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We analyze an alternative to classical Zernike fitting based on the cubic B-spline model, and compare the
strengths and weaknesses of each representation over a set of different wavefronts that cover a wide
range of shape complexity. The results obtained show that a Zernike low-degree polynomial expansion or
a cubic B-spline with a low number of breakpoints are the best choices for fitting simple wavefronts,
whereas the cubic B-spline approach performs much better when more complex wavefronts are involved.
The effect of noise level in the fit quality for the different wavefronts is also studied. © 2006 Optical
Society of America
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1. Introduction

The last step in the optical wavefront sensing train is
the reconstruction of the wavefront surface from sam-
pled measurements that have been taken using dif-
ferent techniques and under different conditions.1
Reconstruction algorithms can basically be catego-
rized as being either zonal or modal.2 The modal ap-
proach involves data approximation in the whole
domain using a polynomial function, whereas in the
zonal model each reconstructed wavefront value is
estimated just from its spatial neighbors’ data.

The modal Zernike representation has been com-
monly chosen for wavefront fitting purposes. Its ad-
vantages range from its simple analytical form to the
orthogonality of the basis in a continuous domain;
moreover, its low-order terms are directly related to
classical Seidel aberrations. However, Zernike poly-
nomials have intrinsic limitations when complex
wavefronts are involved. It has been shown that sur-
faces with multipeak and multihole shapes require
flexible zonal approaches for satisfactory recon-
struction.3 Up to now, these surfaces have not been
particularly relevant in optical testing, although com-

plex wavefront generation from new optical elements
such as deformable mirrors4 and liquid-crystal spa-
tial light modulators5,6 has lately become possible.
Thus the relevance of analyzing alternatives for the
proper fitting of the new complex-shaped wavefronts
is evident.

B-spline polynomials are especially well suited for
this purpose. Recently, Liu and Gao7 and Seifert
et al.8 pointed out their usefulness in different recon-
struction schemes. B-splines have the advantage of
being locally defined, of being fitted to the wavefront
through well-known least-squares procedures, and of
having great flexibility that allow their smoothness
and polynomial degree to be controlled. Moreover,
they are a commonly used description in optical ele-
ment manufacture as far as computerized numeri-
cally controlled (CNC) grinding and polishing tools
are easily commanded using it. To reach a high qual-
ity in optics manufacture through the newest tech-
nologies, iterative polishing steps using the surface
measurement information are performed. However,
the tested wavefront is not usually described on the
same basis when it is measured and when it is used
to control the polishing machine, which would obvi-
ously be the optimum scheme for industrial produc-
tion.

The goal of this paper is to analyze the zonal cubic
B-spline fitting method as an alternative to the modal
Zernike technique when complex wavefronts are in-
volved or whenever local control parameters are
needed in the wavefront description. Sampled wave-
fronts from surfaces of increased complexity are sim-
ulated, and the quality of their fitted representations
using Zernike and B-spline methods is compared. An
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analysis of the effects of noise level in each case is also
performed.

This paper is organized as follows: In Section 2, a
short theoretical review of the two fitting techniques
is presented. Section 3 shows the reconstruction
results attained by the Zernike and cubic B-spline
techniques when they are applied to fit simple and
increasingly more complex-shaped wavefronts. Fi-
nally, in Section 4, we summarize the main conclu-
sions of the work.

2. Fitting Techniques

A brief mathematical review of the two fitting tech-
niques analyzed will enable us to introduce the wave-
front reconstruction principles on which they operate.
The main theoretical concepts involved in both
representations are presented next.

A. Three-Dimensional Zernike-Fitting Technique

Zernike circular polynomials were developed as a
convenient set for representing a wavefront over a
circular pupil. In addition to their simple analytical
form, which makes them more practical than other
polynomial sets (such as Karhunen–Loeve polyno-
mials, for instance), Zernike modes can easily be
related, in their lower orders, to classical Seidel ab-
errations such as spherical aberration, astigmatism,
and coma.9 The main advantages of the Zernike rep-
resentation are afforded by the orthogonality of its
modes over the unit circle. This means the aberra-
tion coefficient of each of the modes is linearly in-
dependent of the remaining ones, and also that the
wavefront mean-square deviation (understood as
its deviation from a known surface) is the sum of the
mean-square deviation of individual modes. How-
ever, orthogonality is only achieved in the theoretical
case of the description of a continuous surface. As far
as real-world wavefront sampling gets discrete data,
only good approximations of the last two properties
are attained.

Several different notations for Zernike polynomials
are to be found in the literature. In our work, we have
followed the notation described by Malacara and
DeVore.9 As a complete modal set, any wavefront can
be expressed as a linear combination of circular
Zernike polynomials as follows:
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where each basic polynomial function can be ex-
pressed as the product of a radial and an angular
component,
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with polar unit circle data coordinates 0 � � � 1,
0 � � � 2�.

The values of the parameters involved in the de-
scription determine the polynomial fitting function.
The main one is k, which is the Zernike polynomial
degree selected, and the remaining ones are easily
related to it. The n value ranges from 0 to k in unitary
steps, fixing the degree of the radial component. For
each n value, l varies between �n and n in two uni-
tary steps, fixing the azimuthal frequency of the an-
gular component. Thus, both parameters determine
each Zn

l Zernike mode. The number L of Zernike
modes that compose the polynomial fitting function
for a given degree k is defined by

L �
�k � 1��k � 2�

2 . (4)

Equation (1) shows the global fitting principle of the
Zernike representation; that is, the data W��, �� are
approximated by a polynomial function of degree k
extended over the whole domain. Given N discrete
data points from the measured wavefront Wr��r, �r�
r � 1, 2, . . . , N, where ��r, �r� are the normalized 2D
polar data coordinates, the only unknown parameters
in Eq. (1) are the Zernike coefficients ai. Obtaining
the best estimation of those parameters means solv-
ing the linear least-squares problem described by the
system of Eq. (1), which is written matricially as

Za � W, (5)

or in detail:
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where W is the N 	 1 data matrix containing the
sampled wavefront values, a is the L 	 1 matrix
containing the Zernike coefficients to be determined,
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and Z is the N 	 L matrix containing the values of the
Zernike polynomials at each sampling point.

B. Three-Dimensional B-Spline-Fitting Technique

B-spline is a specific formulation for smooth surface
generation, which follows general spline principles.10

Any smooth piecewise polynomial function is called a
spline. The principle is to divide the function domain
into small enough subareas, in such a fashion that, in
each subarea, a polynomial of relatively low degree
can provide a good approximation to the surface data.
Up to now, several different implementations of the
B-spline surface model have been studied exten-
sively. Perhaps, the simplest is the tensor product
model,

W�x, y� � �
i�0

n

�
j�0

m

aijBi,k�x�Bj,l�y�, (7)

where aij are the so-called control points, which act as
subarea control parameters, and Bi,k�x� and Bj,l�y� are
the ith and jth B-spline of degree k � 1 and l � 1 in
the x and y directions, respectively. Equation (7) rep-
resents a wavefront as a linear combination of
B-spline basic functions. Thus a formal similarity to
the Zernike representation may be observed [see
Eq. (1)], although no other similarity exists as the
B-spline formulation will show.

For simplicity’s sake, the discussion that follows
deals only with the univariate x direction B-spline.
No formulation difference exists in the bivariate case,
as it is just the product of two separate univariates.

Three important user-selected parameters are in-
volved in the B-spline representation

Y The degree k � 1 of the B-spline.
Y The number of breakpoints �NBPx� that di-

vide the domain into a set of subdomains �xs�0,
xs�1, . . . , xs�NBPx�1�.

Y The smoothness level 
s at break points:

s � 0 means function discontinuity, 
s � 1 means
function continuity, 
s � 2 means function and first
derivative continuity, and so on.

Besides real NBPx, the B-spline formulation creates
the so-called knots ti. Knots are fully coincident with
breakpoints although, as knots, they may be repeated
with a given multiplicity. The multiplicity of each
knot is determined by the rule

knot multiplicitys � k � 
s. (8)

The nondecreasing knot set is formed by all the inte-
rior breakpoints repeated knot multiplicity times and
the two end points of the domain repeated k times to
account for the function discontinuity at the domain
border. Although this last requirement can be re-
laxed, it has become standard. In knot notation, the
set is described as �t0, t1, t2, . . . , tn�k� where
n � 1 is the number of control points, defined in Eq.
(7). Taking into account the previous formulation, a
practical relation gives the number of control points

of a B-spline representation in terms of the three
user-selected parameters,

n � 1 � � �
s�1

NBPx�2

k � 
s	� 2k � k. (9)

As Eq. (7) shows, there are as many control points aij
as there are B-spline functions. Each control point is
a weight associated with each B-spline function, and
has a local meaning because of the B-spline local
support embedded in its definition.

The ith B-spline function of degree k � 1 is defined
recursively as

Bi,k�x� �
x � ti

ti�k�1 � ti
Bi,k�1�x� �

ti�k � x
ti�k � ti�1

Bi�1,k�1�x�,

Bi,1�x� ��1, ti � x � ti�1,
0, otherwise. (10)

Thus the ith B-spline function is the sum of k poly-
nomials of degree k � 1 over the knot subinterval
�ti, ti�1, . . . , ti�k�. Outside that interval, the function
is zero. The zeroth B-spline support is �t0, t1, . . . , tk�,
the first B-spline support is �t1, t2, . . . , t1�k�, and so
on up to the nth B-spline, which is defined over
�tn, tn�1, . . . , tn�k�.

With reference to the particular B-spline scheme,
we have applied to wavefront reconstruction; we have
fixed k � l � 4 (cubic B-spline functions) and 
 � 3
(B-spline continuity up to the second derivative at all
interior breakpoints). Thus we have left only NBPx

and NBPy as free parameters. For simplicity’s sake,
we have also considered the same number of break-
points in the x and y directions �NBPx � NBPy�, which
we herein refer to as NBP. In this particular situa-
tion, from Eq. (9) we can see that n � 1 � m � 1
� NBP � 2.

To make the computational implementation sim-
pler, we normalized the data coordinates xr over each
knot subinterval, taking values from 0 to 1,

txr �
xr � ti

ti�1 � ti
, xr � �ti, ti�1�. (11)

In this situation, the recursive B-spline description
(10) becomes analytical. Thus each cubic B-spline
function Bi,4�tx� with support �ti, ti�1, . . . , ti�4� is de-
scribed as follows (see Fig. 1),

Bi,4�tx� � Bi,1�tx� � Bi�1,1�tx� � Bi�2,1�tx� � Bi�3,1�tx�,
(12)

where
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Bi,1�tx� �
tx3

6 ,

Bi�1,1�tx� �
1
6 �1 � 3tx � 3tx2 � 3tx3�,

Bi�2,1�tx� �
1
6 �4 � 6tx2 � 3tx3�,

Bi�3,1�tx� �
1
6 �1 � tx�3, tx � 
0, 1�. (13)

Returning to the bivariate cubic B-spline scheme and
given N discrete data points from the measured
wavefront Wr�txr, tyr� r � 1, 2, . . . , N, the unknown
parameters of the system of Eq. (7) are only the val-
ues of control points aij:

As in the case of the Zernike basis, solving the linear
least-squares problem described in Eq. (14) yields the
best control point values for performing the wave-
front reconstruction. In contrast to the Zernike case,
most of the terms of the B-spline matrix are now zero
as a consequence of the B-spline’s local support.

3. Reconstruction Results

To study the capabilities of the cubic B-spline and
Zernike-fitting methods when they are applied to
different surface types, three sampled theoretical
wavefronts of increasing complexity were gener-
ated. The simplest one—a spherical wavefront—
and a more complex nonrotationally symmetrical
sample—a toroidal wavefront—were simulated with
analog characteristics to two wavefronts experimen-
tally measured with an optical metrology setup based
on the Ronchi test principle.11,12 Besides its large
dynamic range, the main advantage of the sensor
arrangement is the extremely high wavefront sam-
pling performance that is achieved using the mi-

crostepping technique,11 so we will deal with sampled
wavefronts with high-spatial resolution in the recon-
struction analysis.

To complete the fitting analysis, we chose a decen-
tered double-peak surface with a single hole, which
has been extensively used by researchers to test new
fitting schemes,3 as a highly complex wavefront.

For the purposes of evaluating the Zernike and
cubic B-spline representations, different polynomial
degrees and NBP, respectively, were considered for
the fit over the three selected wavefronts. However,
there is an inherent difficulty in finding an appropri-
ate comparison scheme due to the different recon-
struction principles of both approaches. To give the
reader a clear visual comparison of the two fitting
techniques in the same plot, we have chosen to si-

multaneously plot the Zernike polynomial degree and
the NBP value used for the B-spline approach along
the horizontal axis, although they have different
meanings in each case. It should be noted that NBP
actually means NBP � NBP.

The comparison is carried out using two comple-
mentary quality fitting indicators: the rms wavefront
deviation, which is defined as the rms difference be-
tween the reconstructed and ideal theoretical wave-
fronts, and the rms fit deviation, which gives the rms
difference value between the measured and recon-
structed wavefronts.

A. Zernike Ill Conditioning

To obtain the fitting solution for the Zernike and
cubic B-spline representations, we used a powerful
matrix inversion method called singular value de-
composition (SVD).13,14 Despite its higher computa-
tional cost13 (mn2 � 5n3�3 � 4n3 operations, m and n
being the number of matrix rows and columns, re-
spectively) in comparison to other methods such as
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Fig. 1. Basic functions of the cubic B-spline representation along the fictitious knot domain.
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Cholesky or QR decompositions, the SVD method can
always provide an unique solution even when the ma-
trix moves away its full rank. This rank deficiency may
be diagnosed through the so-called condition number,
which is defined as the ratio of the largest to the small-
est eigenvalue of the diagonal matrix of the decompo-

sition. When the condition number is too large, the
original matrix is singular or close to the singularity,
and SVD provides a bad least-squares solution.

Figure 2(a) shows the condition number for the
spherical wavefront case under the different Zernike
degree and cubic B-spline NBP values. It should
be noted that the same behavior was observed for the
toroidal and the highly complex wavefronts, show-
ing that it is independent of wavefront shape. The
Zernike least-squares problem becomes poorly condi-
tioned at high degree values, a fact which degrades
the solution obtained [see Fig. 2(b)]. However, such
degradation could be avoided along the decomposi-
tion process by simply zeroing the reciprocals of the
eigenvalues of the diagonal matrix under a given
threshold value,14 although it stays up to the user to
decide which is the proper threshold.

Table 1 presents the rms wavefront deviation, the
condition number, and the values of the larger Zernike
coefficients obtained for the degraded degree � 17 case
before and after zeroing. Choosing an appropriate
threshold improves the quality of the reconstruction
(lower rms wavefront deviation), although the correct
Zernike coefficient values are not obtained, if com-
pared with the non-ill-conditioned degree schemes
(anyone up to the 12th degree). While for those non-
ill-conditioned schemes, the Zernike degree � k � 1
description maintains the values of the common co-
efficients with the degree � k description and even
improves the quality of the reconstruction slightly by
contributing new higher-order coefficients, for the ze-
roing modification the improvement is not accompa-
nied by a correct aberration coefficient solution. High-
degree Zernike reconstructions must therefore be
disregarded, as we will do in the remainder of this
paper. It should be stressed that this ill-conditioned
problem does not appear in any of the B-spline cases,
as shown by the dashed-line plot in Fig. 2(a).

B. Spherical Wavefront Reconstruction

As the simplest wavefront case, a spherical wavefront
with a radius of curvature of 160 mm sampled at
6561 discrete points within a 2.51 cm2 domain was

Fig. 2. (Color online) Zernike ill conditioning at high polynomial
degrees (solid curve) for the ideal spherical wavefront, which is not
present in any cubic B-spline scheme (dashed curve): (a) From the
13th degree, the Zernike matrix becomes singular, (b) which de-
grades the least-squares fitting solution obtained.

Table 1. Spherical Wavefront Fitting Resultsa

Degree � 17 Degree � 17 Degree � 17 Degree � 17 Degree � 5

No Zeroing �min � �max 	 10�12b �min � �max 	 10�9b �min � �max 	 10�3b No Zeroing

Rms wavefront
deviation (mm)

9.28 � 10�6 2.45 � 10�7 2.45 � 10�7 7.59 � 10�2 2.48 � 10�7

Condition number 4.97 � 1030 6.15 � 1011 6.28 � 108 796.78 32.01
Highest Zernike

coefficients
(mm)

a[1] � �1272.80 a[0] � 6.33 � 10�2 a[0] � 5.69 � 10�3 a[0] � 1.84 � 10�4 a[0] � 3.62 � 10�4

a[2] � 3283.75 a[1] � �3.28 � 10�2 a[1] � 1.82 � 10�4 a[4] � �8.20 � 10�5 a[1] � 5.01 � 10�4

a[4] � �0.85 a[2] � �3.28 � 10�2 a[2] � 1.82 � 10�4 a[12] � �3.90 � 10�5 a[2] � 5.01 � 10�4

a[6] � �2544.31 a[4] � 0.11 a[4] � �7.39 � 10�3 a[24] � 7.50 � 10�5 a[4] � �1.75 � 10�2

a[7] � �1085.89 a[12] � 8.40 � 10�2 a[12] � 6.10 � 10�3 a[42] � 3.50 � 10�5 a[12] � �7.00 � 10�6

a[15] � 2939.39 a[14] � 0.22 a[26] � �1.85 � 10�3 a[60] � �5.10 � 10�5 a[other] � 0
a[35] � �104,337.77 a[29] � 0.10 a[42] � �1.39 � 10�3 a[114] � �6.88 � 10�4

a[78] � �2,114,683.63 a[34] � 0.10 a[116] � �8.31 � 10�4

a[167] � 82,928.17 a[148] � 4.06 � 10�4

aResults are for the Zernike degree � 17 ill-conditioned case and for the non-ill-conditioned degree � 5.
bValue of the zeroing threshold used in each case; the reciprocal of any eigenvalue � below �max � threshold is set to zero.
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simulated. The fit quality as a function of the Zernike
polynomial degree and the NBP for the cubic B-spline
is depicted in the already mentioned Fig. 2(b). The
results show that the Zernike method yields an
excellent fitting quality for all non-ill-conditioned
degree values from degree � 4. Below the fourth de-
gree, the fit is not good enough, even with such a
simple wavefront. As no higher-order aberrations
terms are involved, the fourth-degree Zernike poly-
nomial expansion is the optimum fitting scheme, as it
avoids the more time-consuming computation of
medium- to high-degree Zernike descriptions. The cu-
bic B-spline representation attains a similar rms
wavefront deviation as the Zernike from 6 	 6 NBP
values (25 equally sized subareas), although not for
lower ones. Moreover, B-spline calculation is more
computationally intensive than the equivalent Zernike
case. In this sense, Fig. 3 presents the comparison of
the computational operations required to obtain the
least-squares wavefront fitting solution under differ-
ent degree–NBP values.

Having analyzed the two fitting techniques in the
ideal wavefront, we now will deal with the effects of
noise, as it occurs in real measurements. The spher-
ical wavefront with random spatial noise added with
relative values between 0.1% of wavefront height
peak to valley (PV), 0.5% PV, and 1% PV was
simulated and fitted. Figures 4(a)–4(c) show the rms
wavefront deviation and the rms fit deviation for the
Zernike and cubic B-spline descriptions. In all cases,
it can clearly be seen that the quality of the fit wors-
ens for medium- to high-degree–NBP values, because
in such cases, the fit follows the undesirable noise
contributions better. That behavior is indicated not
only by an increase in the rms wavefront deviation
values, but also by a decrease in the rms fit deviation
below the horizontal reference line that represents
the rms deviation between the ideal and noisy wave-
fronts. In fact, the rms fit deviation only has meaning
as an indicator for the quality of the fit if the noise
amplitude is either well known, as in our theoretical
study, or well estimated in experimental cases. Root-

mean-square fit deviation values above the reference
line mean reconstructed wavefronts, which neither
follow the noise nor accurately describe the wavefront
shape, while rms fit deviation values below the line
are associated with reconstructed wavefronts that
follow the noise.

Meanwhile, the rms wavefront deviation is an ab-

Fig. 3. (Color online) Number of computational operations involved
in the SVD matrix inversion method for the different Zernike de-
grees (solid curve) and cubic B-spline NBP (dashed curve). An oper-
ation is a multiplication or a division plus an addition.

Fig. 4. (Color online) rms wavefront deviation (bottom, circles)
and rms fit deviation (top, triangles) depending on the Zernike fit
degree (filled symbols) and on the cubic B-spline NBP (nonfilled
symbols), for the simulated noisy spherical wavefront. The upper
horizontal reference line reflects the calculated rms deviation be-
tween the ideal and noisy wavefronts. (a) Noise amplitude between
0.1% wavefront PV, (b) 0.5% PV, and (c) 1% PV.
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solute indicator of reconstruction quality, although it
has the serious lack that it is unknown for experi-
mental wavefront fittings. Thus we understand that
both rms parameters must be considered as useful
complementary information to perform a quality fit-
ting analysis.

Figure 4(a) shows that the best fitting scheme is
the Zernike polynomial expansion of degree � 4. A
very good rms wavefront deviation of 1.06
	 10�5 mm is obtained. Moreover, as expected, its
rms fit deviation value �2.002 	 10�4 mm� is the clos-
est one to the reference line value �2.007
	 10�4 mm�. Zernike degree � 5 and even degree � 6
also provide a good fit. When the amplitude of the
noise increases, the most noticeable fact is that the
rms wavefront deviation tends to a strictly ascending
line. For the 0.5% PV and 1% PV cases, the lowest
degree � 2 (first six modes of the Zernike expansion)
is the best scheme, as Figs. 4(b) and 4(c) show. Its rms
fit deviations are the closest to the horizontal refer-
ence lines 9.99 	 10�4 mm and 2.01 	 10�3 mm, re-
spectively. The cubic B-spline reconstruction is good
for low NBP values (2 	 2 or 3 	 3), although its
performance is not as excellent as that of the Zernike
approach.

Finally, we performed the fitting analysis of real
wavefronts measured using a digital Ronchi test
setup. Although the Ronchi sensor directly measures
the wavefront slopes at each sampled point, a simple
integration algorithm calculates the corresponding
height values.12 However, the measurements are still
discrete, so an accurate continuous wavefront repre-
sentation is needed. A spherical wavefront obtained
from the reflection of a point source in the concave
surface of a spherical ophthalmic lens was fitted to
the Zernike and cubic B-spline representations. The
6572 discrete data wavefront was defined within a
2.45 cm2 domain. Figure 5 presents the rms fit devi-
ation for the Zernike and cubic B-spline descriptions.
The really low rms values obtained (a factor almost
100 smaller than the 0.1% PV noise case) tell us
that the amount of noise present in the wavefront is
negligible; therefore, the best reconstruction setting

is the Zernike degree � 4 representation as sug-
gested by the theoretical results.

C. Toroidal Wavefront Reconstruction

A toroidal wavefront with a sampling of 6084 data on
a 3.16 cm2 domain was simulated on the basis of
the most general spherocylindrical surface equation
mathematically described as

x � x0 � xr cos � � yr sin �,

y � y0 � �xr sin � � yr cos �,

z �
�x � x0�2�R1 � �y � y0�2�R2

1 ��1 �

�x � x0�2�R1 � �y � y0�2�R2�2

�x � x0�2 � �y � y0�2 �1�2.

(15)

A rotation of � � 30° from the x and y reference
axes and a radii of curvature R1 � 150 mm and
R2 � 170 mm of the principal meridians were se-
lected for the surface. With those radii values and the
domain region used, the spherocylindrical surface
may be considered to be fully equivalent to the toroi-
dal surface.12

As for the spherical case, the fit quality is once
again evaluated for the different Zernike degrees and
cubic B-spline NBP values. As Fig. 6 shows, the same
quality behavior of the case of the spherical wave-
front is obtained.

Unfortunately, real wavefronts are not ideal, and
the quality of both fitting techniques must be ana-
lyzed in noisy conditions. The same toroidal wave-
front was simulated with a spatial random noise
distribution with values between 0.1% of wavefront
PV, 0.5% PV, and 1% PV. For the lowest amount
of noise considered, the rms deviations almost have
the same behavior as for the spherical case. The op-
timum fitting scheme is again the Zernike polynomial
expansion of degree � 4, and really close to it we
find the NBP � 3 	 3 cubic B-spline description [see

Fig. 5. (Color online) rms fit deviation for a spherical wavefront
measured with a digital Ronchi test setup, under the different
Zernike (solid curve) and cubic B-spline conditions (dashed curve).

Fig. 6. (Color online) Zernike (solid curve) and cubic B-spline
(dashed curve) rms wavefront deviation for the ideal toroidal wave-
front rotated 30°.
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Fig. 7(a)]. Despite the close similarity, for the toroidal
case it can be seen that the quality reconstruction for
schemes below the optimum ones (i.e., degree � 2
and 3, NBP � 2 	 2) is worse than for the spherical
wavefront case. This is a consequence of the more
complex toroidal shape, which even more forcefully

suggests disregarding the lowest-order fitting ap-
proaches.

As for the spherical wavefront, when the noise am-
plitude is increased, the problem of noise following in
the fitted data becomes a more critical issue. Thus the
lowest degree–NBP scheme is again preferable, as
Fig. 7(c) shows. However, for the toroidal 0.5% PV
case, the Zernike degree � 4 already yields the opti-
mum fit, in contrast with the spherical, for which
degree � 2 performed better. Once again, it is the
slightly more complex shape of the toroidal wavefront
that accounts for this fact.

Finally, we applied the Zernike and cubic B-spline
representation techniques to an experimental toroi-
dal wavefront measured with the Ronchi sensor. The
6125 discrete data toroidal sample was defined
within a 2.80 cm2 area, and its principal meridians
were rotated 30° from the xy reference axes (in sim-
ilarity with the simulated toroidal wavefront). As ex-
pected, the same rms fit deviation behavior found in
the real spherical wavefront was obtained (Fig. 8).
Again, the very low rms values confirm that the mea-
sured wavefront is almost noiseless; therefore the
Zernike degree � 4 polynomial is the best fitting
option.

Fig. 7. (Color online) rms wavefront deviation (bottom, circles)
and rms fit deviation (top, triangles) depending on the Zernike fit
degree (filled symbols) and on the cubic B-spline NBP (nonfilled
symbols), for the simulated noisy toroidal wavefront. The upper
horizontal reference line reflects the calculated rms deviation be-
tween the ideal and noisy wavefronts. (a) Noise amplitude between
0.1% wavefront PV, (b) 0.5% PV, and (c) 1% PV.

Fig. 8. (Color online) rms fit deviation of the Zernike (solid curve)
and cubic B-spline (dashed curve) representations for the experi-
mental rotated toroidal wavefront.

Fig. 9. Highly complex wavefront selected.
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D. Complex Wavefront Reconstruction

As a highly complex wavefront, we chose a decen-
tered double-peak surface with a single hole, histor-
ically known as Franke’s function, defined over the

domain x � 
0, 1.1� cm y � 
0, 1.1� cm (see Fig. 9).3
The fit quality is obtained again for different Zernike
degree and B-spline NBP conditions. As shown in Fig.
10, neither the low Zernike degrees nor the cubic
B-spline low NBP can reproduce the complex wave-
front shape with accuracy. High-degree Zernike rep-
resentations are also invalid due to ill conditioning
(see Subsection 3.A). Although in both representa-
tions, the rms wavefront deviation decreases when
the degree or NBP increases, the cubic B-spline yields
a better fit of the highly complex wavefront. The low-
est rms wavefront deviation values are achieved in
the B-spline’s high NBP zone. These values are not
reached by any of the Zernike functions.

To analyze the fitting techniques in real conditions,
a noise added situation was simulated for the highly
complex wavefront, although no experimental sam-
ple of this case was available when this paper was
being drafted. Again, the synthetic experimental
highly complex wavefront was generated with a spa-
tial random noise between 0.1% of wavefront PV,
0.5% PV, and �1% PV. While for the spherical and
toroidal wavefronts, low degree–NBP values were
considered to be the best fitting solutions, Figs. 11(a),

Fig. 10. (Color online) rms wavefront deviation for the ideal
highly complex wavefront under different Zernike degree (solid
curve) and cubic B-spline NBP (dashed curve) cases.

Fig. 11. (Color online) Comparison of Zernike (top) and cubic
B-spline (bottom) rms wavefront deviation (circles) and rms fit
deviation (triangles) for the highly complex wavefront with ran-
dom noise added between 0.1% wavefront PV. The horizontal
reference line reflects the calculated rms deviation between the
ideal and noisy wavefronts. (a) Low-degree–NBP schemes do not
reproduce the complex shape at all, and (b) the appropriate work-
ing zone, in which the cubic B-spline performs better than the
Zernike �NBP � 16 	 16 is the optimum fit).

Fig. 12. (Color online) Comparison of Zernike (top) and cubic
B-spline (bottom) rms wavefront deviation (circles) and rms fit
deviation (triangles) for the highly complex wavefront with ran-
dom noise added between 0.5% wavefront PV. The horizontal
reference line reflects the calculated rms deviation between the
ideal and noisy wavefronts. (a) Low-degree–NBP fits do not follow
the wavefront shape and (b) the appropriate working zone, which
gives the NBP � 11 	 11 cubic B-spline as the best fit.
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12(a), and 13(a) show that low degree–NBP can not
follow the complex wavefront shape at all. It is only
from 8 	 8 NBP (49 equally sized subareas) for the
cubic B-spline description that the complex surface
shape starts to be reproduced quite accurately. The
higher Zernike degree expansions also perform a
good reconstruction, but they clearly do not attain the
quality of the cubic B-spline. From Figs. 11(b), 12(b),
and 13(b), it can be seen that B-spline rms wavefront
deviation values are always lower than Zernike ones.
For the 0.1% PV case, the optimum fitting scheme
is the NBP � 16 	 16 as an inflection point between
complex shape reconstruction that is not particularly
accurate (NBP values below 16 	 16) and noise fol-
lowing (NBP values above 16 	 16). When the am-
plitude of the noise increases, the inflection point
goes down due to the need to reduce the local influ-
ence of the B-spline to prevent following the larger
noise (as we also saw in the spherical and toroidal
cases). The NBP � 11 	 11 is then the optimum
fitting scheme in this case. This is, when a relevant
amount of noise is present in the measurement, to
reduce the noise-following effect by reducing the NBP
value used should be considered.

4. Conclusions

The cubic B-spline fitting technique, which is an
alternative to the classical Zernike polynomial ex-
pansion, was introduced and analyzed in detail. A
comparison between the modal Zernike and the zonal
cubic B-spline fitting methods was performed over
wavefronts that cover a wide range of complexity,
from the simplest case (spherical) to a highly complex
wavefront.

The analysis was based on fit quality. In addition to
the rms difference between the ideal and the recon-
structed wavefront information—the rms wavefront
deviation—we also pointed out the need to use the rms
difference between the real and the reconstructed
wavefront—the rms fit deviation—as a complemen-
tary quality indicator to deal with experimental wave-
fronts.

When the wavefront involved is simple, as spherical
or even toroidal, a low-degree Zernike expansion, as
well as a low NBP cubic B-spline, perform the opti-
mum fitting. They accurately reproduce the wavefront
shape without following the noise. The Zernike ap-
proach reaches the maximum quality and must be
considered when direct aberration information is
needed, whereas the cubic B-spline should be consid-
ered when local wavefront information knowledge is
useful. In more complex wavefront fitting, however,
the performance of the cubic B-spline technique is
clearly superior to that of the Zernike fitting. Low-
degree–NBP cannot reproduce the complex wavefront
shape at all, and good quality reconstructions are only
achieved in the medium- to high-degree–NBP zone.
Despite the good quality of the Zernike reconstruction
in high-degree conditions, the aberration coefficients
solution obtained is not physically correct, although it
is mathematically, and should be considered invalid.
This is a consequence of the matrix representation’s
rank deficiency at high Zernike degrees, which is not
present in any of the B-spline cases. The cubic B-spline
description with a high NBP value performs much
better in complex wavefront reconstruction. When
noise is present, the optimum reconstruction scheme
should reproduce the surface without following the
noise, so the optimum NBP value will depend on
the particular noise amplitude present in the mea-
surement.

The authors thank the Spanish Ministry of Educa-
tion and Science for the AP2003-3140 grant received
and for the project DPI2005-00828, which has par-
tially funded this research.
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