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ABSTRACT   

This paper shows the simulations of the usage of a LED cluster as the illumination source for a multispectral imaging 
system covering the range of wavelengths from 350 to 1650 nm. The system can be described as being composed of two 
modules determined by the spectral range of the imaging sensors responses, one of them covering the range from 350-
950nm (CCD camera) and the other one covering the wavelengths from 900-1650nm (InGaAs camera). A well known 
method of reflectance estimation, the pseudo-inverse method, jointly with the experimentally measured data of the 
spectral responses of the cameras and the spectral emission of the LED elements are used for the simulations. The 
performance of the system for spectral estimation under ideal conditions and realistic noise influence is evaluated 
through different spectral and colorimetric metrics like the GFC, RMS error and CIEDE2000 color difference formula. 
The results show that is expectable a rather good performance of the real setup. However, they also reveal a difference in 
the performances of the modules. The second module has poorer performance due to the less narrow spectral emission 
and less number of LED elements that covers the near-infrared spectral range. 
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1. INTRODUCTION  
Spectral imaging technology has proven its usefulness in a variety of sensing applications ranging from remote sensing, 
such as satellite or radar imaging, to artwork conservation were it has recently gained importance1-5. In the case of the 
near-infrared region (NIR) the spectral imaging helps in the analysis of paintings identifying pigments through the 
analysis of the spectra and their distribution over the artwork, besides it provides a good tool in the exploration and study 
of the underdrawings of the art pieces6, 7. In the visible region of the spectra several color related studies, like color 
imaging and archiving, can also be carried out8. Besides, in the case of the UV range, its proper use serves for the 
detection of organic materials that have fluorescence properties9. There exist different approaches to the implementation 
of a multispectral imaging system. The optimum system is not clearly defined because its characteristics will be deeply 
determined by the requirements of the specific intended field of application. Different examples of approaches can be 
enumerated. One of them is the use of a punctual spectrometer together with a 2D scanning system. It offers high 
spectral and spatial resolution, but requires high acquisition times to cover the extension of the sample3. Another 
implementation consists of the use of monochrome matrix imaging detectors, CMOS or CCD, conjugated with filter 
wheels with the intention of generating different spectral channels5, 10. This set of elements offers high spatial resolution 
but due to the sequential movement of the filter wheel, low performances in spectral resolution and time acquisition are 
achieved. Different additions to this idea have been developed in order to increase the velocity of the system. The use of 
a lenslet array with different spectral filters between each lens element and the imaging sensor or filter mosaics in front 
of the sensor surface are options that increases the acquisition rate in expense of spectral and spatial resolution11, 12. The 
inclusion of tunable filters of liquid crystal or acousto optic technology also tries to overcome the problems of the filter 
wheel devices but instead increases the cost of the system considerably13.  

Another kind of multispectral systems has become attractive with the current development and availability of the LED 
technology. LED illumination technology is very cheap and efficient, has a long lifecycle and is constantly evolving. 
These elements have narrow-spectral emission and are available in several wavelengths over the different spectral ranges 
of the UV, VIS and NIR. They allow illuminating with a wide number of different specific wavelengths or customized 
combinations of them in a fast way and in a switching synchrony with the imaging sensors. The increased publications in 
this type of LED systems show that new possibilities are being explored trying to decrease the acquisition time and costs 
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by employing off-the-shelf elements14-17. Following this trend, in this work we show the simulated recovery results for an 
imaging system using LED illumination assuming realistic noise parameters, constructed with measurements of the real 
imaging components. In order to calculate the spectral information, the widely spread pseudo-inverse method has been 
used10, 18. The pseudo-inverse technique computes the transform between system responses and reflectance without any a 
priori knowledge about the imaging system but needs a training process with known spectral reflectances and their 
respective camera responses.  

2. EXPERIMENTAL SETUP 
We present the simulations of spectral reconstruction for the following multispectral imaging system. Its experimental 
setup can be described as having two different modules; the first module consists of a CCD monochrome cooled camera 
with 12 bit depth and 16 groups of LEDs where each group has a specific central wavelength of emission. They cover the 
wavelength range from 350nm to 950nm. In a similar fashion, the second module has an InGaAs based camera with 14 
bit depth and 7 groups of LEDs with a different central wavelength of emission. This module covers the range of 
wavelengths from 900nm to 1650nm. Figure 1 shows the measured emission spectra for the LED illumination in the 
respective module and Table 1 contains the spectral descriptive data for each LED element. In total, there are 23 spectral 
bands with different wavelength peaks of emission. The measurements of the characteristics of the LEDs were carried 
out with a commercial scanning spectrometer (model Spectro 320 of Instruments Systems).   
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Figure 1. Measured spectra of emission of LED elements. a) emission spectra for the LEDs of the first module and b) 
emission spectra for the LEDs of the second module. 

In our simulations, we used the known reflectance curves of 170 common objects (available from NYU at 
http://www.cns.nyu.edu/ftp/ltm/SSR/) to be extended and manipulated in order to be employed as the training and 
measured samples over the ranges of wavelengths that covers the proposed multispectral system. 

 Table 1. Spectral data for the LED elements comprising the illumination source 

Illumination module 1 Illumination module 2 
Peak wavelength (nm) FWHM (nm) Peak wavelength (nm) FWHM (nm) Peak wavelength (nm) FWHM (nm) 

373 9.5 404 15 955 51 
432 17 461 22 1071 53 
500 32 535 34 1202 88 
593 15 634 16.5 1297 89 
665 21 693 23.5 1451 122 
728 24 761 26 1540 126 
801 28 835 31 1630 111 
874 45 903 41   
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3. METODOLOGY 
3.1 Pseudo-inverse model to recover spectral reflectance 

The camera responses, Xi, in arbitrary units of an imaging system when an object with reflectance R(λ) is under a 
specific illumination Ii(λ) can be expressed as:  

∫= λ
λλλλ dSRIX ii )()()( ,      (1) 

where S(λ) is the spectral sensitivity of the camera sensor. Assuming a discretely sampled description of the former 
quantities without considerable loss of information, equation (1) can be re-written in a matrix way as follows: 

rCx T= ,      (2) 

where r is a reflectance column vector at p sampling wavelengths, x is a q-component column vector of the camera 
responses, and C is a pxq matrix that contains the product of the spectral sensitivity of the camera and the spectral 
emission of q different LED illuminations.  Therefore, the key question here is to recover the spectral reflectance r of a 
sample given a vector of camera responses x. In the case of the pseudo-inverse model the solution that it provides is a 
matrix that operates mapping camera responses to estimated reflectances. This mapping matrix minimizes the least-
squares-error for a training set of known reflectances with the correspondent camera responses and does not use prior 
knowledge of the acquisition system characteristics. If we let be Rt a matrix of m columns of training reflectance 
samples, and Xt a matrix of m columns of system responses to the training, then the matrix D that takes Xt to Rt is given 
by: 

 ( ) 1−
= T

tt
T
tt XXXRD ,      (3) 

where ( ) 1−T
tt

T
t XXX  is the so called Moore-Penrose pseudo-inverse of the matrix Xt. By applying a matrix D to a 

system response vector x, i.e., Dxr = , a reflectance r is estimated. 

3.2 Metrics for spectral evaluation 

To evaluate the performance of the system three different metrics are used. Two metrics serve to compare the estimated 
spectral curves with respect to the original spectra. The root mean square error (RMSE) that is a widely used metric for 
spectral evaluation10, and the goodness-of-fit coefficient (GFC) proposed by Hernandez-Andrés et. al19. This GFC is 
based on the inequality of Schwartz and it is described by equation (4). 
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where ro(λj) is the original spectral data at the wavelength λj and re(λj) is the estimated spectrum at the wavelength λj. 
GFC ≥ 0.999 and GFC ≥0.9999 are required for respectively good and excellent matches. The third metric is the 
CIEDE2000 formula (DE00)20 used over the reconstructions in the VIS range as a colorimetric evaluation. 

4. RESULTS AND DISCUSSION 
Results are given for three different conditions: the system under ideal conditions, under the influence of quantization 
error noise and finally under quantization error and random additive sources of noise. To simulate the quantization, 
namely, to achieve the simulated digital levels, the equation (5) was used with the round function (available in 
MATLAB software) accounting for the introduction of the quantization error noise. 
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where DLi is the digital level for each channel and sample, xi is the theoretical response of the system, DLmax is the 
maximum digital level corresponding to the bits of the system. In this case there are two different DLmax values: 4095 for 
the first module that uses a 12 bit depth camera and a value of 16383 for the second module that uses a 14 bit depth 
camera. The round function operates providing the nearest integer to the number given as its argument. 

To simulate the influence of the additive noise a term was added to the camera responses: 

nxx ii +=′ ,       (6) 

where ix′  is the camera response influenced by the additive random noise and n is the proportional term of noise 
introduced. For the simulations a 2% proportional noise was added. 
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(a)       (b) 

Figure 2. Original and reconstructed reflectances for two samples assuming ideal conditions for the proposed imaging system. a) 
Result for the first module in the range from 350-950nm. b) Result for the second module over the range 900-1650nm. 
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Figure 3. Original and reconstructed reflectances for two samples under quantization error noise. a) Result for the first module in 
the range from 350-950nm. b) Result for the second module over the range 900-1650nm. 
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Figure 4. Original and reconstructed reflectances for two samples under the influence of additive noise and quantization error for 
the proposed imaging system. a) Result for the first module in the range from 350-950nm. b) Result for the second module 
over the range 900-1650nm. 

Results of reconstructions are shown through Figure 2 to Figure 4, and Table 2 to Table 4. The Figure 2 shows examples 
of simulated reconstructions of reflectances for ideal conditions in the imaging system. The fitting of the curves is very 
good. This is also confirmed with the numerical results of the selected metrics for evaluation shown in Table 2. While 
the module 1 has very accurate reconstructions supported by all the evaluation metrics, module 2 has a good 
performance but lower evaluation metrics than module 1. This is reasonable given the quantity of different LED 
illuminations available for each module, 16 for the module 1 and 7 for the module 2. In the Figure 3 and Table 3 the 
results in term of the evaluation metrics for the reconstruction of the reflectances under the influence of the quantization 
error are shown. Both modules keep presenting good performance, although the first module has a greater change 
comparatively to the second module because of the difference in bit depth of the correspondent sensors. Even more, the 
metrics for the second module are almost unchanged showing a very low influence of the quantization error. In the 
Figure 4 and Table 4 the reflectance curves of two samples and the evaluation metrics for the complete set of 
reflectances under the influence of 2% additive noise and quantization error are shown. Although, given the results of the 
low influence of the quantization error, the differences found in this table with respect to the former ones are attributable 
mostly to the additive noise. This Table shows again that the second module have less accuracy in the reconstructions 
something that is expectable given the mentioned difference in number of LED illuminations and spectral width emission 
of the LED components. Besides of the spectral evaluation, the results in terms of color difference reveal a very good 
colorimetric performance of the system, only under the influence of additive noise the mean color difference is greater 
than, but still close to, 1 color difference unit. 

Table 2. Results of evaluation metrics assuming ideal conditions in the acquisition system 

 Module 1 Module 2 

DE00 RMSE x 100 GFC RMSE x 100 GFC 

Mean 0.0175 0.1684 1.0000 0.9655 0.9991 

Min 1.2551e-3 3.7251e-3 0.9991 0.0468 0.9899 

Max 0.0986 0.8170 1.0000 4.1661 1.0000 
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Table 3. Results of evaluation metrics under the influence of the quantization error noise. 

 Module 1 Module 2 

DE00 RMSE x 100 GFC RMSE x 100 GFC 

Mean 0.0863 0.2628 0.9999 0.9687 0.9991 

Min 4.3596e-3 0.0697 0.9940 0.0653 0.9899 

Max 0.8112 1.3203 1.0000 4.1632 1.0000 

      

Table 4. Results of evaluation metrics under the influence of additive noise and quantization error noise. 

 Module 1 Module 2 

DE00 RMSE x 100 GFC RMSE x 100 GFC 

Mean 1.0169 1.1701 0.9995 2.1150 0.9976 

Min 0.2087 0.1122 0.9962 0.1090 0.9790 

Max 3.0399 3.1190 0.9999 9.4544 0.9997 

 

5. CONCLUSIONS 
In this paper the simulations of reflectance estimation for a multispectral system intended for its future use in the study of 
artwork are shown. The system that is mainly composed of two modules of acquisition and illumination is evaluated 
under three different conditions: under ideal conditions for the acquisition, under quantization error noise and finally 
under the condition of random additive noise. The system performs very accurately for the two modules under ideal 
conditions. As expected, the first module is more influenced by the quantization process, for the second module the 
effect is almost negligible. Even so, the results continue to be very good as it is confirmed if the GFC criteria are 
followed. For the additive noise condition, the performance of the system decays but it is still good, in fact, in terms of 
the colorimetric evaluation given in the first module, the mean color difference is kept close to 1. Comparatively, the 
second module has less accuracy than the first module and that fact is closely related to the minor availability of LED 
elements in the range of wavelengths comprised by this module.  

Here we have simulated the performance of a system in development for the study of artwork. The results are given in 
terms of the measured characteristics of the system components and although, several conclusions can be drawn from 
this study, they can only be approximations. Therefore, it is the intention of this work to serve as guidance for the final 
purpose of having the complete operational system.  
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