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Profilometry of toroidal surfaces with an improved
Ronchi test

Santiago Royo, Josep Arasa, and Carles Pizarro

An implementation of the well-known Ronchi test technique, which allows for the profilometric mea-
surement of nonrotationally symmetrical surfaces, is presented and applied to the measurement of
toroidal surfaces. Both the experimental setup and the data-processing procedures are described, and
parameters such as the radius of curvature of the sample surface, the orientation of its principal
meridians, and the position of its vertex are measured by means of the values of the local normal to the
surface obtained at a set of sampling points. Integration of these local normal values allows for the
reconstruction of the three-dimensional profile of the toroidal surface considered with micrometric
accuracy, and submicrometric surface details may be calculated by use of surface-fitting procedures.
The density of sampling points on the surface may be tailored to fit test requirements, within certain
limits that depend on selection of experimental setup. © 2000 Optical Society of America
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1. Introduction

A variety of techniques are now available for profiling
optical-quality surfaces. The Ronchi test has been
described as a common quality-assessment tool in the
optical shop.1 It is unable to achieve the accuracy of
interferometric techniques, but when used as a de-
flectometric technique, it has a height measurement
range far greater than those of interferometers.2
This large dynamic range allows the technique to
perform profile measurements without the need for a

riori knowledge of the shape of the measured sur-
ace profile, even in the case of nonspherical surfaces.
orrections to the measured values calculated from
n expected surface shape are not required. The
echnique is the subject of active research,3–8 and it

has found applications from intraocular lenses9 to
thermocapillary flow studies under microgravity con-
ditions,10 among others. Phase-shifting techniques

ave also been successfully applied11,12 to several
Ronchi test arrangements, although they present the
intrinsic problem of the diffractive noise caused in the
ronchigrams by the ruling.
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Despite its many applications, techniques based
on the Ronchi test have been applied, to our knowl-
edge, only to rotationally symmetrical surfaces.12–14

Incidentally, nonrotationally symmetrical surfaces,
such as toroidal or spline surfaces, are becoming
increasingly important in many fields of optics,
from ophthalmic lenses to the design of optical in-
strumentation, so there is a growing interest in the
development of testing methods for these types of
surfaces. In this paper we present an approach to
the Ronchi test that, taking advantage of diode laser
sources, encoder motors, and computing power, al-
lows for repetitive and reliable measurements of non-
rotationally symmetrical surfaces. The presented
technique is applied to the measurement of a toroidal
sample surface in four different orientations, showing
how radius-of-curvature values, the orientation of the
surface, and the position of its vertex are reliably
measured regardless of how the sample surface is
oriented.

The paper is divided into four sections plus the
present introduction. In Section 2 we briefly intro-
duce the geometric features of the toroidal surface
and the spherocylindrical surface, which will be used
throughout the remaining sections of the paper. In
Section 3 we provide a short description of the mea-
surement method, depicting the experimental setup
used ~Subsection 3.A! and describing the data-

rocessing operations that lead us from the measured
ata to the final surface profile and to the measure-
ent of the parameters of the surface ~Subsection
1 November 2000 y Vol. 39, No. 31 y APPLIED OPTICS 5721
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3.B!. An enhancement technique allowing the user
to tailor the density of sampled points on the surface
within certain limits is also presented ~Subsection
3.C!. Section 4 presents experimental results for a
measured toroidal surface, starting with a brief de-
scription of the experiment performed and the sam-
ple used ~Subsection 4.A!. In Subsection 4.B some
intermediate results of the data-processing proce-
dures are presented for a given orientation to provide
a better understanding of the measurement tech-
nique. Finally, measurement results for three addi-
tional orientations of the toroidal sample surface are
presented and discussed. Section 5 draws the main
conclusions of the study.

2. Geometric Description of the Toroidal Surface

Toroidal surfaces are obtained as the result of the
revolution of a circle along an axis that does not cross
the center of the circle and that is contained in the
same plane of the circle ~Fig. 1!. If we consider sec-
tions of the surface generated by planes containing
the shortest line going from the revolution axis to the
apex of the surface, the toroidal surface presents only
two circular sections: one with the circle’s radius of
curvature ~R1 5 b in Fig. 1! and another one, placed
rthogonally, with a radius of curvature given by the
ircle’s radius plus the distance from the center of the
ircle to the revolution axis ~R2 5 a 1 b!.

These two orthogonal circular sections will hence-
forth be called the principal meridians of the surface,
following the usual convention in ophthalmic optics.
The apex point of the toroidal surface where the two
principal meridians intersect is called the vertex of
the surface. The same ophthalmic optics convention
denotes the meridian with the largest radius as the
base curve and the meridian with the smallest one as
the cross curve of the toroidal surface.15

A parametric description of the toroidal surface in
a cylindrical reference system may be written as

x 5 ~a 1 b cos f!cos e,

y 5 ~a 1 b cos f!sin e,

z 5 b sin f, (1)

Fig. 1. Toroidal surface and the parameters used for its mathe-
matical description.
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ith the parameters presented in Fig. 1. However,
nonparametric description of the toroidal surface in
rectangular reference system is quite complex and

equires an expression dependent on the spatial re-
ion considered. This prevents such surfaces from
eing described as a unique z 5 f ~x, y! expression
alid in all space, which would be desirable for three
imensionally to fit a toroidal surface to measured
ata values in a simple way.
Spherocylindrical surfaces have been shown to be

ood approximations to toroidal surfaces with the
ame radii, on the condition that the region consid-
red stay close to the vertex of the surface.16 The
pherocylindrical surface contains two orthogonal
ircular sections with a maximum and a minimum
adius value, which are equivalent to the principal
eridians of the toroidal surface. In contrast to the

oroidal surface, the transition between those two
ircular sections are additional circular sections with
heir radii varying continuously from the maximum
o the minimum radius value of the surface. When
he maximum and the minimum radius values are
riented along the X and the Y axes, the spherocylin-
rical surface is mathematically described as

z 5
x2yR1 1 y2yR2

1 1 F1 2
~x2yR1 1 y2yR2!

2

x2 1 y2 G1y2 , (2)

R1 ~R2! being the radius of curvature along the X ~Y!
xis.
In our measurements spherocylindrical surfaces
ill be three-dimensionally fitted to the measured
rofile of the toroidal surface to fix the parameters of
he sample surface. With the radius values and the
easured areas of the toroidal surface, which will be
sed throughout the following sections, the sphero-
ylindrical surface may be considered to be fully
quivalent to the toroidal surface,17 so Eq. ~3! may be

properly fitted to a measured toroidal profile. How-
ever, since the principal meridians of the toroidal
surface are likely to be tilted and decentered from the
X and the Y axes, the general expression of the
spherocylindrical surface to be fitted to the measured
data is

x 2 x0 5 xS cos u 1 yS sin u,

y 2 y0 5 2xS sin u 1 yS cos u,

z 5
~x 2 x0!

2yR1 1 ~y 2 y0!
2yR2

1 1 H1 2
@~x 2 x0!

2yR1 1 ~y 2 y0!
2yR2#

2

~x 2 x0!
2 1 ~y 2 y0!

2 J1y2 ,

(3)

here xs and ys are the coordinates of the measured
data point, u is the angle formed by R1 with the X
axis, and ~x0, y0! is the position of the vertex of the
urface. R1 and R2 are the radii of curvature of the

principal meridians of the surface, being the base or
the cross curve depending on how the surface has
been positioned. Note that this is not a parametric
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equation but a z 5 f ~x, y! expression valid in all
space.

3. Measurement Method

A. Experimental Setup

The measurements will be performed in an experi-
mental setup based on the Ronchi test principle, sche-
matically depicted in Fig. 2. A laser diode
~wavelength, 635 nm; output power, 3 mW! coupled to
an optical fiber with a 4-mm-diameter core is used as
a precisely located source. This provides us with a
diverging light fan coming from a quasi-point source.
This fan impinges on a 100-mm-diameter pellicle
beam splitter, which directs the light along an axis
containing the surface being tested and the Ronchi
ruling. This axis will henceforth be called the Z
axis, and its origin is considered to be located at the
vertex of the surface being measured, with its posi-
tive values increasing in the direction of the Ronchi
ruling. The X and the Y axes are defined consis-
ently in the directions shown in Fig. 2.

The redirected light fan impinges on the sample
urface and is reflected toward the Ronchi ruling,
ormed by a pattern of dark and light stripes of equal
ize. The surface has been arranged to stay with the
angent plane at its vertex parallel to the defined XY
lane, and it has been centered manually. A set of
our different orientations of the surface may be
chieved by rotation of its mount in 30° steps. These
rientations are called G00, G30, G60, and G90, as-
uming in the G00 orientation that the base curve of
he sample surface is oriented along the X axis and
hat, after three consecutive rotations yielding the
ntermediate G30 and G60 orientations, in the G90
rientation the base curve has been oriented along
he Y axis.

The plane containing the Ronchi ruling is motor-
zed to achieve both accurate positioning of the ruling
nd remote motor operation, as a single central com-
uter commands all motors. Encoder motors with
.1-mm resolution allow for repetitive displacements

Fig. 2. Experimental setup. RGB: red, green, blue.
long the X and the Y axes, and a stepping motor with
nominal resolution of 16 stepsydeg allows for pre-

ise rotation movements of the ruling. Rotation of
he ruling will be used to perform experiments with
he ruling lines oriented following the X or the Y axis;
oth orientations of the ronchigrams will be required,
wing to the lack of rotational symmetry of the sam-
les. The need for accurate translation movements
f the ruling will become evident in Subsection 3.C.
The shadow pattern created by the interaction of

he wave front reflected by the sample with the Ron-
hi ruling ~which will henceforth be called the ron-
higram! is recorded by use of a CCD camera with its
bjective pointing at infinity. Let us denote as X ~Y!
onchigrams those recorded with the ruling lines ori-
nted following the X ~Y! axis. A frame grabber lo-
ated in the central computer digitizes and stores the
onchigrams as image files, which are the initial data
o be processed. Note that the CCD camera is not
eing used to form an image of the ronchigram by
ocusing it onto the CCD array but just by capturing
he incident wave front with its objective focused to
nfinity to use the CCD array as a ray slope map ~see
ubsection 3.B.1!. This avoids the use of diffusers in
he experimental setup to obtain the ronchigrams, so
o speckle noise appears in the ronchigrams. As a
onsequence, the repetitivity of the measurements is
xtremely high; the rms error in successive measure-
ents has been calculated as 2.1 3 1024 rad in local

normal measurements from successive ronchigrams
under the experimental conditions described.

B. Data-Processing Operations

Starting from the stored ronchigrams, a set of well-
known image-processing operations are combined
with ray-tracing calculations and an integration step
to yield the final profile of the surface. The relevant
parameters of the surface will be obtained from the
measured profile by surface fitting. The set of pro-
cedures applied to the ronchigrams is schematically
depicted in Fig. 3 and briefly discussed below.

1. Initial Data Processing
One X ronchigram and one Y ronchigram are re-
quired for obtaining two-dimensional information on
the non-rotationally symmetrical wave front imping-
ing on the Ronchi ruling. Both X and Y ronchigrams
are initially smoothed with 5 3 5 neighbor averaging
to reduce the effect of ambient noise in the measure-
ment. Pixels at the aperture edge were averaged
with the values of their two closest neighbors in those
directions where real data were available. The
smoothed ronchigrams are then binarized with a
threshold procedure. This leaves us with a set of
wide bright lines where only those pixels above a
certain intensity level are left active. Next, those
wide lines are eroded to leave active only the central
pixel line of each wide bright line, yielding what will
be called the line pattern of the ronchigram.

The desired two-dimensional information on the
wave front impinging on the Ronchi ruling plane is
obtained by means of superimposing the line patterns
1 November 2000 y Vol. 39, No. 31 y APPLIED OPTICS 5723
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obtained from the X and the Y ronchigrams. In the
intersection points of both line patterns, information
coming from both the X and the Y ronchigrams may
e obtained.

. Position and Slope of the Rays at the Ronchi
uling
ach intersection of the line patterns obtained from

he X and the Y ronchigrams provides two-
imensional information on the slope of one ray im-
inging on the Ronchi ruling at a certain position.
he position of the intersection point i on the Ronchi
uling plane ~xRi, yRi! is determined by means of the

period of the ruling, on the condition that an absolute
reference line be placed on the ruling. Since the
ronchigram was registered with the objective of the
CCD camera pointing at infinity, each pixel in the
CCD array will receive those rays with a given slope.
The slope of the ray impinging at the pixel ~nXi, nYi!
on the CCD array is

ui 5 nXi~Dxyf9!,

vi 5 nYi~Dyyf9!, (4)

nXi ~nYi! being the distance in pixels along the X ~Y!
axis from the center of the CCD array to the pixel
where the considered ray impinges, Dx ~Dy! the pixel
size in the direction of the X ~Y! axis, and f9 the

Fig. 3. Data-processing operations from the ronchigram to the
surface profile. 2-D, two dimensional; 3-D, three dimensional.
724 APPLIED OPTICS y Vol. 39, No. 31 y 1 November 2000
effective focal length of the objective. The associa-
tion of the position coordinates of the intersection
point obtained with the ruling pitch with the slope
measurements obtained from the pixel where the in-
tersection point has been registered in the CCD array
allows us to obtain two-dimensional information on a
ray reflected on the sample. A final four-number set
~xRi, yRi, ui, vi! describing a reflected ray is obtained
from each intersection point arising from the super-
position of the central 1-pixel-wide line patterns com-
ing from the X and the Y ronchigrams.

. Position and Slope of the Rays at the Surface
p to this point, the two-dimensional slope and inci-
ence position of a set of rays on the Ronchi ruling
ave been measured. Using this information, we
ay ray trace these rays backward to the surface

eing measured. In our setup ray tracing is a simple
rocedure, since no optically active surfaces are
laced between the Ronchi ruling and the sample
urface, except for the pellicle beam splitter. More-
ver, it has been shown17 that ray tracing to the plane

tangent to the surface at its vertex or ray tracing to
the real surface produces equivalent results for local
normal measurements, on the condition that the light
source be located close to the center of curvature of
the surface, as is the case in our samples. Under
this working condition, all the angles involved in the
reflection are small, and the position ~xSi, ySi! where
he reflected ray left the sample surface may be de-
ermined by use of a plane-to-plane ray-tracing step
from the Ronchi ruling plane to the plane tangent to
he surface at its vertex!.

Although it might appear as if the sagitta physical
eaning is lost with this tangent plane assumption,

t should be kept in mind that the goal of our mea-
urement is not the sagitta but the local normal value
f the surface at the considered point. If the source
s placed close to the center of curvature of the sur-
ace, the differences in the computed local normal
alue obtained by ray tracing to the real surface or to
he plane tangent to the surface at its vertex may be
eglected. The physical meaning of the sagitta will
e recovered when the integration procedure of the
et of measured local normals to the surface is per-
ormed.

As a result, the position where each ray incident on
he Ronchi ruling is reflected on the sample surface
xSi, ySi! and the slope of the corresponding reflected

ray ~ui, vi! become known data.

4. Local Normal Measurement
With use of the position where the reflected ray
leaves the sample surface, and the known position of
the light source, the slope of the ray incident on the
surface at ~xSi, ySi! may be obtained. Once the
slopes of the incident and the reflected rays are
known, measuring the normal to the surface at the
reflection point ~the local normal to the surface! is
traightforward by use of Snell’s law. One local nor-
al data value ~NXi, NYi! is obtained for each of the

original intersection points.
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5. Integration
An iterative integration procedure is performed to
yield the final profile of the surface. Each normal
value is assigned to a certain sample area, depending
on the number of sampling points available. For
each of these areas a given height value is calculated
from the corresponding local normal value and the
height differences with the edges of all neighboring
areas, and an inclination of the area is determined
from the direction of its corresponding local normal.
The process iterates until, for all sampling points, the
sum of the height differences of the edges of each area
with those of all its neighboring areas stays below an
undetectable threshold value.

6. Measurement of the Surface Parameters
Radius-of-curvature values will be obtained from the
measured data by fitting procedures. The values
may be obtained prior to the integration procedure by
linear fitting of the local normal against position
curves along the principal meridians of the toroidal
surface. When the principal meridians of the sur-
face are oriented along the X and the Y axes ~the case
with orientations G00 and G90!, the curves are the
plots of NX~xS! and NY~yS!. When the principal me-
ridians do not coincide with the X or the Y axes, a
projection of the measured data must be performed to
obtain the local normal slope against position values
along the principal meridians of the surface, yielding
what we call the NX

a~xS
a! and the NY

a~yS
a! curves, a

being the angle from the X axis where the principal
meridians are oriented. This type of procedure re-
quires either knowing a priori the orientation of the
principal meridians of the surface or finding this ori-
entation by iterative trials to search for the value of
a at which the NX

a~xS
a! and the NY

a~yS
a! curves have

etter correlation coefficients for a linear fit.
Once the integration step has been carried out and
full height profile of the surface has been obtained,

n alternative method may be used to fix the param-
ters of the surface. We can apply a three-
imensional surface-fitting procedure by adjusting
he tilted and the decentered spherocylindrical sur-
ace described in Eq. ~3! to the measured height pro-
le, allowing for the determination of the radii of the
ase and of the cross curves, the orientation of the
rincipal meridians, and the position of the vertex of
he surface. For these surface-fitting procedures all
arameters are obtained automatically without the
eed for a priori information on the sample orienta-
ion. The differences of measured surface from the
xpected surface may also be calculated, showing the
eviations of the surface from its ideal shape.

C. Enhancement Techniques: Microstepping

The data-processing procedure presented allows for a
simple enhancement technique that enables the user
to select the desired density of sampling points,
within certain limits. Up to now just one X and one
Y ronchigram have been acquired and processed.
Under typical experimental conditions approxi-
mately ten bright lines would be visible in each of the
ronchigrams. This yields an estimate of 100 sam-
pling points on the surface when the line patterns
coming from the X and the Y ronchigrams are super-
mposed and their intersection points calculated.

However, if nX ronchigrams and nY ronchigrams
ere recorded displacing the ruling a distance Tyn
long the direction orthogonal to the ruling lines, all
he recorded ronchigrams could be processed as de-
cribed in Subsection 3.B.1. The resultant 2n line
atterns could then be superimposed to yield a pat-
ern containing 10n lines along the X axis and 10n
ines along the Y axis, thereby maintaining our esti-

ate of ten bright lines per ronchigram. Note that
he number of sampling points obtained from the
ntersection of the families of X and Y ronchigrams
ises to 100n2. If 10 X ronchigrams and 10 Y ron-

chigrams are acquired, the number of sampling
points on the surface rises by 2 orders of magnitude.

Other ruling schemes, such as the square grid of
Ref. 4, do not require changing of the ruling orienta-
tion in the measurements. Although two different
ruling orientations are required in our setup, the use
of a square transmitance ruling allows for an impor-
tant increase in the number of sampling points,
which would not be achieved by a square grid scheme
with a small number of displacements. In addition,
the presented technique avoids the diffractive noise
problem that is usual in phase-shifting techniques by
ignoring the shape of the registered signal and simply
considering the central position of each bright fringe.
Such a geometrical approach allows for the applica-
tion of microstepping techniques even in largely ab-
errated wave fronts, where the application of phase-
shifting techniques may not be evident.

The high sampling density achieved compensates
for the apparent loss in accuracy carried on by not
making use of phase-shifting techniques. The close-
ness of the measured sampling points carries on
small integration areas assigned to each local normal
value ~see Subsection 3.B.5!, so the integration step
llows for measurement of detailed surface topogra-
hies. As shown below, the topographic measure-
ents obtained attain micrometric accuracy and are

ble to depict surface details with just some tenths of
anometers in depth when the deviations from the

deal shape are considered.
We called this technique microstepping, because of

he micrometric nature of the stepping displacements
nvolved. The implementation of a microstepping
xperiment is simple in the depicted experimental
etup. With typical frequencies of the ruling of 50
pi ~T 5 0.508 mm! the displacement of the ruling in

consecutive ronchigram acquisitions to obtain ten dif-
ferent ronchigrams becomes 50.8 mm, a displacement
vailable to most lab motors. It now becomes clear
hy in our experimental setup the Ronchi ruling
lane was motorized for movement along the X and
he Y axes and rotation around the Z axis. Because
ll the motors are controlled with a computer that
lready contains the frame grabber, the data-
cquisition procedures become highly automated.
1 November 2000 y Vol. 39, No. 31 y APPLIED OPTICS 5725
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The microstepping procedure will also work, acquir-
ing a different number of X and Y ronchigrams, thus
llowing the user to adjust the experiment to obtain
n optimum sampling of the sample surface. Sam-
ling densities of 30 mm22 have been routinely ob-

tained in our measurements.
Obviously, there is a limit to the density of sam-

pling points that may be obtained with this tech-
nique, since the 1-pixel-wide lines coming from
ronchigrams in consecutive acquisitions are required
not to overlap in order to provide reliable slope and
position values after the superposition procedure.
The sample area covered by the experimental setup
in the measurement is also a limiting factor. How-
ever, the computing time required for managing the
amount of information generated by the microstep-
ping procedures usually becomes the most limiting
factor in everyday practice, particularly if iterative
integration procedures are to be carried out.

4. Experimental Results

A. Experiment

The experimental setup presented in Subsection 3.A
will be used to measure the three-dimensional sur-
face profile and to fix the radii of curvature; the ori-
entation of the principal meridians; and the position
of the vertex of a toroidal sample at the four different
orientations described as G00, G30, G60, and G90 in
Subsection 3.A. A binary Ronchi ruling with 50 3
0 duty ratio and a frequency of 50 lpi ~T 5 0.508 mm!

was used, and n 5 10 steps were applied in mi-
rostepping procedures to provide an intensive sam-
ling of the test surface. The distance from the
ertex of the surface to the Ronchi ruling was fixed at
82.6 mm in all the measurements performed.
The toroidal surface used as a sample was the con-

ave surface of a common astigmatic spectacle lens,
ith its convex surface arranged to be optically inac-

ive. To provide a reference radius of curvature for
he base and the cross curves of the sample, the
urves were measured with a high-precision radio-
cope. The reference radius values obtained for the
ample amount to 170.4 6 1 mm for the base curve
nd 148.8 6 1 mm for the cross curve. Note that the
ifference in height in the two principal meridians,
ssuming a 15 mm 3 15 mm sampled area, amounts

to 38l and that a profile will be obtained without the
need for a priori hypotheses on the surface shape.
The surface shape will be required only in the final
fitting procedures to determine the parameters of the
surface.

B. Results

To provide a better understanding of the measure-
ment technique, some of the intermediate results
achieved throughout the data processing of the ron-
chigrams will be presented for one of the four orien-
tations of the sample measured. We selected for this
more detailed description the measurement of the
sample at the G60 orientation, because in this case
the principal meridians of the surface are not ori-
726 APPLIED OPTICS y Vol. 39, No. 31 y 1 November 2000
ented following the direction of the lines on the rul-
ing, showing behaviors in the ronchigrams that are
never observed when the surfaces are rotationally
symmetrical.

This behavior may be seen in Fig. 4, which presents
the X ronchigram, where the ruling lines are placed

orizontally @Fig. 4~a!#, and the Y ronchigram, with
the ruling lines placed vertically @Fig. 4~b!#. Note

ow the ronchigram lines at the presented G60 ori-

Fig. 4. Experimental ronchigrams for the sample surface: ~a! X
ronchigram, ruling lines placed horizontally; ~b! Y ronchigram,
ruling lines placed vertically.
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entation of the sample are not oriented in the same
direction as the lines of the ruling. This is a conse-
quence of having the principal meridians of the toroi-
dal surface tilted from the X axis ~at G60 orientation
the base curve is tilted 60° from the X axis!. When
he Ronchi ruling lines and the principal meridians of
he surface are oriented along the X and the Y axes

~in the G00 or the G90 orientations!, the X and the Y
ronchigram lines are also oriented following the X
and the Y axes, although the X and the Y ronchi-
rams present a different number of bright lines,
wing to their different radius-of-curvature values.
A total of 10 X and 10 Y ronchigrams with their

ines displaced laterally 50.8 mm ~Ty10! are acquired,
moothed, binarized, and eroded to reduce them to
he set of central 1-pixel-wide lines coming from each
f the bright lines on the ronchigram. The resultant
0 line patterns are superimposed to obtain the in-
ersection points, where two-dimensional informa-
ion on the slope of the rays impinging at a given
osition of the ruling is available. Figure 5 shows
he difference between applying and not applying mi-
rostepping procedures. Whereas Fig. 5~a! is the su-
erposition of the pair of X and Y ronchigrams

presented in Fig. 4, Fig. 5~b! presents the superposi-
tion of 10 X and 10 Y microstepped ronchigrams.
The number of intersection points rises from 68 in
Fig. 5~a! to 7950 in Fig. 5~b!, allowing for a much more
intensive sampling of the surface under test. In this
case the area sampled amounts to 236.8 mm2, so the
density of sampling points in the microstepped ex-
periment is 33.6 mm22.

Through the techniques discussed in Subsection
3.B the local normal to the surface may be calculated
at each of the above-mentioned 7950 sampling points.
A first radius-of-curvature measurement may be per-
formed, since along the principal meridians the local
normal against position curve must be a straight line,
with its slope giving the curvature of the surface.
From the measured ~xSi, ySi, NXi, NYi! values the
lope against position curves along the principal me-
idians may be obtained through rotation, yielding
he NX

60~xS
60! and NY

60~yS
60! curves shown in Figs.

~a! and 6~b!, which correspond to the cross and the
base curves of the surface, respectively. The results
of fitting

NJ
60 5 CJ

60J 1 KJ (5)

to the data in Fig. 6 are shown in Table 1. In Eq. ~5!,
may be either X or Y; CJ is the curvature along J;

nd KJ is the independent term, which is interpreted
as an angular misalignment of the sample along the
J axis. The results in Table 1 may be seen to provide
an adequate fit to the reference values described for
the sample. Correlation coefficients show the close-
ness of the measured data to a linear plot.

In addition, through integration of the local normals,
one may obtain a full three-dimensional topography
of the measured surface. The three-dimensional to-
pography of the sample is presented in Fig. 7, both in
the shape of a three-dimensional profile @Fig. 7~a!#
and in the shape of a contour plot @Fig. 7~b!#.
hereas in the three-dimensional profile a surface

as been plotted with the data, in the contour plot
ach plotted point is a measured sampling point on
he surface, with a gray tone given by its height.
ach contour step equals a 16-mm height step.
As explained in Section 2, a tilted and decentered

pherocylindrical surface following Eq. ~3! was fitted

Fig. 5. Intersection of 1-pixel-wide line patterns: ~a! nonmi-
crostepped experiment yielding 68 sampling points on the sample
surface; ~b! microstepped experiment yielding 7950 sampling
points on the sample surface.
1 November 2000 y Vol. 39, No. 31 y APPLIED OPTICS 5727
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to the height data obtained for each of the sampling
points to fix the parameters of the sample surface.
These parameters are presented in Table 2, where
the measured radii may be seen to fit the described
reference values adequately. The measured orien-
tation of the principal meridians is almost coincident

Table 1. G60 Orientation: Results of Fitting the Plots in Fig. 6 to
Eq. ~5!

Samplea Base Curve Cross Curve

CJ ~mm21! 5.8045 3 1023 6.2219 3 1023

KJ ~rad! 2.652 3 1023 27.272 3 1023

RJ ~mm! 170.2 149.3
r2 0.999987 0.999984

aCJ stands for the curvature at the meridian considered, KJ for
the independent term of the linear fit, and RJ for the radius of
urvature. J may be either the base or the cross curves of the
urface, and r2 is the correlation coefficient of the linear fit.
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with the orientation at which the sample was man-
ually set, whereas the decentering of the sample is
more important along the X-axis direction, as can be
seen in Fig. 7~b!. Note the closeness of the results
or the radii obtained either from linear fitting or
rom three-dimensional surface fitting.

Table 3 shows the results for the sample in the
hree additional orientations that were tested: Ra-
ius values ~through linear and surface fitting!, cor-
elation coefficients, orientation of the principal
eridians, and vertex position measurements are

resented. Figure 8 shows the contour plots of the
easured profiles at orientations G00 @Fig. 8~a!#, G30

Fig. 8~b!#, and G90 @Fig. 8~c!#. The capability of the
echnique of measuring the profile of the toroidal sur-
ace regardless of the orientation of its principal me-
idians may be observed by means of comparing the
easured radius values and the principal meridian

rientations with the reference values at all orienta-
Fig. 6. G60 orientation: local normal slope against position
curves along the principal meridians of the sample: ~a! cross
curve; ~b! base curve.
Fig. 7. G60 orientation: three-dimensional profile of the surface
obtained by integration of the local normals: ~a! three-
dimensional plot, ~b! contour plot. Each contour step equals a
height step of 16 mm.
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tions. Dispersion of the fitted radius values for sur-
face fitting is lower than for linear fitting, because the
estimation of the direction of the principal meridians
is subject to some degree of error. The maximum
dispersion in surface fitted radius values in different
orientations equals an oscillation of the measured
total sagitta of the tested area of 0.5 mm. This de-
viation in sagita measurements yields a deviation in
local normal measurements smaller than the uncer-
tainty in consecutive measurements described in
Subsection 3.A, so the change in radius of curvature
in different orientations stays inside the uncertainty
of the measurement. The concordance in radius val-
ues obtained by linear- and surface-fitting procedures
regardless of how the surface is oriented shows that
the radius measurement may be carried out before or
after the integration procedure with full reliability.
All radius measurements may be seen to fall within
the measurement uncertainty associated with the

a Tilted and Decentered Spherocylindrical Surface ~Eq. 3! to the
Measured Profile

Parametera Value Reference

RB ~mm! 170.0 170.4
RC ~mm! 149.4 148.8
u ~deg! 58.8 60
x0 ~mm! 0.45 —
y0 ~mm! 0.22 —
r2 0.999997 —

aThe position of the vertex was set manually, so no reference
value is provided. RB stands for the radius of the base curve, RC
for the radius of the cross curve, u for the orientation of the prin-
cipal meridians, x0 and y0 for the coordinates of the vertex of the
urface, and r2 for the correlation coefficient of the surface fit.

Table 3. Results for the Sample in the Three Additional Orientations
Measured

Orientationa G00 G30 G90

N ~points! 6951 7845 6828
A ~mm2! 224.9 228.3 225.6

B
LINEAR ~mm! 170.4 170.4 170.1

B
2~LINEAR! 0.999992 0.999990 0.999991

RC
LINEAR ~mm! 148.9 149.1 149.6

C
2~LINEAR! 0.999991 0.999987 0.999995

RB
3D ~mm! 170.2 170.2 170.3

C
3D ~mm! 149.1 149.2 149.4

~deg! 0.7 28.9 89.3
0 ~mm! 0.64 0.07 0.49

y0 ~mm! 0.06 20.52 0.41
r2~3D! 0.999998 0.999997 0.999998

aN stands for the number of sampling points, A for the area
ampled, RB

LINEAR for the radius of the base curve obtained with
linear fitting, RC

LINEAR for the radius of the cross curve obtained
ith linear fitting, rB

2~LINEAR! and rB
2~LINEAR! for the correlation

coefficients of the linear fits for the base and the cross curves, RB
3D

for the radius of the base curve obtained with surface fitting, RC
3D

for the radius of the cross curve obtained with surface fitting, u for
the orientation of the principal meridians, x0 and y0 for the coor-
dinates of the vertex of the surface, r2~3D! for the correlation coef-
ficient of the surface fit.
reference values, and the measured orientation of the
principal meridians is consistent with the ideal ori-
entation of the sample surface, which was fixed man-
ually. The measurement of the position of the
vertex of the surface may change from one orienta-
tion to another, since the centering of the surface was
also manually set, and subsequently a small decenter

Fig. 8. Measured surface profiles, as contour plots, at the three
additional orientations measured. Each contour step equals 16
mm. ~a! G00 orientation, ~b! G30 orientation; ~c! G90 orientation.
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error is to be expected. The good correlation coeffi-
cients obtained for all the orientations considered
show the closeness of the measured profile to a
spherocylindrical surface.

Use of surface-fitting techniques allows us to cal-

Fig. 9. Residuals obtained by subtraction of the measured profile
from the best-fit profile. Each contour step equals 47 nm. ~a!

00 orientation, ~b! G30 orientation, ~c! G60 orientation, ~d! G90
orientation. Features that deviate from the ideal surface may be
seen to rotate as the sample is rotated.
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culate the residuals obtained when the real measured
surface is subtracted from the ideally shaped sphero-
cylindrical surface. Such plots are presented in Fig.
9. Again, a contour plot representation was per-
formed, with the inner white contour step represent-
ing zero deviation of the measured surface from the
ideal one. In this case, however, the contour step
amounts to only 47 nm, so submicrometric surface
details with height extensions of several tenths of
nanometers are being measured for a toroidal sur-
face. Inasmuch as the residual measurements are
obtained for the same sample tilted at different ori-
entations, the surface deviations from the ideal
spherocylindrical surface may be seen to rotate as the
sample rotates ~note the shape and the size of the
double bump at both sides of the zero contour step!.

he small differences in the residual plots at different
rientations are due to the small radius-of-curvature
ifferences of the fitted surfaces ~see Table 3!, which
re subtracted from the measured surface, combined
ith the very small scale ~47 nm! of the differences
bserved.

5. Conclusions

A technique based on the Ronchi test, with the capa-
bility of measuring nonrotationally symmetrical sur-
faces, has been presented. The experimental setup
and the data-processing operations, which start with
the recorded ronchigrams and end with the three-
dimensional profile of the surface, have also been
described. The technique has been applied to the
measurement of the profile of the concave toroidal
surface of a common ophthalmic lens. Additionally,
a simple enhancement technique based on multiple
ronchigram acquisition makes it possible to raise the
density of sampling points on the measured surface to
typical values of 30 mm22 in the described setup.

A profile of the sample surface has been recon-
structed three dimensionally without use of any a
priori information on the shape of the surface being
measured. The surface parameters ~radii of curva-
ture, orientation of the base curve, and position of its
vertex! are obtained by means of surface fitting the
measured height data to a spherocylindrical surface.
Radius-of-curvature values may also be obtained
prior to finding the topography of the surface by use
of a linear fitting of the local normal against position
curves along the principal meridians of the surface.
Both the radii of curvature and the orientation of the
meridians agree well with the reference radius values
and orientations, regardless of the sample orienta-
tion and for both types of fitting procedure. Devia-
tions from the best-fit spherocylindrical surface have
been measured at different orientations, depicting
surface features just some tenths of nanometers in
depth.
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