the entire fringe pattern has been analyzed. As a
consequence we consider a low-pass digital continuous
filter, in which the attenuation of the signal (�c) below
the cut-off frequency (�c) is small (typically fixed
below 3 dB), and the attenuation �a after the minimum
attenuated frequency (�a) is very significant.

This defines the passband, for frequencies lower than

�c, and the stopband, for frequencies higher than �a.

Figure 1 shows a typical shape for the modulus of the

complex transfer function H(j�) for such a filter.
In digital filter design, filters of this type may be

implemented using the Butterworth, Chebyshev or

elliptical filter approaches. However, only the

Butterworth approach is monotonic (without undula-

tions in the gain of the filter) over the passing and

attenuated frequency ranges. Furthermore, unlike the

other filter families, Butterworth filters introduce a

change in the phase of the input signal which is smooth

and continuous, which becomes an advantage for our

application.
A typical Butterworth filter has a transfer function

H(j�) with a modulus expressed as

Hð j�Þ
�� ��2¼ 1

1þ j�=�cð Þ
2N

, ð1Þ

where j is the imaginary constant, � is the frequency of

the incoming signal and �c is the cut-off frequency of

the filter. N is the order of the filter and controls the

steepness of the transfer function after the cut-off

frequency. Obviously, the lowest-order filter capable of

properly filtering the signal is the optimum solution in

computational terms.
Here we would like to stress the difference between

the phase data to be extracted from the fringe pattern

after a phase extraction process is applied, and the

change in phase of the input signal introduced by the

filter. In the approach we are using, changing the phase

of the incoming signal implies a displacement of the

position of the fringes, which is a highly undesirable

feature for the filter being applied. A null phase change

in the incoming signal data is a requirement for

accurate phase reconstruction. In digital filter design,

Figure 1. Modulus of the transfer function and relevant
parameters for a general low-pass filter.
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such fringe displacement is related to the group delay
�(�) introduced by the filter, defined as

�ð�Þ ¼ �
dðargHð j�ÞÞ

d�
: ð2Þ

2.2. Parameter selection

Thus far, only the continuous frequency domain (�)
has been considered. However, the signal will be
spatially sampled, so we need to design a filter in the
discrete frequency domain (!). The central parameters
for filter selection are the discrete cut-off frequency
(!c) and the minimum attenuated frequency (!a),
together with their respective attenuations �c and �a.
A FFT algorithm is used to detect the dominant
frequencies in the signal, so a !c value can be obtained
from a weighted sum of all frequencies with contribu-
tions above the noise threshold. This spatial frequency
is then normalized to the Nyquist frequency of the
fringe pattern image. Following the usual criteria in
digital filter design, �c is set at �3 dB, which is the
typical gain change assumed in the passing frequencies,
and �a is set at �25 dB, which is the value that filters a
maximum 8-bit input signal to a non-detectable value.
The minimum attenuation frequency !a is then deter-
mined through

N ¼
log 10�0:1�c�1

10�0:1�a�1

h i1=2
log !c

!a

ð3Þ

by imposing N¼ 2, which yields a second-order
Butterworth filter. As shown below, such a low order
filter is sufficient to properly process very complex
fringe patterns.

2.3. Transfer function in the continuous domain

In the last paragraph we have set the filter parameters
in the discrete frequency domain. However, it is
preferable to design the filter in the continuous
domain. The bilinear transform establishes bidirec-
tional correspondence between the continuous and
discrete frequency spaces through

s ¼
2

Tsample

z� 1

zþ 1
, ð4Þ

where s ¼ j� and z ¼ ej�!. Tsample is the spatial period
of the sampling of the signal. Since we will use this
transform bidirectionally from one space to the other
throughout the design procedure, Tsample will be
canceled out and may be neglected. Equation (4) may
be rewritten as

� ¼
2

Tsample
tg
�

2
!

� �
, ð5Þ

so we may calculate the continuous domain cut-off
frequency �c using Equation (5) and the !c value
previously determined in the discrete frequency
domain.

The transfer function of a second-order
Butterworth filter in the continuous frequency
domain has been established as

HðsÞ ¼
k ��2

C

s2 þ 2��Csþ�2
C

, ð6Þ

where k is the gain of the filter and � is the damping in
the gain. By establishing k¼ 1 and �¼

ffiffiffi
2
p

, we ensure
that the gain values stay below 1 in all passing
frequencies. Thus, once the FFT is applied to one
line in the fringe pattern, and �c is fixed as a weighted
combination of all frequencies above the threshold, the
transfer function of the filter in the continuous domain
becomes known. In addition, Equation (6) shows that
all coefficients of the polynomial are positive, so its
roots have a negative real part, which ensures the
stability of the filter response.

2.4. Discrete domain implementation

As the signal is sampled, the discrete domain equiva-
lent of the transfer function in Equation (6) must be
determined. By again applying the bilinear transform
of Equation (4) in Equation (6), we get

HðzÞ ¼
�2

C=4

�2
C=4þ ��C þ 1

� � � zþ 1ð Þ
2

z2 þ
�2

C
=2�2

�2
C
=4þ��Cþ1

� �
z

þ
�2

C
=4���Cþ1

�2
C
=4þ��Cþ1

� �
8<
:

9=
;
:

ð7Þ

It may be noticed how the result depends only on the
continuous cut-off frequency �c, so determining the
transfer function is straightforward once the �c value
is known.

The response of the designed family of filters in
modulus and phase is very similar regardless of the !c

value used, provided that it stays within reasonable
limits. Only minor changes in the appearance of the
plots may be appreciated. Figure 2 shows the filter
obtained for a typical cut-off value (!c¼ 0.09), where
the modulus plot shows the desired attenuations of
�3 dB at !c¼ 0.09 (Figure 2(a)) and �25 dB at
!a¼ 0.35. The slope of the filter is not sharp, due to
the low order used. Figure 2(b) shows the phase of the
filter, showing the nonlinearity of the phase of the filter
with frequency.

As a consequence of the nonlinearity of the phase
of the filter shown in Figure 2(b), the group delay plot
(Figure 2(c)) shows a delay of 5 to 6 samples
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introduced in the phase of the incoming signal for the

passing frequencies. As mentioned, in fringe pattern

analysis, this means that the fringe is displaced 5 or

6 pixels from its original location, which is totally
unacceptable. This drawback is overcome by filtering

each row or column of the fringe pattern in opposite

directions. The phase change in the ‘‘right to left’’

filtering is compensated by the ‘left to right’ one, thus
canceling out the effect of the phase delay. It is worth

mentioning that this double-pass procedure enables the

use of a Butterworth filter of a very low order (N¼ 2).

2.5. Discrete domain implementation

Finally, the discrete domain transfer function of the
filter is converted to an equation in differences through

a new mathematical transformation called the

z-transform, which yields the final equation of the

filter to be implemented as

YðkÞ ¼
�2

C=4

ð�2
C=4þ ��C þ 1Þ

XðkÞ

þ
2�2

C=4

ð�2
C=4þ ��C þ 1Þ

Xðk� 1Þ

þ � � � þ
�2

C=4

ð�2
C=4þ ��C þ 1Þ

Xðk� 2Þ

�
ð�2

C=2� 2Þ

ð�2
C=4þ ��C þ 1Þ

Yðk� 1Þ

þ � � � �
ð�2

C=4� ��C þ 1Þ

ð�2
C=4þ ��C þ 1Þ

Yðk� 2Þ: ð8Þ

The coefficients of the transfer function stay the

same as in Equation (7). The exponents of the z term
have adopted the order of the spatial samples of the

input function X(k). Thus, z�1 becomes X(k� 1), the

sample before the one being considered in the input

function. Likewise, Y(k� 2) is the sample of the filter

output function taken two samples before the one
being considered, which implies a recursive output.

Unlike classical morphological smoothing, our
approach uses the spatial frequencies of the signal to
fix the optimum coefficients for the transfer function,
which is valid regardless the distribution of spatial
frequencies present in the signal. Furthermore, values
from both the sampled input function X(k) and the
sampled output signal Y(k) are used. Additionally,
Equation (8) is very easily implemented in software
applications of any platform with a very low compu-
tational cost, thanks to the low order used in the filter.

3. Application to complex ronchigram processing

The adaptive filter designed will be used for phase
extraction of the fringes in a complex fringe pattern
obtained using a digital Ronchi deflectometry setup
(Figure 3(a)) [13]. Such a fringe pattern is obtained

Figure 2. Behavior of the filter for a typical cut-off frequency value of !c¼ 0.09: (a) modulus of the filter in dB against
normalized frequency; (b) phase in degrees against normalized frequency; (c) group delay in samples against normalized
frequency. The behavior of the filter for other !c values used in fringe pattern analysis was equivalent.

Figure 3. Fringe pattern to be processed, highlighting
the fringe pattern lines at rows 500, 700 and 900 in the
fringe-pattern image, which will be analyzed in detail in the
following figures.
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using a collimated beam that crosses a progressive
ophthalmic lens with a distance power of þ3.0 D and
an addition of þ3.0 D. The near vision area is in the
lower side of the image. The resulting wavefront
crosses a Ronchi ruling with a frequency of 0.5mm�1

and a square-wave transmittance profile. The full-sized
ronchigram is registered in an array of independent
2� 3 CCD cameras with overlapping image areas. The
composed image measures 1200� 1170 pixels and is
acquired from behind a diffusive screen, so it has a
significant noise level [14], plus a number of diffractive
features introduced by the ruling. The important
power increment in the lens yields a strongly non-
monochromatic fringe-pattern. The stitching image
areas may be appreciated at some borders in
Figure 3(a). In both the fringes and the bias, the
illumination levels vary from one region of the image
to the next, so it cannot be processed using conven-
tional algorithmics without causing significant accu-
racy losses.

3.1. Fringe-pattern analysis

The horizontal white lines in Figure 3 are the pixel
rows which will be used as the signals to be analyzed in
detail in the following. It may be noticed how variable
spatial frequency distributions, fringe profile shapes
and background noise levels are present in the signal to
be processed. The intensity profile along each of the
white lines in Figure 3 is presented in the upper row of

Figure 4 (i.e. Figure 4(a)–(c)). The changes in ampli-
tude in the Fourier transform profile with frequency of
the signals are presented in the bottom row of Figure 4
(Figure 4(d )–( f )), correspondingly. The plots show the
different situations which are found in this particular
fringe pattern, but which are tackled using the same
filtering strategy described. From the plots, the non-
feasibility of using a single frequency for FFT filtering
without losing a significant amount of data becomes
evident.

The Vc value for each line is obtained using a
weighted sum which assigns to each frequency with
amplitude of the FFT above the noise threshold a
weight proportional to its relative amplitude. Once Vc

is known, it is used to define the coefficients of the
filter according to Equation (8). Typical Vc values
obtained stay in the interval from 0.02 to 0.1.

The obtained filter is then applied to each of the
lines in both directions, in order to compensate for the
known phase delay introduced by the filter. Figure 5
depicts the results of the described filtering strategy.
The upper line of subplots (Figure 5(a)–(c)) shows the
results obtained once the double-pass filtering strategy
has been applied to the signals presented in
Figure 4(a)–(c). The bottom line of Figure 5 shows a
detail of the corresponding filtered signal in the upper
row. In each of the subfigures in the bottom row, we
simultaneously present the original signal (dotted line),
the filtered signal after the first pass of the filter (thin
solid line), which shows the effect of group delay effect
in the form of an undesired displacement in the

Figure 4. The upper row shows the intensity profile plots corresponding to the lines highlighted in Figure 3: (a) signal in line 500;
(b) signal in line 700; (c) signal in line 900. The bottom row shows the modulus of the FFT for the corresponding signal in
the upper row: (d) modulus of FFT of line 500; (e) modulus of FFT of line 700; ( f ) modulus of FFT of line 900. Fringes are seen
to be strongly non-monochromatic, with a number of different frequencies yielding very relevant contributions, especially in rows
700 and 900.
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position of the fringes, and the final filtered signal after
applying the filter twice in both directions (thicker
solid line), without any displacement in the position of
the fringes. Notice the quasi-sinusoidal profile of the
fringes which is obtained for all spatial frequencies in a
same signal, which enables phase-shifting algorithms to
be applied accurately.

3.2. Phase extraction

In order to validate the usefulness of the filtering
strategy in a noisy and complex fringe pattern, a simple
phase-shifting strategy was implemented in the setup.
With this purpose, we have implemented the classical
Carré phase shifting algorithm [2], although a number
of different phase-shifting algorithms have been
already proposed to cope with different metrological
specifications, and could have been also selected. In the
Carré algorithm, four fringe patterns which are phase-
shifted an arbitrary value � are combined to accurately
recover the phase of the sampled wavefront, using

� x, yð Þ ¼ tan�1

I2ðx, yÞ � I4ðx, yÞ½ �

þ I1ðx, yÞ � I3ðx, yÞ½ �

� 	

I2ðx, yÞ � I4ðx, yÞ½ �

� I1ðx, yÞ � I3ðx, yÞ½ �

� 	
0
BB@

1
CCA, ð9Þ

where Ii(x, y) is the intensity of the pixel at position
(x, y) after the (i� 1)th phase shift. An � value of ½�
was selected.

Four phase-shifted fringe patterns corresponding
to ronchigrams obtained using the progressive

ophthalmic lens described in the previous subsection
were acquired and filtered using the strategy presented
along this work, and the phase map was recovered. The
wrapped phase map obtained using the proposed
technique is presented in Figure 6(a). The wrapped
phase data obtained when applying the Carré algo-
rithm onto ronchigrams filtered using a non-adaptive
smoothing procedure (classical three-pixel averaging)
is presented in Figure 6(b). It may be shown how the
proposed strategy obtains more accurate phase values.
This is easily observed in the figures in the shape of
artifacts in the largest phase values, although devia-
tions occur in the whole phase range. The comparison
of both filtering strategies for a single phase cycle is
presented in more detail in Figure 7, showing the
difference in phase values obtained. The average
difference in the phase values obtained is typically of
some tenths of milliradians, with maximum difference
values exceeding 150mrad in the worst cases.

4. Conclusions

A general, quick, computationally efficient and robust
approach to fringe pattern processing based on digital
filter design theory is presented that allows phase
extraction out of noisy ronchigrams with high accu-
racy. The filter design details presented allow the filter
to be expressed as an equation of differences that
depends only on the cut-off frequency selected. The
cut-off frequency of the filter in each pixel row
(or column) of the fringe pattern is calculated as

Figure 5. Complete filtered signal (top row) and detail of filtered fringes (bottom row) for: (a) signal in line 500; (b) signal in line
700; (c) signal in line 900. Below each of the filtered signals we present a detail of the signal including the original signal (dotted
line), the filtered signal after the first pass (thin solid line), which shows fringe displacement by the effect of group delay, and the
filtered signal after applying the filter twice in both directions (thick solid line), without group delay.
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a weighted sum using the relative amplitude of the FFT
for each of the frequencies above a given threshold.
The modulus, phase and group delay of this second-
order Butterworth filter were presented and discussed.
The double-pass strategy used to compensate for fringe
displacement was shown to enable the use of a filter of
very low order (N¼ 2). In addition, the filter was

formulated in the shape of an equation in differences,
resulting in an implementation with a very low
computational cost. The described strategy was then
applied to phase extraction in an experimental fringe
pattern from a progressive addition lens obtained
through a digital Ronchi deflectometry setup, by use of
the Carré algorithm. The filter has been shown to
perform equally well under the different conditions
found in the image, although very different frequency
distributions and noise levels were present in the fringe-
patterns. It was demonstrated that this simple
approach could be of great interest for automated
fringe pattern processing, especially when noisy and
complex fringe patterns are involved.
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