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ABSTRACT 
 
The near infrared spectral region (NIR) is useful in many applications. These include agriculture, the food and chemical 
industry, and textile and medical applications. In this region, spectral reflectance measurements are currently made with 
conventional spectrophotometers. These instruments are expensive since they use a diffraction grating to obtain 
monochromatic light. In this work, we present a multispectral imaging based technique for obtaining the reflectance 
spectra of samples in the NIR region (800 – 1000 nm), using a small number of measurements taken through different 
channels of a conventional CCD camera. We used methods based on the Wiener estimation, non-linear methods and 
principal component analysis (PCA) to reconstruct the spectral reflectance. We also analyzed, by numerical simulation, 
the number and shape of the filters that need to be used in order to obtain good spectral reconstructions. We obtained the 
reflectance spectra of a set of 30 spectral curves using a minimum of 2 and a maximum of 6 filters under the influence of 
two different halogen lamps with color temperatures Tc1 = 2852K and Tc2 = 3371K. The results obtained show that 
using between three and five filters with a large spectral bandwidth (FWHM ≈ 60 nm), the reconstructed spectral 
reflectance of the samples was very similar to that of the original spectrum. The small amount of errors in the spectral 
reconstruction shows the potential of this method for reconstructing spectral reflectances in the NIR range.  
 
Keywords:  CCD cameras, near infrared, infrared imaging, multispectral imaging, spectrophotometric instrumentation, 
industrial inspection  
 

1. INTRODUCTION 
 
The use of solid-state detector arrays1 has increased rapidly in the last few years, specifically in the case of video 
cameras, due to their versatility and low cost. The detector can be based on various technologies, such as CCD or 
CMOS. The spectral response of conventional CCD cameras extends from the visible to the near infrared (NIR) and it is 
clearly significant up to 1000 nm. Basically, this kind of device is used for the detection of visible light, since it has the 
greatest sensitivity in this region, but CCD cameras with improved response in the NIR are currently manufactured. 
Therefore, we can make use of this standard instrumentation in NIR applications. While the visible spectrum contains 
very little information on the chemical composition of an object, the spectral information included in the NIR region is 
in general directly related to the constituents of a material. Therefore, it is used as an analytical tool in industry and 
research, known as NIR technology2. NIR technology is used in a vast number of applications. These include agriculture, 
the food industry, medical applications, military applications, the chemical and petrochemical industries, pharmaceutical 
production and laser technology3. 
 
Spectral reflectance measurements in the NIR region are normally made with conventional spectrophotometers. These 
instruments are expensive since they use a diffraction grating to obtain monochromatic light. We therefore propose an 
alternative methodology of spectral reflectance reconstruction using conventional CCD camera measurements. We use a 
method based on multispectral imaging which employs three or more acquisition channels. The use of different spectral 
bands, which are obtained by placing a set of filters in front of the camera, means the obtained images will have certain 
spectral information. With the proper mathematical treatment of these images, it is possible to reconstruct the spectral 
reflectance of the analyzed sample. There are various mathematical methods for reconstructing spectral data, some of 
them based on interpolation calculations (linear, cubic, spline, discrete Fourier transform and modified discrete sine 
transform approximations) and others on estimation or fitting techniques (Moore-Penrose pseudoinverse, smoothing 
inverse, Wiener estimation, non-linear methods and principal component analysis or characteristic vector analysis). In 
this study we compare the performance of these methods in the NIR region, and focus on the Wiener estimation4-6, the 
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non-linear methods7,8 and principal component analysis (PCA)4,9-12 to reconstruct the spectral reflectance of the analyzed 
samples, since they generally provide better results than the other methods.  
 
As we have mentioned, it is necessary to place a set of filters in front of the CCD camera in order to recover spectral 
reflectances using multispectral images. Interpolation methods require monochromatic filters in order to obtain 
reflectance values at different wavelengths of the spectrum. Estimation methods may use filters with different spectral 
features, and by extension, different transmittance values and spectral bandwidth. However, reconstruction using filters 
with different transmittance profiles may yield different reconstruction results because of the performed approximations. 
Many authors4,5,13-15 have studied the influence of these filters in the visible region, since they constitute a basic 
component of many color reproduction systems. In the NIR region, the choice of the filters is only conditioned by the 
quality of reconstruction of the spectral curves, as no colorimetric space is defined in the studied region, and simple 
transmittance profiles are used in order to obtain available commercial filters. 
 
In this study, we present a multispectral imaging based method for reconstructing the spectral reflectance curves of 
samples in the 800-1000 nm range, using measurements performed with a conventional CCD camera. We compare 
various existing mathematical methods such as the Wiener estimation, non-linear methods and principal component 
analysis. We analyze the number and shape of the filters to be used in various channels in order to obtain good 
reconstructions in the NIR region. We use simple transmittance profiles in order to obtain available commercial filters. 
Using numerical simulation, we analyze the reconstruction results that would be obtained for 30 spectral curves with 
different sets of filters, under the influence of two different illuminants with color temperatures Tc1 = 2852K and Tc2 = 
3371K. To date, no spectral reconstruction methods in the NIR region using conventional CCD camera measurements 
have been reported. 
 

2. METHODOLOGY 
 
2.1 Spectral reconstruction 

The reconstruction method is summarized in Figure 1. A multi-channel image of an original object is acquired by 
placing a selected set of filters in front of the camera. Then, a spectral reconstruction method is applied and the 
reconstructed spectral reflectance of the sample is obtained. 
 

 
Figure 1: Schematic view of the acquisition system and the final spectral reconstruction step. 
 
Essentially, three reconstruction methods are studied in this work: the Wiener estimation, the non-linear methods and 
principal component analysis. They are all estimation methods, and therefore they can be applied by using non-
monochromatic filters. Consequently, the CCD camera responses for each channel can be expressed as follows: 
 
                                                              ∫= max

min
ii SFriX λ

λ λλλλτλλ d)()()()()( ,                                                              (1)  
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where Xi is the digital level obtained for a certain channel (i = 1,...,m), i(λ) is the spectral radiance of the illuminant, r(λ) 
is the spectral reflectance of the sample, τ(λ) is the spectral transmittance of the optical path, Fi(λ) is the spectral 
transmittance of the filters placed between the camera and the sample (different for each channel), and S(λ) is the 
spectral sensitivity of the CCD camera used. The term τ(λ) includes the optical system in front of the camera (objective 
lens) as well as the spectral transmittance of the atmosphere. We considered the value of this term to be 1, which is 
approximately its value in normal conditions.  
 
The spectral radiance of the illuminant, the spectral transmittance of the filter and the spectral sensitivity of the camera 
can be brought together in a term called Ci(λ): 
 
                                                                           )()()()( λλλλ SFiC ii = ,                                                                          (2)            

 
and we can write (1) as follows:  
 

∫= max
min

ii rCX λ
λ λλλ d)()( ,                                                                        (3) 

 
for each of the m existing channels of the camera. In matrix notation:  
 

rCi=iX ,                                                                                     (4) 
 
where Ci is a row vector with components i(λ)Fi(λ)S(λ) and r is a column vector with components r(λ), both analyzed at 
n wavelengths. 
 
In general, we can write: 
 

CrX = ,                                                                                      (5) 
 

where X is a column vector which represents the m camera responses to the sample for the m channels (Xi) and C is a 
matrix (m × n) whose rows are the spectral sensitivity of each used channel, that is, 
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In order to use the three proposed methods, it is necessary to know a set of spectral reflectance data similar to the curves 
that we want to reconstruct. The set of p known spectral reflectance curves is represented by a matrix (n × p) called the 
original data matrix (Or), whose columns are the p known spectra. 
 
In the case of the Wiener estimation, we assume that a matrix D exists and that it provides the spectral reflectances from 
the camera responses, that is, 
 

Orr DXO = ,                                                                          (7) 
 
where XOr is a matrix (m × p) whose columns are the camera responses for each of the known samples for the different 
existing channels, 
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Combining equations (7) and (8), we obtain: 
 

rr DCOO = .                                                                                  (9) 
 
Inverting equation (9) using the pseudoinverse technique4, which gives the least-norm solution, we obtain a matrix D 
which minimizes the distance between the known and the estimated spectral reflectances: 
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We assume that the reflectance spectra to be reconstructed are a linear combination of the known spectral curves, that is, 
the curves belonging to the original data matrix are a good representation of all the spectra. This can be stated as follows: 
 

αOr r≅ ,                                                                                   (11) 
 
where α is a column vector whose components are the coefficients of the linear combination. Therefore, matrix D is 
valid for the reconstruction of any curve r,  
 

αDCODCrDXr rrec ≅=≅ .                                                                   (12)        
 
The difficulty of this method is finding a set of representative spectral reflectances of the curves to be reconstructed. 
Otherwise, the performed approximations would not be accurate. 
 
In the Wiener estimation we have used a linear transformation to relate the reflectance spectra to the camera responses 
(Equations 7 and 8). By extension, we can also apply a non-linear transformation (non-linear methods). Instead of using 
matrix XOr we can consider a matrix XNL whose columns are a second or higher order polynomial of the camera 
responses. Therefore, we can calculate another matrix DNL which relates the polynomial data to the spectral reflectances. 
Using a complete second order polynomial and three available channels, matrix XNL would be: 
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We can use polynomials of any order or shape. In practice, this is limited by the required precision and the 
computational cost. The intersection between channels is often small and therefore, an increase in the order of the 
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polynomial may not result in a significant improvement of the reconstructions.The calculation of matrix DNL is 
performed as in the Wiener estimation: 
 

1)( −= T
NLNL

T
NLrNL XXXOD .                                                                   (14) 

 
Principal component analysis associates the matrix Or to a vector space and its characteristic vectors can be calculated. 
By using the whole set of characteristic vectors, it is possible to recover the original vector space in its totality. It is 
demonstrated that the characteristic vectors that allow the best reconstruction of the spectra are those corresponding to 
the variance-covariance matrix of the corrected matrix (Orc), that is, t

rcrcOO/p)(1 . Orc is the same matrix as Or, but the 
mean column vector rM (which represents the average of the original p curves) has been extracted from its columns. In 
order to reconstruct each of the curves belonging to the original data matrix or spectra similar to them (r), each 
characteristic vector calculated must be added in the proper amounts (using linear combination) to the mean curve or 
vector rM. In vector notation this can be stated as follows: 
 

rqr4r3r2r1M vvvvvrr ξδγβα ++++++≅ ... ,   q ≤ n,                                               (15) 
 
where α, β, ..., ξ are scalar coefficients and vr1, vr2, ..., vrq are the characteristic vectors. The scalar coefficients are the 
amounts of the characteristic vectors which must be combined in order to recover each spectral curve.  
 
In order to explain the differences along all the spectral curves it would be necessary to equate q to n, because of the 
vector space definition. It is demonstrated that a small set of characteristic vectors can explain a large percentage of 
variability in the curves, and for this reason, from now on we shall assume that q < n. This is normally due to the fact 
that not all the spectra of the original data matrix are linearly independent.  
 
Combining equations (5) and (15), we obtain a relation between the camera responses and the calculated characteristic 
vectors: 
 

rqr3r2r1M CvCvCvCvCrCrX ξγβα +++++≈= ... ,   q < n,                                         (16) 
 
We know all the variables of Equation (16) except the scalar coefficients α, β,..., ξ. We have the same number of scalar 
coefficients as characteristic vectors that we want to use in the reconstruction. In order to find the value of these 
coefficients, the same number of equations as unknown quantities is needed (the same number of channels or filters as 
characteristic vectors used in the reconstruction). After these coefficients are calculated, we can apply Expression (15) to 
reconstruct r, and consequently determine the spectrum of the unknown sample.  
 
In order to evaluate the quality of the reconstruction we use two different parameters : 
 

Percentage of reconstruction: 100
)(

)(
1

2

2

×














 −
−=

∑
∑

max

min

max

min

r

rr
P

rec

rec λ

λ

λ

λ ,                                     (17) 

 

Root Mean Square Error: 
2/1
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where r are the experimental components of the original reflectance curves, rrec are the reconstructed values and Nλ are 
the number of wavelengths where the measurements are made.  
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RMSE is a commonly used parameter in multispectral imaging and provides a non-limited value related to the difference 
between the original and the reconstructed spectra. The percentage of reconstruction provides a more intuitive idea of the 
quality of the reconstruction since its maximum possible value is 100. However, the percentage of reconstruction 
parameter is very sensitive to variations and in some cases a percentage of 99% or less can lead to considerable 
differences between the original and the reconstructed spectra.  
 
2.2 Choice of filters 

The reconstruction of spectra explained above involves the use of various acquisition channels and therefore different 
filters. Some authors have studied the influence of the filters in the visible region, in order to use the camera responses as 
colorimetric values4,5,13-15. In the NIR region, the choice of the filters is only conditioned by the quality of reconstruction 
of the spectral curves, as no colorimetric space is defined in this range, and we use simple transmittance profiles in order 
to obtain available commercial filters. For this purpose, we can choose equi-spaced Gaussian filters. In order to simplify 
the choice we will define some conditions beforehand. We consider that the filters used have the following 
transmittance: 
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where TMAX is the maximum height of the Gaussian peak, λ0 is the wavelength corresponding to the maximum (center) of 
the Gaussian and ∆λ is related to the full width-half maximum (FWHM) of the Gaussian. 
 
The ideal supposed maximum transmittance (TMAX) is 1. In this case, each channel has a different sensitivity. The filters 
are considered equispaced in the 800-1000 nm region, and parameter λ0 is therefore also fixed according to the number 
of filters used. The parameter ∆λ is considered as the optimization parameter. It is increased progressively in the same 
way for all the filters and we choose the value that provides the best reconstruction for the spectral curves belonging to 
the original data matrix. We can modify parameter ∆λ independently for each filter, but this leads to a high 
computational cost not justified by the results obtained. 
 

3. DATA 
 
In order to test these spectral reconstruction methods and to estimate the results that they would yield, we performed a 
simulation of the reconstructions for various textile samples. We analyzed the number and shape of the filters required in 
order to obtain good spectral reconstructions and optimized the process by searching for the optimum Gaussian filters.  
 
The original data matrix considered for the simulation consisted of 30 spectral curves (Figure 2). Nineteen were real and 
eleven were theoretical or unreal curves. Compared to visible spectral reflectances, the NIR spectra of samples are 
normally smooth and repetitive because of its dependency on the chemical composition. However, theoretical curves 
were chosen in order to obtain larger differences among the original curves and therefore to verify the viability of the 
method in worse-than-normal conditions. We considered the spectral data between 800 nm and 1000 nm in 10 nm steps. 
Therefore, each curve was made up of 21 components.  
 
In the simulations, we considered the spectral sensitivity of a progressive scan camera JAI CV-M10 experimentally 
determined (Figure 3 (a)). The simulated reconstructions were performed using a minimum of 2 and a maximum of 6 
filters under the influence of two different halogen lamps with color temperatures Tc1 = 2852 K and Tc2 = 3371 K. These 
two temperatures cover a wide real range and the results obtained can thus be applied under several lighting conditions. 
The spectral radiance of both illuminants is represented in Figure 3 (b). 
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Figure 2: Spectral reflectance curves of 8 representative samples belonging to the original data matrix (white dots correspond to real 
curves and black dots to theoretical curves). 
 

 
(a) (b) 

 
Figure 3: Experimental relative spectral sensitivity of the camera JAI CV-M10 (a) and spectral radiance of the halogen lamps used in 
the simulation (b). 
       
The optimization process consisted in searching for the best reconstruction parameters (Prec and RMSE) for all the curves 
belonging to the original data matrix.  
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4. RESULTS 
 
The simulated results (mean percentage of reconstruction and RMSE) obtained for the different existing reconstruction 
methods using the five optimum filters and the illuminant Tc1 = 2852K are illustrated in Figure 4. The methods tested 
were linear interpolation, cubic interpolation, spline interpolation, discrete Fourier transform, and modified discrete sine 
transform approximations, Moore-Penrose pseudoinverse, smoothing inverse, Wiener estimation, a non-linear method 
(using a complete second order polynomial) and principal component analysis. It can be seen that the methods with the 
best reconstruction parameters are the Wiener estimation, the non-linear method and principal component analysis. The 
numerical results of these three last methods can be seen in Table 1. In this table, the optimum parameter ∆λ, the mean, 
the standard deviation, and the maximum and minimum Prec and RMSE values for all the simulated cases are shown. The 
results are presented under the influence of the two halogen lamps Tc1 = 2852 K and Tc2 = 3371 K and using from 2 to 6 
filters. As expected, the reconstructions improve with the use of more filters. It can be seen that the shape of the best 
filters (parameter ∆λ) depends on the number of filters and the reconstruction method used in the simulation process. 
While Wiener estimation and principal component analysis have similar reconstruction parameters in all the analyzed 
cases, the non-linear method provides smaller errors. 
 

(a) (b) 
 
Figure 4: Mean percentage of reconstruction and RMSE of the samples which belong to the original data matrix obtained for several 
existing reconstruction methods (LIN: linear interpolation, SPL: Spline interpolation, CUB: cubic interpolation, DFT: discrete Fourier 
transform approximation, MDST: modified discrete sine transform approximation, MP: Moore-Penrose pseudoinverse, SM: 
smoothing inverse, WIE: Wiener estimation, NLIN: non-linear method (using a complete second order polynomial) and PCA: 
principal component analysis) using the illuminant of color temperature Tc1 = 2852 K, and the five optimum filters 
 
The evolution of the parameter RMSE according to the number of filters used is represented in Figure 5. With two filters, 
all three methods have high RMSE values and a large standard deviation. In the case of Wiener estimation and principal 
component analysis, the results improve using three and four filters, although they still present high dispersion. With five 
filters, RMSE × 100  is smaller than 1 and has little deviation in all the analyzed cases. Even though the reconstructions 
improve further with the use of six filters, the changes are very small and RMSE is almost constant. The use of three 
filters with the non-linear method guarantees that RMSE × 100 value is similar to 1 for all the cases analyzed. It can be 
shown that a RMSE × 100 similar to 1 leads to an almost perfect reconstruction of the spectral reflectance of the samples. 
A RMSE × 100 similar to 1 is equivalent to a percentage of reconstruction of about 99.9%. 
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WIENER  LAMP Tc1 = 2852 K LAMP Tc2 = 3371 K 
Number of filters 2 3 4 5 6 2 3 4 5 6 

∆λ 100 28 100 28 65 100 27 100 26 62 
Mean Prec 93.426 98.969 99.649 99.994 99.997 93.363 98.955 99.652 99.993 99.997 

Std Dev  Prec 10.631 1.700 0.974 0.013 6.539 10.391 1.754 0.970 0.013 6.447e-3
Max Prec 99.988 99.981 99.998 100 100 99.988 99.981 99.998 100 100 
Min Prec 65.949 90.999 94.976 99.934 99.966 66.977 90.680 94.974 99.937 99.967 

Mean (RMSE*100) 6.468 3.178 1.179 0.221 0.122 6.566 3.191 1.183 0.229 0.123 
Std Dev (RMSE*100) 5.378 2.159 1.658 0.206 0.123 5.401 2.186 1.648 0.211 0.123 

Max (RMSE*100) 20.833 11.39 8.510 0.815 0.474 20.516 11.591 8.512 0.877 0.470 
Min (RMSE*100) 0.957 1.187 0.243 0.043 0.014 0.951 1.201 0.250 0.043 0.015 

NON-LINEAR   LAMP Tc1 = 2852 K LAMP Tc2 = 3371 K 
Number of filters 2 3 4 5 6 2 3 4 5 6 

∆λ 5 13 54 28 29 5 13 57 27 33 
Mean Prec 96.616 99.943 99.998 100 100 96.617 99.943 99.998 100 100 

Std Dev  Prec 5.605 0.180 5.107e-3 2.705e-4 8.016e-5 5.603 0.179 4.547e-3 2.935e-4 8.200e-5
Max Prec 99.998 100 100 100 100 99.998 100 100 100 100 
Min Prec 79.966 99.011 99.978 99.999 100 79.965 99.016 99.982 99.999 100 

Mean (RMSE*100) 4.802 0.600 0.116 0.041 0.025 4.802 0.600 0.115 0.043 0.024 
Std Dev (RMSE*100) 3.712 0.381 0.079 0.026 0.020 3.712 0.381 0.078 0.028 0.019 

Max (RMSE*100) 13.548 1.504 0.325 0.089 0.079 13.545 1.503 0.329 0.093 0.072 
Min (RMSE*100) 0.374 0.081 0.018 2.309e-3 1.574e-3 0.374 0.081 0.019 2.422e-3 1.234e-3

PCA  LAMP Tc1 = 2852 K LAMP Tc2 = 3371 K 
Number of filters 2 3 4 5 6 2 3 4 5 6 

∆λ 100 29 65 28 24 100 28 68 26 24 
Mean Prec 93.105 99.110 99.719 99.995 99.997 92.802 99.098 99.722 99.994 99.997 

Std Dev  Prec 13.502 1.393 0.719 0.010 4.633e-3 14.162 1.418 0.710 0.010 4.694e-3
Max Prec 99.973 99.991 100 100 100 99.973 99.991 100 100 100 
Min Prec 53.922 94.632 96.180 99.948 99.983 51.322 94.508 96.229 99.950 99.983 

Mean (RMSE*100) 5.936 2.725 1.305 0.215 0.173 6.080 2.737 1.298 0.223 0.174 
Std Dev (RMSE*100) 5.630 1.776 0.951 0.207 0.177 5.745 1.787 0.945 0.212 0.179 

Max (RMSE*100) 25.772 8.285 4.220 0.773 0.706 26.489 8.370 4.196 0.834 0.711 
Min (RMSE*100) 1.293 0.822 0.133 0.044 0.024 1.295 0.833 0.133 0.047 0.024 

 
Table 1: Parameter ∆λ of the filters with the best reconstruction, mean, standard deviation, maximum and minimum Prec, and RMSE 
values for the studied methods (WIENER: Wiener estimation, NON-LINEAR: non-linear method (using a complete second order 
polynomial), PCA: principal component analysis). Number of filters used: between two and six, and illuminants with Tc1 = 2852 K 
and Tc2 = 3371 K. 
 
Figure 6 shows the spectral sensitivity for each of the three optimum channels using the non-linear method, and for the 
five optimum channels in the case of principal component analysis. The spectral sensitivity was calculated taking into 
account the spectral response of the camera JAI CV-M10, the emitted spectral radiance of the illuminant Tc1 = 2852K 
and the transmittance of the corresponding optimum filters obtained. The optimum filters obtained have a large spectral 
width and are therefore easily commercially available. 
 
Examples of reconstructed spectral reflectances with two and three filters using the non-linear method and two and five 
filters using principal component analysis are illustrated in Figure 7. While there are large differences between the 
original and the reconstructed spectra using two filters, the reconstructed spectra with three and five filters and the 
original spectra are almost the same. 
 
We noticed that the results were fairly independent of the illuminant used. This low dependency may be due to the 
smoother spectral distribution of the radiance of the illuminant compared to the spectral reflectance of the samples. The 
reconstruction parameters have similar values in both cases, and the best filters are almost the same (the same value for 
parameter ∆λ). This indicates that with the same set of filters we can obtain good reconstructions for every type of 
illuminant. 
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Figure 5: Evolution of mean RMSE × 100 and the corresponding standard deviation according to number of filters, using Wiener 
estimation, the non-linear method and principal component analysis. The illuminant used is Tc1 = 2852 K. 
 

(a) (b) 
 
Figure 6: Spectral sensitivity of the three optimum channels (∆λ = 13 or FWHM ≈ 31 nm) using the non-linear method (a) and the 
five optimum channels (∆λ = 28 or FWHM ≈ 66 nm) using principal component analysis (b). The sensitivity includes the spectral 
response of the JAI CV-M10 camera, the emitted spectral radiance of the illuminant (Tc1 = 2852 K) and the transmittance of the 
optimum filters. 
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(a) (b) 
 
Figure 7: Reconstructions of samples S5 and S8 of the original data matrix with 2 and 3 filters using the non-linear method (a) and 2 
and 5 filters using principal component analysis (b). The illuminant used is Tc1 = 2852 K. 
 

5. CONCLUSIONS 
 
We have presented a method for reconstructing the spectral reflectance of samples in the NIR region of the spectrum. 
We used a method based on multispectral imaging which involves the use of three or more acquisition channels of a 
conventional CCD camera. We have analyzed different mathematical methods for reconstructing the spectral data. The 
methods which yield the best reconstruction results are Wiener estimation, non-linear methods and principal component 
analysis. We performed an optimization process using numerical simulation in order to determine the number and shape 
of filters which give the best reconstruction parameters (Prec and RMSE). We analyzed the reconstructions of 30 samples 
using from 2 to 6 equi-spaced Gaussian filters under the influence of two different illuminants with color temperatures 
Tc1 = 2852K and Tc2 = 3371K. The bandwidth of the Gaussian filters was optimized in order to obtain the best 
reconstruction parameters. As expected, the reconstruction of the curves improves if the number of acquisition channels 
is increased. Using three filters in the case of the non-linear method (second order polynomial) and five filters in the case 
of Wiener estimation and principal component analysis, the reconstructed reflectance spectra are very similar to the 
original curves. In these cases, the mean RMSE × 100  is smaller than 1 and the mean percentage of reconstruction is 
higher than 99.9%. The shape of the optimum filters depends on the number of channels used, but in all the studied cases 
they have a large spectral bandwidth. Moreover, parameter ∆λ is almost independent of the illuminant used. This makes 
the method widely applicable, since the reconstructions may be performed under many lighting conditions using the 
same set of filters. Therefore, we have demonstrated that using a conventional CCD camera and filters with a large 
spectral bandwidth, and therefore commercially available, it is possible to obtain good spectral reflectance 
reconstructions in the NIR region. The number of optimum filters necessary to obtain good reconstructions depends on 
the method used (at least three using the non-linear method and five for the other methods).  
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