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analyzed. Because of the different spectral responses of the 
channels, the images obtained contain spectral information 
regarding the acquired scene and it is therefore possible to 
calculate the spectral refl ectance of the original measured 
sample. Several spectral reconstruction methods exist and 
they can be classifi ed as interpolation methods (linear, 
cubic, Spline, Discrete Fourier Transform and Modifi ed 
Discrete Sine Transform approximations) and estimation 
methods (Moore-Penrose pseudoinverse, smoothing inverse, 
nonlinear fi ttings and principal component analysis or 
characteristic vector analysis). For this study we used two 
different estimation methods: a method based on principal 
component analysis (PCA)4–12 and a nonlinear estimation 
method (NLE).5,13,14 These are shown to yield the best 
spectral reconstruction.

In order to use methods based on multispectral imaging, 
it is necessary to know all the spectral variables involved 
in the acquisition process. These spectral variables include 
the spectral radiance of the illuminant used to light the 
samples, the spectral transmittance of the fi lters which 
defi ne each of the acquisition channels and the spectral 
sensitivity of the CCD camera. Once we have selected the 
CCD camera, we can study which type of illuminants and 
fi lters can be used in the spectrophotometric system in 
order to obtain the best possible reconstruction for the set 
of samples under consideration. Since the mathematical 
methods used require approximations, the factors cited 
(that is, the spectral distribution of the illuminant and the 
spectral transmittance of the fi lters) may yield a different 
reconstruction quality for the spectral refl ectance curves 
in the NIR region. Only a few authors15 have studied the 
infl uence of the illuminant on the measurement of color by 
using a multispectral imaging system, and in this case only 
in the visible spectrum.

In this work we study the performance of two different 
spectral reconstruction methods based on multispectral 
imaging: a principal component analysis method (PCA) and 
a nonlinear estimation method (NLE), under a great number 
of lighting conditions in the NIR region of the spectrum. The 

Introduction
The near-infrared region of the spectrum (NIR) has become 
a powerful tool for several applications in recent years. In 
general, the NIR spectrum of a sample has absorption peaks 
that correspond to the vibrational states of those molecules 
that are present in the material. Therefore, the spectral 
information included in this region can be used to identify 
samples. This technique is known as NIR technology1 and 
is used in various different areas such as agriculture, the 
food industry, medical applications, the chemical industry, 
etc. 

Conventional CCD cameras2,3 have maximum spectral 
sensitivity in the visible region of the spectrum. Nevertheless, 
CCD cameras with an improved response in the near-
infrared region are currently being manufactured and 
their spectral sensitivity is clearly significant when 
dealing with wavelengths of up to 1000 nm. Therefore, this 
instrumentation can be used to obtain spectral information 
from samples in the NIR region between 800 and 1000 nm 
rather than conventional spectrophotometers. The response 
of standard spectrophotometers is normally limited to the 
visible range and they must incorporate specifi c sensors to 
detect energy coming from the NIR, e.g., In GaAs, and this 
can signifi cantly increase their cost. 

In previous studies4,5 we demonstrated that multispectral 
imaging is a good alternative methodology for reconstructing 
the spectral refl ectance curves of samples from conventional 
CCD camera measurements in the NIR region of the 
spectrum. This technique uses different acquisition 
channels to obtain several images of the sample to be 
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illuminants under consideration are blackbody or Planckian 
type emitters with color temperatures of between 1000 K 
and 16000 K. The following section briefl y explains the 
most important aspects of the two methods used. Then we 
present our results: we perform an optimization process 
to determine the shape of the optimum fi lters that must 
be placed in front of the camera in order to obtain good 
reconstructions of the reflectance spectra of different 
samples for all the illuminants under consideration, and 
we use numerical simulation to analyze the infl uence of the 
illuminant on the quality of the reconstruction performed 
using commercially available fi lters similar to the optimum 
fi lters obtained from the simulations. Finally, we present 
our conclusions.

Spectral Reconstruction Methods
The reconstruction process used in methods based on 
multispectral imaging is summarized in Fig. 1. A multi-
channel image of an original object is acquired by placing 
a selected set of fi lters in front of the camera. A spectral 
reconstruction method is then applied in order to obtain the 
reconstructed spectral refl ectance of the sample.

The camera responses for the different acquisition 
channels can be expressed in matrix notation as follows:

 X = Cr, (1)

Here, X is a column vector that represents the m camera’s 
responses to a sample, r is a column vector (with n 
components) that represents the spectral refl ectance of 
the sample, and C is an (m × n) matrix whose rows are the 
spectral sensitivities of each acquisition channel, that is, 
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where i(λl) is the spectral radiance of the illuminant, Fi(λl) 
the spectral transmittance of the fi lters placed between the 
camera and the sample, and S(λl) the spectral sensitivity 
of the CCD camera.

In this study we analyze the performance of a PCA and an 
NLE spectral reconstruction method. In order to use these 
methods it is necessary to know a set of spectral refl ectances 
similar to the curves that we intend to reconstruct. The set 
of p known spectral refl ectances is represented by an (n × 
p) matrix called the original data matrix (Or). 

The PCA method associates the matrix Or to an n-
dimensional vector space and its characteristic vectors can 
be calculated. The method allows us to approximate each of 
the curves that belong to the original data matrix or spectra 
similar to them by performing a linear combination of the 
largest calculated characteristic vectors,

 rrec = rM + αvr1 + βvr1 + ... + ξvrq, q < n,  (3)

where rrec is the reconstructed spectral refl ectance, rM is 
the mean spectral refl ectance of the curves belonging to 
Or, vr1, vr2,...,vrq are the characteristic vectors and α, β,.., ξ 
are scalar coeffi cients.

The scalar coeffi cients can be determined experimentally 
by relating the camera responses for each sample to the 
characteristic vectors, that is, by combining Eqs. (1) and 
(3):

 X = Cr  ≈ CrM + αCvr1+ βCvr1 + ... + ξCvrq, q < n.  (4)

The NLE method used is a modifi cation of the conventional 
Wiener estimation method.15,16 In the case of the Wiener 
estimation, we assume that a matrix, D, exists and that it 
provides the spectral refl ectances of the samples belonging to 
the matrix Or from the camera responses. In other words:

 Or = DXOr,  (5)

where XOr is an (m × p) matrix whose columns are the 
camera responses for each of the known samples for the 
different existing channels,
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Combining Eqs. (5) and (6), we obtain:

 Or = DCOr (7)

Inverting Eq. (7) by using the pseudoinverse technique,15-19 
which searches for a least-squares solution and gives the 
least-norm solution, we obtain a matrix, D, which minimizes 
the distance between the known and the estimated spectral 
refl ectances:

Figure 1. Schematic view of the acquisition system and the fi nal spectral reconstruction step.
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 D = Or XT
Or (XOrXT

Or)–1
 = Or OT

r CT(COr OT
r CT)–1

.  (8)

We assume that the refl ectance spectra to be reconstructed 
are a linear combination of the known spectral curves, that 
is, that the curves belonging to Or are a good representation 
of all the spectra. This can be stated as follows:

 r ≈ Orα,  (9)

where α is a column vector whose components are the 
coeffi cients of the linear combination. Therefore, matrix D 
is valid for the reconstruction of any curve r: 

 rrec = DX = DCr ≈ DCOrα.  (10) 

In this method we have used a linear transformation to 
relate the refl ectance spectra to the camera responses (Eqs. 
(5) and (6)). By extension, we can also apply a nonlinear 
transformation. Instead of using the matrix XOr we can 
consider a matrix XNL, whose columns are a second or higher 
order polynomial that represent the camera responses. 
We can then calculate another matrix, DNL, which relates 
the polynomial data to the spectral refl ectances. Using 
a complete second order polynomial and three available 
channels, matrix XNL would be:
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Matrix DNL is calculated as in the Wiener estimation:

 DNL = Or XT
NL (XNLXT

NL)–1
 .  (12)

We can use polynomials of any order or shape. In 
practice, this is limited by the precision we require and the 
computational costs. The intersection between channels is 
often small and therefore, an increase in the order of the 
polynomial may not result in a signifi cant improvement of 
the reconstructions. In this work we use the proposed NLE 
method with a complete second order polynomial.

Finally, in order to evaluate the quality of the 
reconstruction of the analyzed spectra we use two different 
parameters:

Percentage of reconstruction:
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and Root Mean Square Error:
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where each r represents an experimental component of 
the original refl ectance curves, each rrec is a reconstructed 
value, and Nλ is the number of wavelengths at which 
measurements were made. 

Although in multispectral imaging RMSE is the 
most commonly used parameter, we have also used the 
percentage of reconstruction because it provides an intuitive 
idea of the quality of the reconstruction since its maximum 
possible value is 100. Both parameters are very sensitive to 
variations in the reconstructions. Good reconstructions are 
achieved if Prec is greater than 99.9% and RMSE is smaller 
than 0.01.4,5 Depending on the case, slightly different values 
can lead to considerable differences between the original 
and the reconstructed spectra.

Results
Data

In this work we have mainly analyzed the infl uence 
the illuminant has on the reconstruction of the spectral 
refl ectance in the NIR region of the spectrum by using 
numerical simulation. In order to perform the simulations 
we considered an original data matrix, Or, composed of 
30 spectral refl ectance curves that correspond to textile 
samples (Fig. 2). As we considered the spectral data between 
800 and 1000 nm in 10 nm steps, each curve was made up 
of 21 components. The CCD camera used in the acquisition 
process was a JAI CV-M10 progressive scan camera, whose 
spectral sensitivity was measured experimentally and is 
shown in Fig. 3.

The different illuminants analyzed were blackbody or 
Planckian type (specifi cally graybody) radiators with the 
following color temperatures: 1000, 1500, 1800, 1850, 1900, 
2000, 2852, 3371, 4000, 5000, 6000, 7000, 8000, 9000, 
12000, 13000, 14000 and 16000 K (Figs. 4(a) and 4(b)). 
The use of this range of color temperatures is justifi ed by 
the clearly different spectral profi les of the illuminants in 
the region studied. Color temperatures of 2852 and 3371 
K correspond to commercially available sources, commonly 
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Figure 2. Spectral refl ectance curves of 8 representative samples 
belonging to matrix Or. 
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used in spectrophotometric devices. The total emission of 
the illuminants was normalized to a specifi c radiance (105 
W/sr*m2) in order to obtain simulated lamps with the same 
radiant fl ux.

Reconstructions with Simulated Gaussian Filters
In this section we perform a numerical simulation in 

order to analyze the shape of the optimum fi lters that 
must be placed in front of the camera to obtain the best 
reconstruction results under the infl uence of all the lighting 
conditions under consideration. In previous work,4,5 we 
demonstrated that fi lters with Gaussian transmittance 
profiles give rise to good reconstructions of spectral 
reflectance curves in the NIR region. Specifically, we 
demonstrated that fi ve and three equally-spaced Gaussian 
fi lters were enough to achieve good results in the case of 
the PCA and NLE methods, respectively. Gaussian fi lters 
are useful because they have simple transmittance profi les 
and therefore they can be replaced experimentally by 
commercially available fi lters. The transmittance of each 
Gaussian fi lter can be expressed as follows:

 
T T

FWHMMAXλ λ λ( ) = − −⎛
⎝
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⎠
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⎤
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⎥exp ln ,4 2 0
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where TMAX is the maximum transmittance, λ0 is the 
wavelength corresponding to the maximum transmittance 
and FWHM is the full width-half maximum of the Gaussian 
fi lter. 

TMAX is considered to be unity in this study, and λ0 has 
fi xed values since the fi lters are equally spaced within the 
NIR region. The spectral bandwidth of the fi lters (FWHM) 
is considered to be the optimization parameter.

In the simulation, the fi lters with optimum FWHM were 
determined by searching for the minimum mean RMSE 
of the curves belonging to the matrix Or, using the two 

proposed reconstruction methods. Tables I, II and III show 
the optimization results for the PCA method with fi ve fi lters 
and the NLE method with three and fi ve fi lters, using the 
illuminants of different color temperatures. These tables 
include the optimum parameter FWHM, and mean Prec and 
RMSE values for all the simulated cases. Figure 5 represents 
the evolution of FWHM with color temperature.

It can be seen that the optimum FWHM is different for 
each method and its evolution with color temperature varies 
depending on the case under consideration. In general, at 
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Figure 3. Relative spectral sensitivity of the JAI CV-M10 
camera.
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Figure 4. Spectral radiance of the illuminants analyzed normalized 
to 105 W/sr*m2 between 0 and 5000 nm (a) and between 800 and 
1000 nm (b).
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TABLE I. Optimum FWHM of the fi lters, Mean Prec and RMSE 
values obtained using the PCA method, fi ve simulated Gaussian 
fi lters and the illuminants with different color temperatures.

 Tc (K) FWHM (nm) Mean Prec  Mean (RMSE*100)

  1000 122 99.996 0.170
 1500 97 99.996 0.183
 1800 87 99.995 0.191
 1850 85 99.995 0.193
 1900 82 99.995 0.194
 2000 80 99.995 0.197
 2852 66 99.995 0.215
 3371 61 99.994 0.223
 4000 59 99.994 0.229
 5000 57 99.994 0.237
 6000 57 99.994 0.242
 7000 54 99.994 0.245
 8000 54 99.993 0.248
 9000 54 99.993 0.250
 12000 54 99.993 0.253
 13000 54 99.993 0.254
 14000 52 99.993 0.255
 16000 52 99.993 0.256

 
TABLE III. Optimum FWHM of the fi lters, Mean Prec and RMSE 
values obtained using the NLE method, fi ve simulated Gaussian 
fi lters and the illuminants with different color temperatures.

 Tc (K) FWHM (nm) Mean Prec  Mean (RMSE*100)

  1000 66 100 0.032
 1500 92 100 0.014
 1800 38 100 0.014
 1850 89 100 0.014
 1900 38 100 0.013
 2000 82 100 0.015
 2852 80 100 0.016
 3371 78 100 0.016
 4000 80 100 0.016
 5000 103 100 0.016
 6000 103 100 0.017
 7000 97 100 0.016
 8000 99 100 0.016
 9000 97 100 0.016
 12000 101 100 0.016
 13000 103 100 0.016
 14000 99 100 0.016
 16000 101 100 0.016

low color temperatures, each method analyzed behaves 
differently. However, for color temperatures above 5000 K 
or 6000 K the optimum spectral bandwidth stabilizes in all 
the cases studied. PCA and NLE methods are techniques 
which use camera responses to reconstruct the spectral 
refl ectance of samples. In order to obtain similar results 
from the optimization process of the fi lters for different 
color temperatures, it is necessary to have similar values 
of the camera responses for the samples analyzed under 
the infl uence of the different illuminants. The camera 
responses of any sample for all the acquisition channels 
can be expressed by Eq. (1), that is:

 X = Cr, (16)

The explicit form of this expression for each acquisition 
channel is:

F
W

H
M

 (
nm

)

Figure 5. Evolution of the parameter FWHM of the filters 
according to the color temperature of the illuminant used (PCA 
5: PCA method and 5 fi lters, NLE 3/5: NLE method and 3 or 5 
fi lters, respectively).
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Thus, in order to have similar camera responses for 
each channel, and therefore obtain similar optimum 
FWHM values in the optimizations for different analyzed 
illuminants, the spectral products of the samples (iλSλrλ) 
must be almost the same. Figures 6(a) and 6(b) show these 
terms for two particular samples belonging to the matrix Or 
(S2 and S3). In both fi gures it can be seen that the spectral 
curves are more similar at longer wavelengths (particularly 
above 900 nm) than in other parts of the spectrum. This 
is due to the infl uence of the spectral sensitivity of the 
camera, whose profi le decreases in the region studied. It 
can be seen that for color temperatures above 5000 K, the 
spectral products have profi les with a large similarity across 
all the wavelengths. This can be explained by the spectral 

TABLE II. Optimum FWHM of the fi lters, Mean Prec and RMSE 
values obtained using the NLE method, three simulated Gaussian 
fi lters and the illuminants with different color temperatures.

 Tc (K) FWHM (nm) Mean Prec  Mean (RMSE*100)

 1000 28 99.941 0.607
 1500 31 99.942 0.603
 1800 31 99.942 0.602
 1850 31 99.943 0.602
 1900 31 99.943 0.602
 2000 31 99.943 0.601
 2852 31 99.943 0.600
 3371 31 99.943 0.600
 4000 31 99.944 0.600
 5000 31 99.944 0.600
 6000 31 99.944 0.600
 7000 31 99.944 0.600
 8000 31 99.944 0.600
 9000 28 99.944 0.600
 12000 28 99.945 0.600
 13000 28 99.945 0.600
 14000 28 99.945 0.600
 16000 28 99.945 0.600
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emission of the illuminants in the NIR region: because the 
illuminants with large color temperatures have maximum 
emission peaks located at short wavelengths, they have a 
similar decreasing spectral distribution between 800 and 
1000 nm. These resemblances are translated to similar 
spectral bandwidths of the optimum fi lters obtained and 
therefore explain the stability of the results at these color 
temperatures in all the cases analyzed. Below 5000 K, the 
spectral distribution of the illuminants in the NIR region 
changes much more, depending on the color temperature. 
In the case of the PCA method, a decrease in the color 
temperature produces an increase in optimum FWHM. In 
the case of the NLE method, the optimization results depend 
on the number of fi lters used to perform the reconstruction. 
Using three fi lters, the FWHM values are largely constant, 
but with fi ve fi lters, the results show remarkable oscillations. 
The NLE method uses the pseudoinverse technique which 
computes the pseudoinverse of a non-square matrix. This 
technique involves the calculation of the inverse of a square 
matrix with singularities (Eq. (12)). Therefore, the results 
obtained are very sensitive to variations in input data and 
they may present oscillations. In the three-fi lter case, the 
matrix XNL has lower dimensions than in the case of fi ve 
fi lters. Therefore, the pseudoinverse procedure does not 
involve as many singularities as in the fi ve-fi lter case and 
it is more stable.

Figures 7(a) and 7(b) show the evolution of the equivalent 
Prec and RMSE with color temperature. In the case of the 
PCA method, RMSE increases with color temperature. In 
the case of the NLE method, the RMSE values decrease 
but they are almost constant for all the lighting conditions 
analyzed. However, in all the reconstructions performed, 
Prec ≥ 99.9% and (RMSE × 100) ≤ 1. In previous work,4,5 
we demonstrated that these values guarantee acceptable 
reconstructions in the NIR region of the spectrum for any 
sample.

The use of fi lters with non-optimal spectral characteristics 
can yield worse reconstruction parameters. Depending 

on the sample, a greater difference than 0.01 in RMSE 
(or equivalently a Prec smaller than 99.9%) can imply 
a considerable dissimilarity between the original and 
the reconstructed reflectance curves. The values of 
both parameters are very sensitive to variations in 
the reconstructions. For instance, if an original and a 
reconstructed curve are very similar in almost all the 
wavelengths except in some of them where a local peak 
has appeared in the reconstructed spectrum (which does 
not exist in the original), the parameters can be slightly 
modifi ed while the spectra are very different.

Reconstructions with Real Filters
In this section we analyze the quality of the reconstructions 

of the samples using real commercial fi lters, under the 
infl uence of all the different lighting conditions considered. 
In the previous section we presented optimizations 
performed with simulated Gaussian fi lters. We saw that 
in general the optimum spectral bandwidth of the fi lters 
depends on the illuminant under consideration and the 
methods used. Taking into account that incandescent or 
halogen lamps (which are used in many spectrophotometric 
devices) have color temperatures in the 2800 – 3100 K 
range, we can consider as optimum the results obtained 
using illuminants with color temperatures of 2852 K and 
3371 K. In the case of the PCA method, the optimum spectral 
bandwidth of the fi lters for these two illuminants is 66 nm 
and 78 nm, respectively. In the case of the NLE method, 
the FWHM values are 31 nm using three fi lters, and 80 nm 
and 78 nm using fi ve fi lters. In conventional commercial 
catalogues published by different manufacturers we can 
fi nd common interference fi lters with the following spectral 
bandwidths (FWHM): 1.5, 3, 10, 25, 40 and 70 nm. The 
most similar, in almost all the cases considered (except for 
the NLE method with three fi lters), to those obtained in 
the simulation process are the fi lters with a FWHM of 70 
nm. We acquired fi ve fi lters with these spectral features 
(Thermo Corion interference fi lters) equally spaced within 

Figure 6. Spectral curves corresponding to the product i(λ) S(λ) r(λ) of sample S2 (a) and S3 (b), both belonging to Or (i(λ): spectral 
radiance of the illuminant, S(λ): spectral sensitivity of the CCD camera, and r(λ): spectral refl ectance of the samples).
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the range analyzed, that is, the NIR region (Fig. 8). It was 
then possible to assess the reconstructions using these 
fi lters under the infl uence of the different illuminants. 
In the case of the NLE method with three filters, we 
considered those centered at the wavelengths of 850, 900 
and 950 nm.

Table IV presents the reconstruction results obtained 
using the PCA method for all the illuminants and the 
results for the NLE method with three and fi ve fi lters are 
exposed in Tables V and VI, respectively. Figures 9(a) and 
9(b) show how the Prec and RMSE change with the color 
temperature. 

The results are quite similar to those obtained using the 
optimum Gaussian fi lters. While in the case of the PCA 
method the RMSE increases when the color temperature 
is increased, in the NLE method the results are almost 
constant for the different lighting conditions analyzed. 

In general, the results are worse since the real fi lters 
actually used do not have exactly the same spectral profi le 
as the optimum Gaussian fi lters obtained in the previous 
section. Also, for all the reconstructions performed, Prec ≥ 
99.9% and (RMSE × 100) ≤ 1. Therefore, the set of commercial 
fi lters analyzed can be used to obtain spectral refl ectance 
curves under the infl uence of all the illuminants analyzed 
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Figure 7. Evolution of the parameter Prec (a) and RMSE (b) 
according to the color temperature of the illuminant, using the 
optimum Gaussian fi lters (PCA 5: PCA method and 5 fi lters, NLE 
3/5: NLE method and 3 or 5 fi lters, respectively).
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Figure 8. Spectral transmittance of the real interference fi lters.

and might be useful for an experimental spectrophotometric 
system. For the experimental implementation is interesting 
to analyze the effect of the noise on the reconstruction 
parameters. The different possible sources of noise or 
experimental errors that can be present in a reconstruction 
system20 (random noise, quantization noise, spectral 
refl ectance measurement errors, errors of the geometry or 
position of the elements present in the experiment, etc.) can 
be considered together in order to simplify the treatment in 
our simulations, adding or subtracting a specifi c quantity 
to the simulated camera responses for each channel and 
sample. In the analyzed cases, the noise level must be 
smaller than 1% in order to achieve acceptable results, that 
is, similar values to the simulations, but it will be studied 
in detail in further work.

Conclusions
In this work, we have mainly studied the infl uence of 
the illuminant on the reconstruction of NIR spectra 
using multispectral imaging methods. We have used a 
method based on principal component analysis (PCA) 
and a nonlinear estimation method (NLE) which uses 
a complete second-order polynomial, to obtain the 
refl ectance spectra in the NIR region by use of CCD camera 
measurements, under different lighting conditions. The 
illuminants analyzed were graybody radiators with color 
temperatures of between 1000 K and 16000 K, all with 
the same radiant fl ux. In the fi rst part of the study, we 
used fi ve equally-spaced Gaussian fi lters in the case of 
the PCA method, and three and fi ve fi lters for the NLE 
method, in order to reconstruct the spectral refl ectance 
curves of 30 textile samples. We determined the optimum 
spectral bandwidth (FWHM) of the fi lters in order to 
obtain the best possible reconstruction for each case 
analyzed, that is, for each illuminant and method tested. 
It can be seen that the optimum FWHM depends on the 
reconstruction method and the illuminant used but there 
is a stabilization of the results for color temperatures 
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Figure 9. Evolution of the parameter Prec (a) and RMSE (b) 
according to the color temperature of the illuminant, using the 
real interference fi lters (PCA 5: PCA method and 5 fi lters, NLE 
3/5: NLE method and 3 or 5 fi lters, respectively).

above 5000 or 6000 K. Based on the results obtained, we 
acquired a set of commercially available fi lters (Thermo 
Corion interference fi lters) and analyzed the quality 
of the reconstruction achieved using them under the 
infl uence of the different illuminants considered. Our 
results show that Prec ≥ 99.9 % and RMSE ≤ 0.01 in all 
the cases analyzed. This indicates that with the same 
set of fi lters we can obtain good reconstructions of the 
spectral refl ectance curves in the NIR region for all the 
samples considered, using any of the tested illuminants. 
Particularly, since incandescent or halogen lamps usually 
have color temperatures between 2800 and 3100 K, it 
would be possible to make a real instrument using any 
of them.  
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TABLE IV. Mean Prec and RMSE values obtained using the PCA 
method, the fi ve real interference fi lters and the illuminants with 
different color temperatures.

 Tc (K) Mean Prec  Mean (RMSE*100)

  1000 99.995 0.184
 1500 99.994 0.210
 1800 99.992 0.227
 1850 99.992 0.230
 1900 99.992 0.232

 2000 99.992 0.238
 2852 99.988 0.280
 3371 99.985 0.302
 4000 99.983 0.324
 5000 99.979 0.351
 6000 99.977 0.371
 7000 99.974 0.387
 8000 99.973 0.399
 9000 99.971 0.409
 12000 99.968 0.428
 13000 99.967 0.433
 14000 99.967 0.437
 16000 99.966 0.443

TABLE V. Mean Prec and RMSE values obtained using the NLE 
method, three real interference fi lters and the illuminants with 
different color temperatures.

 Tc (K) Mean Prec  Mean (RMSE*100)

  1000 99.886 0.782
 1500 99.887 0.764
 1800 99.885 0.766
 1850 99.885 0.767
 1900 99.885 0.767
 2000 99.884 0.769
 2852 99.880 0.782
 3371 99.877 0.789
 4000 99.875 0.797
 5000 99.873 0.805
 6000 99.871 0.811
 7000 99.870 0.815
 8000 99.869 0.818
 9000 99.868 0.821
 12000 99.867 0.826
 13000 99.866 0.827
 14000 99.866 0.828
 16000 99.866 0.829

TABLE VI. Mean Prec and RMSE values obtained using the NLE 
method, the fi ve real interference fi lters and the illuminants with 
different color temperatures.

 Tc (K) Mean Prec  Mean (RMSE*100) 

 1000 100 0.044
 1500 100 0.015
 1800 100 0.015
 1850 100 0.015
 1900 100 0.016
 2000 100 0.016
 2852 100 0.016
 3371 100 0.017
 4000 100 0.017
 5000 100 0.017
 6000 100 0.017
 7000 100 0.017
 8000 100 0.017
 9000 100 0.017
 12000 100 0.018
 13000 100 0.018
 14000 100 0.018
 16000 100 0.018
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