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SHORT COMMUNICATION

Zernike coefficients for concentric, circular scaled pupils: an equivalent expression

José A. Dı́aza*, José Fernández-Doradob, Carles Pizarrob and Josep Arasab

aDepartamento de Óptica, Edificio Mecenas, Universidad de Granada, Granada, Spain; bCenter for Sensors, Instrumentation
and Systems Development, Universitat Politècnica de Catalunya, Terrassa, Spain

(Received 5 August 2008; final version received 4 October 2008)

We present an alternative formal calculation of the scaled Zernike coefficient expansion by means of the inner
product of the Zernike polynomials and the wavefront error corresponding to the scaled pupil. The relationship
exhibited by the radial polynomials and Bessel functions leads to a general expression in terms of the Gauss
hypergeometric function. Direct properties and index selection rules are established, and easy derivation of the
non-normalized coefficients is also straightforward.

Keywords: optical aberrations; mathematical physics

1. Introduction

The optical quality of an imaging system can be
evaluated by studying the shape of the wavefront error
at the exit pupil [1,2]. Since that wavefront error
contains all the information concerning the aberrations
of the system, the importance of its determination is
a primary objective. Today, by means of interfero-
metric testing, different wavefront sensing techniques,
and wavefront error fitting algorithms, the objective is
achieved [3]. The wavefront error is usually determined
by using an orthonormal polynomial expansion.
Individually or in groups, these can be seen as
descriptors of the type of system aberration. The set
of orthonormal polynomials widely adopted is that of
the Zernike circle polynomials for systems having
circular pupils. However, a method to obtain a set of
orthonormal polynomials for other pupil characteris-
tics and/or geometries inscribed in a unit circle has
been published recently [4,5].

A great deal of work has been done in using the
Zernike polynomials to characterize the imaging
quality of optical systems. Nevertheless, in order to
use this set of polynomials to quantify the wavefront
error, a circular domain of unit radius in the pupil
must be set. Goldberg and Geary [6] studied the
problem of extrapolating the wavefront error beyond
the domain established to fit it. That is, they estimated
the full pupil wavefront error from its fit based on
subdomains, which is usual in interferometric optical
testing. Thus, they developed a matrix relation between
the coefficients of the two expansions: those for
the whole unit pupil from those of the smaller
one established. Although, mathematically this latter

expansion is not valid and it is unstable beyond the
domain in which it is defined, as occurs in scaling or
decentration subdomains [7], Golberg and Geary [6]
established the conditions to find the minimum size of
the subdomain in order for the wavefront error
extrapolation to the full pupil to be valid within
a given error.

The inverse problem is easier and mathematically
less problematic: to find the Zernike coefficient
expansion for a smaller pupil than that corresponding
to the whole unit circle pupil. This is particularly
important when the values of the aberrations need to
be compared when they are obtained with different
pupil radii, as occurs in ocular aberrometry, or when
it is necessary to determine the aberration values for
different smaller pupil diameters quickly. Many works
have dealt with this problem, and some authors
propose analytical methods [7–9], while others propose
numerical ones [7,10–13], considering concentric,
decentred, and even non-circular, scaled pupils. Both
methodologies are important since they complement
each other.

However, some comments are necessary.
Decentered scaled pupils should be inside the unit
circle pupil, since this guarantees that the new pupil
will not contain part of the wavefront that is not
described from the whole unit circle. If a portion of the
scaled pupil extends beyond the unit circle, the new
Zernike polynomial expansion might not be conver-
gent and the errors should be quantified [6,8]. When
the scaled pupil has a non-circular shape, the new set of
polynomials derived from the Zernike set for the
circular pupil needs to be demonstrated in order to
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formulate an orthonormal set of functions [5]. If not,

errors in the coefficients arise and propagate in the

variance, root-mean-square wavefront error, or Strehl

ratio calculations.
Several of the aforementioned works have pro-

posed analytical expressions for the new Zernike

coefficients corresponding to the scaled pupil, with

these expressions having a recursive nature [8] or being

formulated in an intuitive way avoiding recursion

relationships [9]. Furthermore, a mathematical

demonstration of this latter approach has been

published [14].
In this work, a direct and formal approach,

developed for the theory of function expansion in

terms of orthonormal polynomials, is used. Thus, we

formulate an alternative and equivalent analytical

expression for the Zernike coefficients of a concentric

scaled circle pupil from the expressions corresponding

to that of the whole unit circle. Since the wavefront

error can be determined for the scaled pupil having

a smaller radius, it can be expanded again in terms of

the Zernike polynomials set considering the scaled

pupil to have a unit radius. Then, the new coefficients

are determined by the inner product of the correspond-

ing Zernike polynomial with the wavefront error

evaluated in the scaled pupil. The relationship exhib-

ited by the radial polynomials and Bessel functions

leads to a general expression in terms of the Gauss

hypergeometric function. Direct properties and index

selection rules are established avoiding cumbersome

algebra, recursive relationships, and initial conditions.
This method has recently been applied to establish

a quite simple expression in terms of the radial

polynomials themselves [15], but no demonstration of

the equivalence with previous results has been pro-

vided. Here, we will also present the equivalence of our

results. Moreover, the expression for the non-normal-

ized coefficients is straightforward.

2. Zernike circle polynomials and wavefront

expansion

The standard Zernike circular polynomials are

a product of radial polynomials, Rm
n ðrÞ, and angular

functions, �m(�), as [16]

Zm
n ð�, �Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðnþ 1Þ

1þ �m,0

s
Rm

n ð�Þ�
mð�Þ ¼ Nm

n R
m
n ð�Þ�

mð�Þ

ð1Þ

where Nm
n is the normalization constant, and �m,0 the

Kronecker delta symbol. Regarding the normalization

constant, it is usual in interferometric optical testing

not to include it.

The fZm
n g forms a complete set of functions in the

unit circle. The double-indexing scheme is used so that

each Zernike polynomial will unambiguously have the

highest power, n, of the radial polynomial, and the

azimuthal frequency m of the angular function.
The radial polynomials are define as

Rm
n ð�Þ ¼

Xðn� mj jÞ=2

s¼0

ð�1Þsðn� sÞ!

s! nþm
2 � s

� �
! n�m

2 � s
� �

!
�n�2s ð2Þ

and the angular function as

�mð�Þ ¼
cosðm�Þ, m � 0,

sinðm�Þ, m5 0:

�
ð3Þ

The indices n andmmust satisfym� n and n�m� 0

is an even number. We will use this double-indexing

scheme in the present work, although the ordering of the

Zernike polynomials into a single one is possible [5,17].
If W(�, �) is the wavefront error of an optical

system, i.e. the aberrations, in the exit pupil, it can be

expanded in terms of the complete set of Zernike

polynomials, fZm
n g, with the pupil radius normalized to

unity, as

Wð�, �Þ ¼
Xk
n¼0

Xn
m¼�n

amn Z
m
n ð�, �Þ ð4Þ

where amn is the coefficient of the corresponding basis

element of the set, and k is the highest order of the

radial polynomials adopted for the expansion.

3. Expansion coefficients

We will derive in this section the new coefficients for

the wavefront error expansion in the scaled pupils from

those corresponding to the whole unit pupil. Thus,

if the radius of the unit pupil is multiplied by

a normalized scale parameter �¼ r/R, where r is the

new physical radius of the pupil and R is the original

one, thus satisfying 0� �51, the wavefront error

W�(��, �) within this scaled pupil will be

W�ð��, �Þ ¼
Xk
n¼0

Xn
m¼�n

amn Z
m
n ð��, �Þ ð5Þ

where Equation (4) has been applied.
Now, if we wish to expand this wavefront error in

the Zernike polynomials set, assuming that the scaled

pupil has a unit radius, it can be re-expressed as

Wð�, �Þ ¼
Xk
n0¼0

Xn0
m0¼�n0

bm
0

n0 Z
m0

n0 ð�, �Þ ð6Þ

where W�(��, �)¼W(�, �), and the coefficients bm
0

n0 can

be calculated by definition through the inner product
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of the corresponding Zernike polynomial, Zm0

n0 ð�, �Þ and
the wavefront W�(��, �), as follows:

bm
0

n0 ¼ hWjZ
m0

n0 i ¼
1
A

Ð
�WZm0

n0 dS ð7Þ

where we have ignored the variables for brevity, A is

the area of the pupil, and � the domain of integration

of the pupil. Then

bm
0

n0 ¼
1
�

Ð 1
0

Ð 2�
0 W�ð��, �ÞZ

m0

n0 ð�, �Þ� d�d� ð8Þ

given that W�(��, �)¼W(�, �).
If we take into account Equation (5) and the

definition of the Zernike polynomials (1), we get

bm
0

n0 ¼
1

�

ð1
0

ð2�
0

W�ð��, �ÞR
m0

n0 ð�Þ�
m0 ð�Þ� d�d�

¼
1

�

Xk
n¼0

Xn
m¼�n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðnþ 1Þ

1þ �m,0

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðn0 þ 1Þ

1þ �m0, 0

s
amn

�

ð1
0

Rm
n ð��ÞR

m0

n0 ð�Þ� d�

ð2�
0

�mð�Þ�m0 ð�Þd�: ð9Þ

The integral for the angular functions is solved as

they are orthogonals,

ð2�
0

�mð�Þ�m0 ð�Þd� ¼ �ð1þ �m,0Þ�m,m0 , ð10Þ

and thus we get

bmn0 ¼ ð1þ �m,0Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðn0 þ 1Þ

1þ �m,0

s Xk
n¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðnþ 1Þ

1þ �m,0

s
amn

�

ð1
0

Rm
n ð��ÞR

m
n0 ð�Þ�d�

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðn0 þ 1Þ

p Xk
n¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðnþ 1Þ

p
amn

ð1
0

Rm
n ð��ÞR

m
n0 ð�Þ�d�:

ð11Þ

We see from the above expression that the

azimuthal frequency dependency indicates that

the new coefficients, bmn0 , are calculated by means of

the previous coefficients, amn , for the same value of m.
In order to solve the integral corresponding to

the product of the radial functions, we first recall

the definition of the radial polynomials in terms

of the Bessel functions [18] given by the following

expression:

Rq
pð�Þ ¼ ð�1Þ

ð p�qÞ=2

ð1
0

Jpþ1ðrÞJqðr�Þdr, 0 � �5 1:

ð12Þ

Then, substituting for the radial polynomial Rm
n ð��Þ in

the integral above,

bmn0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðn0 þ 1Þ

p Xk
n¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðnþ 1Þ

p
amn ð�1Þ

ðn�mÞ=2

�

ð1
0

Rm
n0 ð�Þ�d�

ð1
0

Jnþ1ðrÞJmð�r�Þdr

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðn0 þ 1Þ

p Xk
n¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðnþ 1Þ

p
amn ð�1Þ

ðn�mÞ=2

�

ð1
0

Jnþ1ðrÞdr

ð1
0

Rm
n0 ð�ÞJmð�r�Þ� d� ð13Þ

where we have inverted the order of the integral in the

variables r and �.
Now, we have the well-known result from Zernike–

Nijboer diffraction theory of images [16,18],ð1
0

Rm
n ð�ÞJmðv�Þ� d� ¼ ð�1Þ

ðn�mÞ=2 Jnþ1ðvÞ

v
, ð14Þ

which, when applied to the later integral in r, leads

to the following expression:

bmn0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðn0 þ 1Þ

p Xk
n¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðnþ 1Þ

p
amn ð�1Þ

nþn0�2m
2

�

ð1
0

Jnþ1ðrÞdr
Jn0þ1ð�rÞ

�r

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðn0 þ 1Þ

p Xk
n¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðnþ 1Þ

p
amn ð�1Þ

nþn0�2m
2

�

ð1
0

Jnþ1ðrÞJn0þ1ð�rÞ

�r
dr: ð15Þ

Finally, the integral in r can be solved in terms of the

Gauss hypergeometric function, 2F1(a, b; c; �
2), taking

into the tabulated results from [19]:

bmn0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðn0 þ1Þ

p Xk
n¼0

ð�1Þ
nþn0�2m

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðnþ1Þ

p
amn

�
1

�

�n
0þ1� nþn0

2 þ1
� �

2�ðn0 þ2Þ� n�n0

2 þ1
� � 2F1

�
n0 �n

2
,
nþn0

2
þ1;n0 þ2;�2

� �

¼ �n
0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn0 þ1Þ

p Xk
n¼0

ð�1Þ
nþn0�2m

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ1Þ

p
amn

�
� nþn0

2 þ1
� �

�ðn0 þ2Þ� n�n0

2 þ1
� � 2F1

n0 �n

2
,
nþn0

2
þ1;n0 þ2;�2

� �
:

ð16Þ
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In this result, we must remember that the Gauss

hypergeometric function is convergent in the unit

circle [20,21], since n0 þ 240 for all n0, and

c� a� b¼ 1. Furthermore, we should bear in mind

that n�m� 0 and n�m is even, and n0 �m0 � 0 and

n0 �m0 is an even number. Therefore, it follows that

n� n0 is even. Moreover, an additional condition

arises: the value for n� n0 must be different from any

negative even integer in order for �((n� n0)/2þ 1) to

be defined. Thus, we can rewrite the equation in the

following way:

bmn0 ¼ �
n0
Xk
n¼n0

ð�1Þ
nþn0�2m

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn0 þ1Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ1Þ

p
amn

�
� nþn0

2 þ1
� �

�ðn0 þ2Þ� n�n0

2 þ1
� � 2F1

n0 �n

2
,
nþn0

2
þ1;n0 þ2;�2

� �
,

ð17Þ

in which n¼ n0, n0 þ 2, . . . , k.
Table 1 shows the expressions between the

coefficients of the scaled pupils and the whole unit

pupil, for the first six orders (k¼ 6). The agree-

ment with those tabulated by Schwiegerling [8] is

fulfilled.
The main straightforward result is the expression

for the non-normalized coefficients. For this, we need

to take into account only the fact that the normal-

ization constant is not present in the Zernike poly-

nomials, and therefore in the inner product of the

wavefront, W�(��, �), and the corresponding orthogo-

nal Zernike polynomial, Zm0

n0 ð�, �Þ:

bm
0

n0 ¼
2ðn0 þ 1Þ

�ð1þ �m0, 0Þ

ð1
0

ð2�
0

W�ð��, �ÞR
m0

n0 ð�Þ�
m0 ð�Þ� d�d�:

ð18Þ

Thus, we get

bmn0 ¼ ðn
0 þ1Þ �n

0
Xk
n¼n0

ð�1Þ
nþn0�2m

2 amn

�
� nþn0

2 þ1
� �

�ðn0 þ2Þ� n�n0

2 þ1
� � 2F1

�
n0 �n

2
,
nþn0

2
þ1;n0 þ2;�2

�
:

ð19Þ

It is also important to check the results from
Equation (17) when �¼ 1 in order to recover the
original coefficients in the wavefront expansion. In this
case, we have to use the value of 2F1ð

n0�n
2 , nþn0

2

þ1; n0 þ 2; 1Þ, and the properties of the Gamma
function [20,21], �, to get finally

bmn0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn0 þ 1Þ

p Xk
n¼n0

ð�1Þ
nþn0�2m

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ 1Þ

p
amn

�
2 sin �

2 ðn� n0Þ
� �

�ðn� n0Þð2þ nþ n0Þ
, ð20Þ

which gives bmn ¼ amn when n¼ n0, since for all other
cases the terms in the summation are zero, regardless
of the value for m.

4. Equivalence with previous published expressions

4.1. Dai’s expression

To demonstrate that our result given by Equation (17)
is equivalent to those reported previously [8,9], we need
to take several things into account. First, we should
bear in mind that (n0 � n)/2 is zero or a negative
integer, and thus the Gauss hypergeometric function is
a polynomial [20,21]. Therefore,

Table 1. Coefficients bmn0 for the scaled pupil in terms of those corresponding to the whole unit pupil, up to sixth
order (k¼ 6).

n0 m bmn0

0 0 a00 þ a02
ffiffiffi
3
p
ð�2 � 1Þ � a04

ffiffiffi
5
p
ð2�4 � 3�2 þ 1Þ þ a06

ffiffiffi
7
p
ð5�6 � 10�4 þ 6�2 � 1Þ

1 1,�1 �½am1 þ am3
ffiffiffi
8
p
ð�2 � 1Þ þ am5

ffiffiffi
3
p
ð5�4 � 8�2 þ 3Þ�

2 �2, 0, 2 �2½am2 þ am4
ffiffiffiffiffi
15
p
ð�2 � 1Þ þ am6

ffiffiffiffiffi
21
p
ð3�4 � 5�2 þ 2Þ�

3 �3, �1, 1, 3 �3½am3 þ am5 2
ffiffiffi
6
p
ð�2 � 1Þ�

4 �4, �2, 0, 2, 4 �4½am4 þ am6
ffiffiffiffiffi
35
p
ð�2 � 1Þ�

5 �5, �3, �1, 1, 3, 5 �5am5

6 �6, �4, �2, 0, 2, 4, 6 �6am6

152 J.A. Dı́az et al.
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bmn0 ¼ �
n0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn0 þ 1Þ

p Xk
n¼n0

ð�1Þ
nþn0�2m

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ 1Þ

p
amn

�
� nþn0

2 þ 1
� �

�ðn0 þ 2Þ� n�n0

2 þ 1
� � �ðn0 þ 2Þ

� n0þn
2 þ 1

� �
� n0�n

2

� �

�
Xðn�n0Þ=2
j¼0

� n0�n
2 þ j

� �
� n0þn

2 þ jþ 1
� �

�ðn0 þ 2þ jÞ j!
�2j

¼ �n
0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn0 þ 1Þ

p Xk
n¼n0

ð�1Þ
nþn0�2m

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ 1Þ

p
amn

�
1

� n�n0

2 þ 1
� �

� n0�n
2

� �

�
Xðn�n0Þ=2
j¼0

� n0�n
2 þ j

� �
� n0þn

2 þ jþ 1
� �

�ðn0 þ 2þ jÞ j!
�2j: ð21Þ

Secondly, we note that if p is a positive integer, the

following is verified [20,21]:

�ð p� zÞ

�ð�zÞ
¼ ð�1Þ p

�ðzþ 1Þ

�ðz� pþ 1Þ
: ð22Þ

Moreover, this can be applied to the last expression

with z� (n� n0)/2 to obtain

bmn0 ¼ �
n0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn0 þ 1Þ

p Xk
n¼n0

ð�1Þ
nþn0�2m

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ 1Þ

p
amn

�
Xðn�n0Þ=2
j¼0

ð�1Þj
� n�n0

2 þ n0 þ 1þ j
� �

� n�n0

2 � jþ 1
� �

�ðn0 þ 2þ jÞ j!
�2j:

ð23Þ

We can arrange the expression a slightly more by

applying the definition of the Gamma function [20]:

bmn0 ¼ �
n0
Xk
n¼n0

ð�1Þ
n�n0

2 þ n0�m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn0 þ 1Þðnþ 1Þ

p
amn

�
Xn�n0 Þ2

j¼0

ð�1Þj
n�n0

2 þ n0 þ j
� �

!
n�n0

2 � j
� �

!ðn0 þ 1þ jÞ! j!
�2j:

ð24Þ

Finally, given that n has values from n0, n0 þ 2, . . . to k,

introducing the index i, and rearranging the expression,

it follows that

bmn0 ¼ �
n0
Xðk�n0Þ=2
i¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðn0 þ 1Þðn0 þ 2iþ 1Þ

p
amn0þ2i

�
Xi
j¼0

ð�1Þjþi
ðn0 þ iþ jÞ!

ði� jÞ!ðn0 þ 1þ jÞ! j!
�2j: ð25Þ

This is the equation reported by Dai [9] in his work.

It is not difficult to follow this procedure to show the

equivalence for the non-normalized coefficients

(Equation (19)) to those reported by Dai in the same

work.

4.2. Janssen and Dirksen expression

Janssen and Dirksen [15] reported an expression for

the non-normalized scaled coefficients in terms of the

Zernike radial polynomials which is quite concise:

bmn0 ¼
Xk
n¼n0

amn Rn
n0 ð�Þ � Rnþ2

n0 ð�Þ
� 	

ð26Þ

in which k is the maximum order. From the definition

of radial Zernike polynomials, it is not difficult to

derive the following relationship for the above

equation:

bmn0 ¼
Xk
n¼n0

ðn0 þ 1Þamn

Xðn�n0Þ=2
s¼0

ð�1Þs

�
ðn� sÞ!

n�n0

2 � s
� �

! nþn0

2 þ 1� s
� �

! s!
�n�2s: ð27Þ

Now, we can reorder the indices in the summations,

bmn0 ¼ ðn
0 þ 1Þ

Xðk�n0Þ=2
i¼0

amn0þ2i

�
Xi
s¼0

ð�1Þs
ðn0 þ 2i� sÞ!

ði� sÞ!ðn0 þ iþ 1� jÞ! s!
�n
0þ2i�2j,

ð28Þ

and finally with s¼ i� q,

¼ �n
0

ðn0 þ 1Þ
Xðk�n0Þ=2
i¼0

amn0þ2i

�
Xi
q¼0

ð�1Þi�q
ðn0 þ iþ qÞ!

ði� qÞ!ðn0 þ qþ 1Þ! q!
�2q: ð29Þ

This is in full agreement with the expression obtained

by Dai [9], and easily obtained following the procedure

of the previous subsection by starting from the

non-normalized coefficients derived in this work

(Equation (19)).

5. Summary

We have presented an alternative, and equivalent,

expression for the Zernike coefficient expansion

corresponding to a concentric, scaled circular pupil,

in terms of that for the whole unit pupil. The direct
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method by means of the inner product of the wavefront

and the Zernike polynomials avoids cumbersome

algebra, recursive relationships, and initial conditions.

The use of hypergeometric functions allows the

coefficients to be evaluated numerically, although

some modern computer algebra software (e.g.

Mathematica, from Wolfram Research Inc.) can

manage them.
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Appendix 1. Example of using Equation (17)

This appendix illustrates how the main result of this paper

(Equation (17)) can be used to obtain the Zernike coefficient

value for the scaled pupil from that corresponding to the full

pupil. Thus, let us consider a full pupil wavefront error given

by the sum of primary spherical aberration, coma, and

astigmatism, each with a standard deviation of unity. Then

W(�, �) can be expressed in terms of the orthonormal Zernike

polynomials as

Wð�, �Þ ¼
ffiffiffi
6
p
�2 cosð2�Þ þ

ffiffiffi
8
p
ð3�3 � 2�Þ cosð�Þ

þ
ffiffiffi
5
p
ð6�4 � 6�2 þ 1Þ

in which a22 ¼ a13 ¼ a00 ¼ 1, and W has wavelength units. All

the remaining coefficients amn are zero independently of the

values of the indices n and m as well as the maximum order

k of the radial polynomials used for the expansion.

Let us suppose that we want to determine the coefficients

for the scaled pupil with a reduction factor �¼ 0.8. By using

Equation (17), the value of the non-zero scaled coefficients in

wavelength units are

b00¼ a00
�ð1Þ

�ð2Þ�ð1Þ
2F1ð0,1;2;0:82Þ

�
ffiffiffi
3
p

a02
�ð2Þ

�ð2Þ�ð2Þ
2F1ð�1,2;2;0:82Þ

þ
ffiffiffi
5
p

a04
�ð3Þ

�ð2Þ�ð3Þ
2F1ð�2,3;2;0:82Þ

þ � � � ¼ 0þ0�0:225396,

b11¼ 0:8



2a11

�ð2Þ

�ð3Þ�ð1Þ
2F1ð0,2;3;0:82Þ

þ2
ffiffiffi
2
p

a13
�ð3Þ

�ð3Þ�ð2Þ
2F1ð�1,3;3;0:82Þþ � � �

�
¼ 0�0:814587,

b02¼ 0:82


3a02

�ð3Þ

�ð4Þ�ð1Þ
2F1ð0,3;4;0:82Þ

þ
ffiffiffiffiffi
15
p

a04
�ð4Þ

�ð4Þ�ð2Þ
2F1ð�1,4;4;0:82Þþ � � �

�
¼ 0�0:892336,

b22¼ 0:82


3a22

�ð3Þ

�ð4Þ�ð1Þ
2F1ð0,3;4;0:82Þ

þ
ffiffiffiffiffi
15
p

a24
�ð4Þ

�ð4Þ�ð2Þ
2F1ð�1,4;4;0:82Þþ � � �

�
¼ 0:64þ0,

b13¼ 0:83ða13þ�� �Þ ¼ 0:512,

b04¼ 0:84ða04þ�� �Þ ¼ 0:4096:
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The calculations show that it is advantageous to take into

account the relationship 2F1(�a, b; b; z)¼ (1� z)�a, as well as

the Gauss relations for contiguous functions [20,21]. For

example, the non-zero term in the calculation of b00 can be

determined easily as follows:

2F1ð�2, 3; 2; 0:82Þ

¼
1

2ð1� 0:82Þ
2 � 2F1ð�2, 2; 2; 0:82Þ
�

�4 � 0:82 � 2F1ð�2, 3; 3; 0:82Þ
	
¼ �0:1008,

which multiplied by
ffiffiffi
5
p

gives b00 ¼ �0:225396.

Appendix 2. Mathematica Code for listing the scaled

coefficients

In this appendix, we provide as an example the Mathematica

[22] code which lists the values for the scaled coefficients in

terms of those corresponding to the full pupil up to any

order:
(*Here Equation (17) is defined*)

b½order , np ,m , � �:¼Module½fn, coeffg,

coeff ¼ Sum½an,m 	
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnþ 1Þ

p
	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðnpþ 1Þ

p
	

ð�1Þ
ðn�2mþnpÞ

2 	 �npGamma 1
2 ð2þ nþ npÞ
� 	

Hypergeometric2F1Regularized

1
2 ð�nþ npÞ, 1

2 ð2þ nþ npÞ, 2þ np, �2
� 	
�

Gamma 1
2 ð2þ n� npÞ
� 	� �

,

fn, np, order, 2g��;

(*Here we set the maximum order of Zernike poly-

nomials, up to the 20th polynomial as an example*)
order¼20;
(*Then we list the coefficients*)

Table½FullSimplify½Collect½Expand½b½order, np,m, ���,ffiffiffiffiffiffip
a �, ðnp�mÞ=2 2 Integers,

ComplexityFunction! LeafCount�,

fnp, 0, orderg�//TableForm
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