Overview of demands on materials for ITER monitoring, control, and diagnostics

Eric Hodgson CIEMAT, Madrid, Spain.

- For "conventional" nuclear installations: mainly metallic (steels) structural materials
- In marked contrast, <u>fusion systems</u> (ITER, DEMO, PP) will <u>also require</u> functional (insulators) materials:

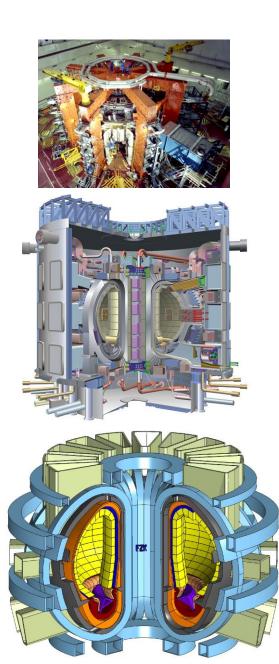
H&CD systems; DC, AC/RF insulation, transmission Diagnostic systems; not only electrical, but also optical transmission Remote handling systems

- The environment of operation can be hostile; high temperature, high voltages, vacuum, <u>and above all a radiation field</u>
- Must take into account the radiation effects on these materials when making a choice for a particular application; <u>i.e. testing required</u>

From early plasma devices to ITER, DEMO & PP

Early machines like JET, TFTR ⇒

Technical challenge related to **machine size**, **accessibility**, **and reliability**, but with few radiation problems due to the limited number of DT shots.


• Near term ITER 🛛 🛁

Completely new range of challenges where **radiation and materials related issues become important**; systems which must work in a radiation field, plus the problem of remote handling and maintenance.

• Future DEMO and PPs \implies ?

Next step forward to DEMO and subsequent power plants will require a real **quantum jump** in technology and materials development

Final goal \Rightarrow **produce electricity**

Candidate materials

- Structural: SS-316L-IG, RAFM (Eurofer, F82H), ODS, V-5Ti, SiC
- High heat flux: Be, W, CFC on Cu (CuAl25-IG or DS Cu)
- Breeder: Liquids; Li, Pb-Li, Solids; Li₂O, Li₄SiO₄, LiAlO₂
- Cooling: H₂O, He, Pb-Li, Li
- Insulators:

Al₂O₃, MgO, BeO, MgAl₂O₄, AlN, Si₃N₄, SiO₂, diamond

Candidate insulator materials for fusion applications

Refractory oxides in generally highly rad resistant (ionic)

Al₂O₃, MgO, BeO, MgAl₂O₄

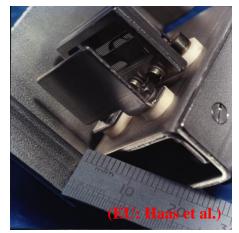
Nitrides, silicas, carbides (covalent)

AlN, Si₃N₄, SiO₂, diamond, (SiC & SiC/SiC)

Also: PI, PEEK, Elastomers Gases for NBI SF₆ or dry air (synthetic)

Required insulators come in all sizes \Rightarrow **testing difficult**

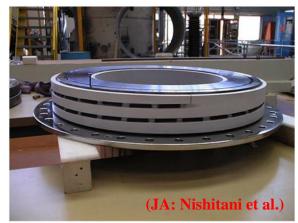
From small almost "COTS":


Electrical connectors

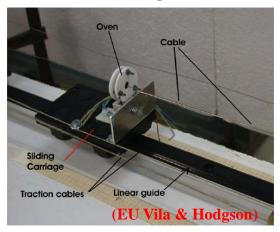
LEMO connectors (PEEK insulation)

(EU: Hodgson et al.)

Pressure gauge alumina feedthroughs


ECRH diamond windows

Unirradiated



(JA: Nishitani et al.)

Large diam. ~ 2 m NBI bushings Difficult to manufacture

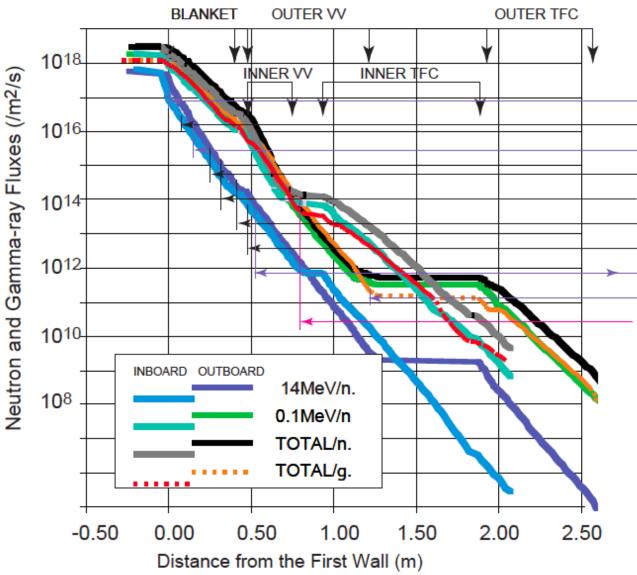
MI cables alumina, magnesia ..

Relevant operating conditions to be defined:

For the required system:

- **1. Select necessary components**
- 2. Identify radiation sensitive part/s
- 3. Determine "exact" position in the machine
- 4. Operating conditions and required testing can then be defined \Rightarrow

Dose rate, dose (*n* & γ*flux* & *fluence*)


Temperature

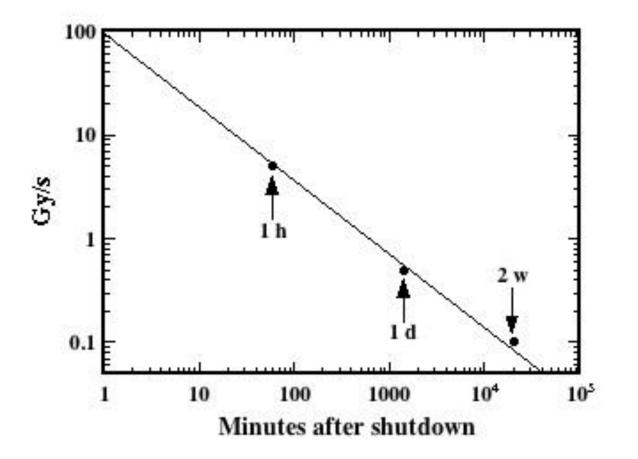
```
Electric fields (DC, AC/RF)
```

Mechanical stress

Environment etc. (vacuum, "air", N₂, SF₆, coolant ..)

ITER n and γ fluxes

DIAGNOSTIC COMPONENT


FW VIEWING APERTURES
REFLECTOMETER ANTENNAS
FAR FORWARD HEAD MIRRORS
NEUTRON ACTIVATION HEADS
BOLOMETERS
VV PICK-UP COILS
VV LOOPS
PORT PLUG COMPONENTS
OUTBOARD Ex-VV PICK-UP COILS
INBOARD Ex-VV PICK-UP COILS

from NAR (ITER_D_22F2ST) Figure 3.2- 1a Figure 3.2- 1b

Diag FW flux CW020107.ai

Radiation levels for RH rapidly reduce

RH Dose Rates

Radiation levels for insulators

ITER (1st wall \leq 3 dpa)

Ionizing dose rates < 1 Gy/s to 100s Gy/s Ionizing doses up to < 10 GGy Displacement dose rates $\le 10^{-8}$ dpa/s Displacement doses ≤ 0.3 dpa

Temperatures <u>for insulators</u>

Nuclear heating $\geq 1000 \text{ s} \implies$ Components up to, and even above 200 C (*depends on position*)

Irradiation T very important (aggregation, annealing) Also at high T between pulses (annealing)

⇒ <u>Many materials/components in vacuum</u> ⇐

1 Gy (Gray) = 1 J/kg

"rule of thumb" $10^{25}n/m^2 \Rightarrow 1$ dpa (displacement per atom)

Properties affected and of concern for fusion devices

Electrical conductivity Optical absorption and emission Dielectric loss and permittivity Thermal conductivity Mechanical properties

For example:

Resistance decrease--Optical absorption--Materials swell--Become brittle--Corrode easier--

Resistance decrease --> Joule heating, breakdown **♦**

- **Optical absorption** --> **light transmission loss ♦**
 - --> distortions 🔶 🔺
 - --> break 🔶 秦
 - --> mirrors, leaks 🔶 🔺

Stainless steel can withstand many dpa and GGy
But insulators can be modified by 10⁻⁶ dpa or a few kGy (see Annex)

The special case of insulators

Insulators are in general polyatomic materials Hence response is more complex than in metals --->

2 or more sublattices --> may not tolerate mixing

Hence more types of defects

Defects may have different charge states and mobilities

Displacement rates and thresholds may be different on each sublattice

Interaction between defects on different sublattices

Defects produced in some cases by ionization (radiolysis)

Insulator sensitivity to radiation

Result ===> insulators are far more sensitive to radiation damage than metals

Stainless steel can withstand many dpa and GGy

But insulators can be modified by 10⁻⁶ dpa or a few kGy

Hence problems expected even in ITER

Both dose and dose rate are important

Swelling problems

 Expect mica to swell 90° to C plane

Unirradiated mica --->

 Irradiated to 10⁻² dpa -> (FZK data)

⇒use SiN as bolometer substrate (and change Au to Pt)

Corrosion is enhanced

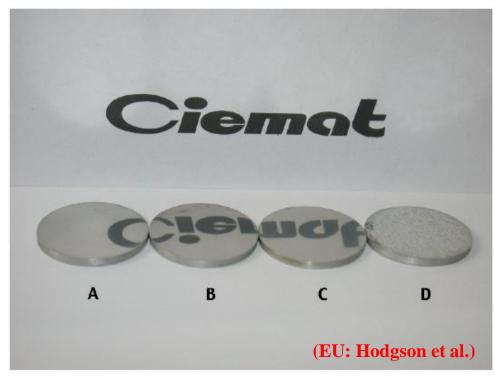
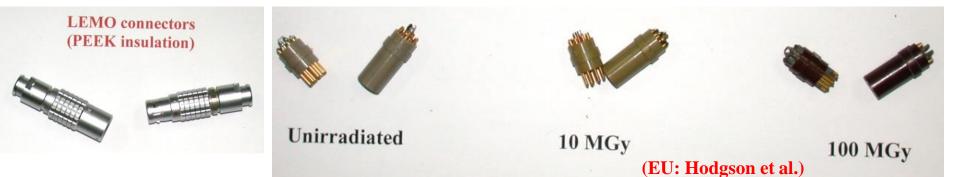


Figure 1b. Humid air and irradiation effects in Uncoated Aluminium 20 mm diameter disks

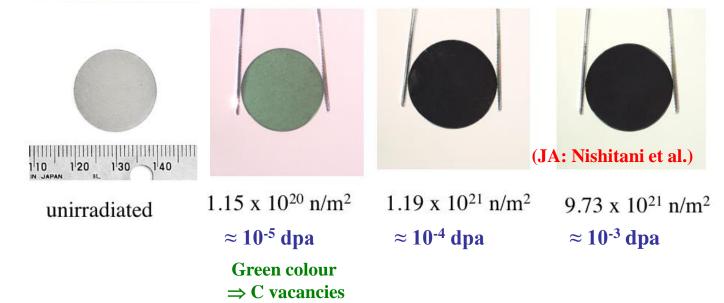
A: As received

- B: No irradiation and humid air (80% HR)
- C: 50 kGy and Nitrogen gas
- D: 50 kGy and humid air (80% HR)

Radiation enhanced effects can be serious



Al on Pyrex glass. SiO overcoating


- Mirrors can corrode
- Even with SiO protection (related to SiO \rightarrow SiO₂ swelling)
- Problem for LOCA (Loss of coolant accident)

PEEK electrical connector insulation 60 Co γ-irradiation 5.5 Gy/s. T = 120 °C

Polyether ether ketone

CVD diamond for ECH window. 20 mm in diameter, 1.5 mm in thickness Neutron irradiation (>1 MeV). T ~100 ° C

Classical examples ("almost" understood): Radiation Induced Conductivity (RIC) and Luminescence (RL)

- RIC due to excitation of electrons into the conduction band
- For a good insulator and MC fusion conditions acceptable

- RL due to recombination and deexcitation processes
- Transparent materials suitable for windows, lenses, fibres exist with low RL

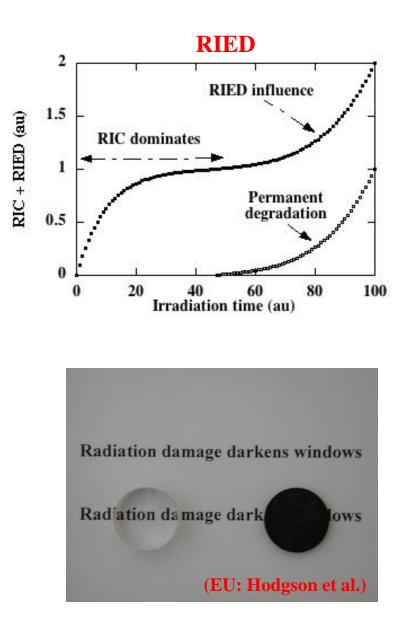
RIC and RL problems from onset of operation (dose rate dependent) (EU: Hodgson and Moroño)

2 Increasing dose rate 1.5 RIC (au) 0.5 80 20 40 60 100 Irradiation time (au) **RL** 1000 10¹¹ photons/(s.Å.sr.cm³) Sapphire 100 Anhydroguide Co Con Co KU1 0.1 2000 3000 50006000 7000 8000 Wavelength (Å)

RIC

With irradiation time (dose) RIC and RL change

• RIC increases due to a permanent degradation of the insulator


 \Rightarrow **RIED**

RL reduces due to defect absorption \Rightarrow

٠

BUT the window becomes a wall ! Severely limits use of optical fibres

Serious long term problems

Degradation of the electrical conductivity

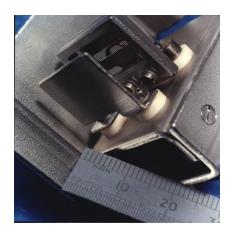
Have to contend with 4 types of degradation

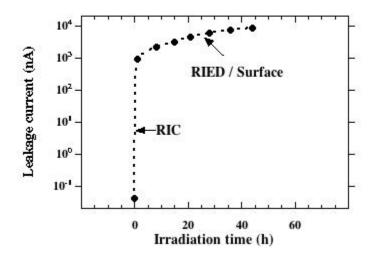
- **RIC ==>** <u>**R</u>adiation <u>Induced</u> <u>C</u>onductivity</u>**
- **RIED ==>** <u>**R</u>adiation <u>Induced Electrical Degradation</u></u>**
- Surface Degradation
- **RIEMF ==>** <u>**R</u>adiation <u>Induced Electro-Motive Force</u></u>**

Note: conductivity σ (S/m) is inverse of resistivity ρ (Ω m)

Surface Degradation

• Despite the purely academic distinction


surface and volume degradation just as serious for insulating components


- Two types now recognised ===>
- <u>Surface Contamination</u>
- poor vacuum, sputtering, evaporation
- <u>Real Surface Degradation</u>
- Surface reduction, impurity segregation
- Can be serious, affected by irradiation environment and ionizing radiation

Surface Degradation for feedthroughs

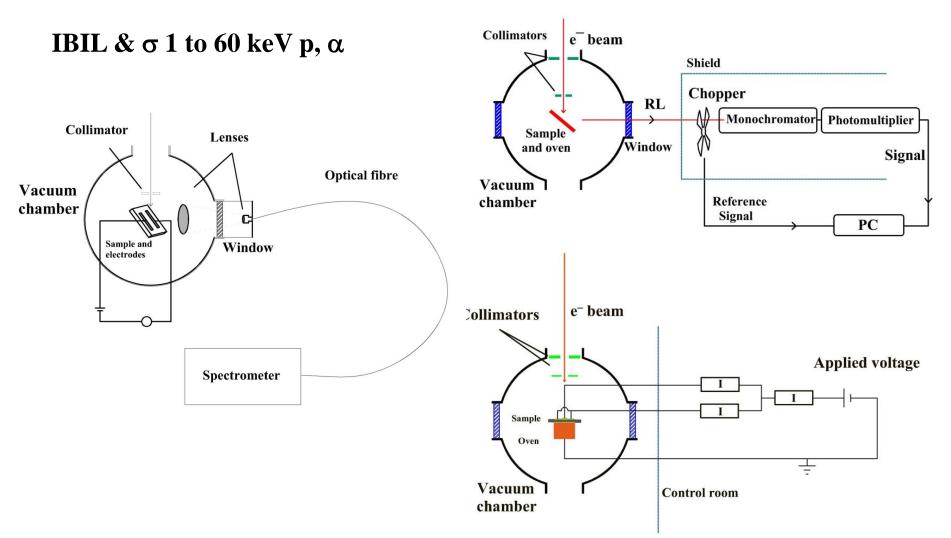
For simple feedthroughs:

- RIC clearly identified
- Further increased conductivity ?
- **RIED** or surface



Testing must take advantage of existing facilities

Need experimental reactors with in-situ experimental possibilities and expertise (e.g. BR2)


- Will need to develop / improve the different systems required
- Vacuum
- Real temperature control
- Electrical and optical connections

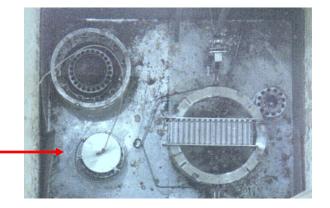
Ion and electron beam accelerators

(in vacuum, allow good T control, and provide basic information on radiation effects)

RL & σ 0.2 to 2.0 MeV e⁻

Gamma sources

ITER component γ-irradiations



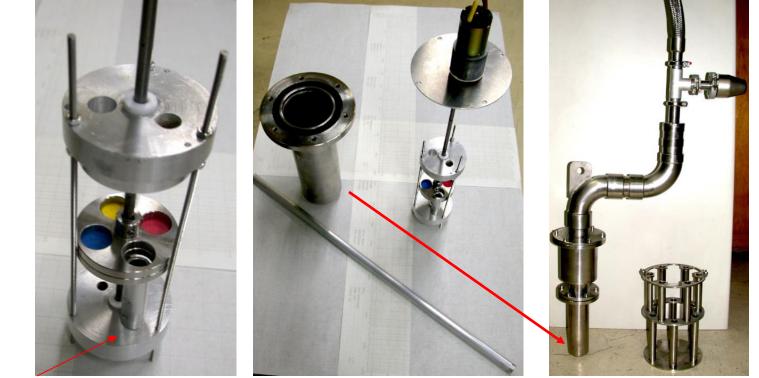
Turbopump < 10⁻⁷ mbar

Test chamber(s) in "Nayade" pool facility (60 Co) Final vacuum $\approx 3x10^{-5}$ mbar

CIEMAT preparation for γ -irradiations: scintilators & lenses in dry air and N₂ In-situ testing T \approx 30 °C \leq 1.5 Gy/s

In situ measurements (F4E-OFC-358)

System will allow irradiation and *in situ* measurement of absorption and light emission of scintillators and lenses In the high radiation region, aluminium light guide tubes will be used rather than optical fibre


Although component oriented, will provide basic information on radiation effects

Rotating sample holder Al light guide tube

Detail: 3 sample + ref. channel

Sample holder and Nayade test chamber

LEDs

A. Moroño, M. Malo, I. Garcia-Cortes, J. Valle, F. Jimenez, P. Valdivieso, E.R. Hodgson CIEMAT

Conclusions

- **1.** We will need ceramics/insulators in ITER: Severe limitation to operation, control and safety functions.
- 2. For each system/component must identify the radiation sensitive part
- **3.** Determine the operating conditions: *radiation levels, temperature, vacuum/air, voltage, stress etc.*
- 4. Check if suitable information is available: *considerable data exists in the literature*
- 5. If in doubt, radiation testing is necessary: In situ testing or PIE ⇒ seek expert advice

Annex and extras

Fusion Relevant Radiation Damage

- ITER will present operational and experimental difficulties and problems not met in present day machines
- Come from the transition **Physics to Technology**
- Not just going from JET scale to ITER DEMO PP
- Must remember final aim of programme: Fusion power for **Electricity Generation**
- So we need "ignition" ⇒ neutrons and gammas
- These produce **Radiation Damage** in the materials
- The most difficult **Long Term Problem** to solve

Displacement Damage

Neutron irradiation displaces atoms / ions from their lattice sites

Produces "displacement damage" in metals and insulators

Cross section generally small ($\approx 1 \rightarrow 10$ barns $1 b = 10^{-24} cm^2$)

Measured in "dpa" (displacements per atom)

1 dpa means on average every atom displaced once

Displacement Damage affects ALL materials

At the first wall of ITER or a fusion reactor

we will have approximately;

 10^{-6} dpa / s ===> in less than 300 h we have 1 dpa !!

("rule of thumb" $10^{21} \text{ n/cm}^2 => 1 \text{ dpa}$)

Can materials possibly survive such damage ?

Ionizing (gamma) radiation

Gamma radiation absorbed in the materials

Cross section is large ($\leq 10^{5}$ barns)

Measured in Gray (Gy) = 1 J / kg

(old unit: rad, 1 rad = 100 erg / g So 100 rad = 1 Gy)

For gammas: $5x10^{14}$ gamma/m²/s \approx 1 Gy/s For neutrons: 10^{15} n/m²/s \approx 1 Gy/s **Ionizing radiation affects mainly insulators**

At the first wall of ITER or a fusion reactor

we will have approximately;

10⁴ Gy/s

and for remote handling situations a few Gy/s (shut down maintenance etc.)

Dose rate (flux) and dose (fluence) effects

Some of the induced changes will be dose rate dependent

---> problem from on-set of operation In general not linear Many effects ∝ (dose rate)^δ, δ ≠ 1

others will be modified by the total dose

---> affect the component or material lifetime But effect at a given dose depends on dose rate

(1 MGy at 10 Gy/s ≠1 MGy at 100 Gy/s *Important for testing to high dose*)

Effects of radiation damage

Displacement damage produces <u>in all materials;</u>

Vacancy + interstitial defects (point defects) can recombine, remain stable, and aggregate forming extended defects

Ionization produces <u>in insulators;</u>

changes in electronic charge distribution enhances defect mobility

(mainly heating in metals)

Transmutation

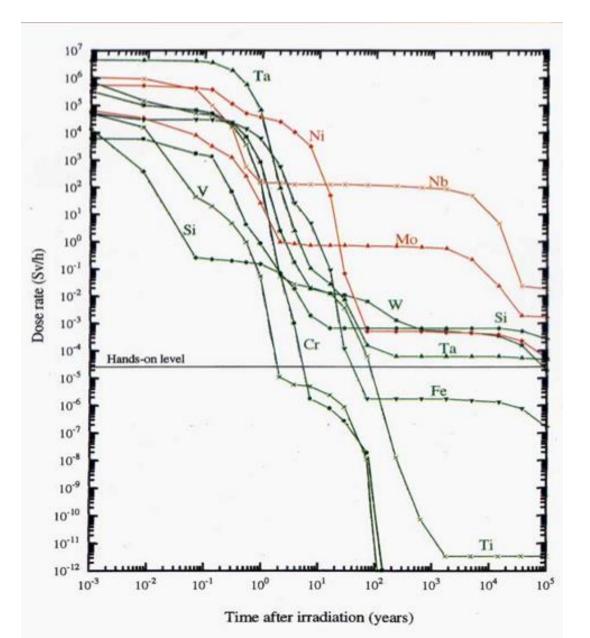
Nuclear radiation produces transmutation products

Nuclear reactions $(n: \alpha, \gamma, p)$ These lead to impurities in the materials

Can modify properties. (high fluence problem)

In ITER transmutation, except for C, H, and He, not expected to present a serious problem.

BUT beyond ITER yes !

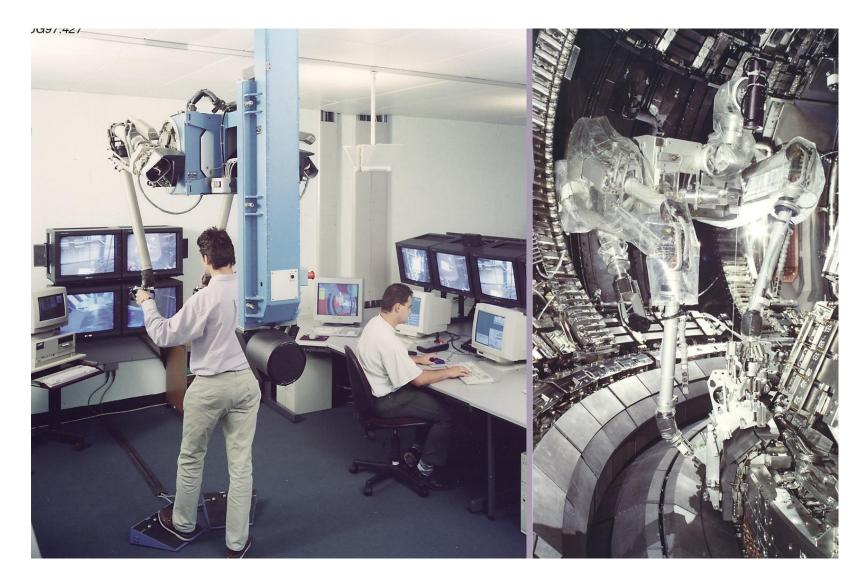

Transmutation (appm/year at 1 MW/m²)

Ceramic	Be	Be ₂	B4 C	BN	Ca.	ВW	Al ₂	MgAl ₂	AIC	Si	SI SI	Ti
Transmutation Product		õ			arbon		03	Al ₂ 04	NOI	C	⁴ N	C
Hydrogen	103	32	97	276		302	292	298	370	437	630	118
Helium.	2920	4055	3527	2365	2098	530	505	352	356	1378	658	1017
Lithium	134	123	1716	1146							—	
Beryllium	—		115	19	420		—			234		
Carbon	569			241		569	624	600	506		328	
Nitrogen	31					31	34	35				
Sodium					—	—	69	60	60	—		
Magnesium							436		400	458	455	
Aluminium								—		72	71	
Silicon							8	7	6			

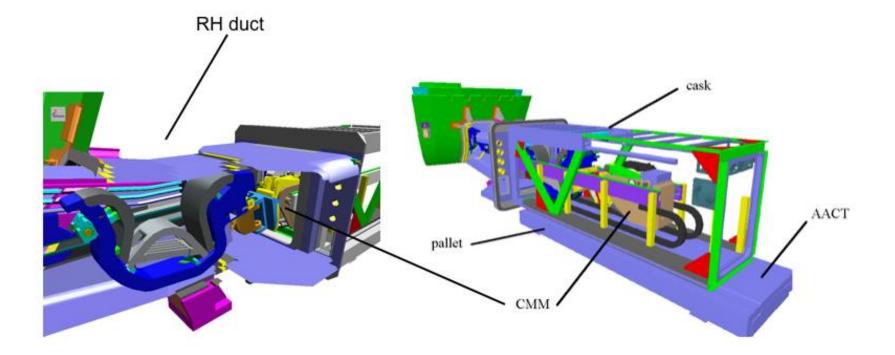
 \Rightarrow

H, He - swelling. C, (Mg, Na) - electric + dielectric properties

Radioactive decay for different elements



In RA steels change:


Ni --> Mn Nb --> Ta Mo --> W/V

Transmutation leads to residual radioactivity

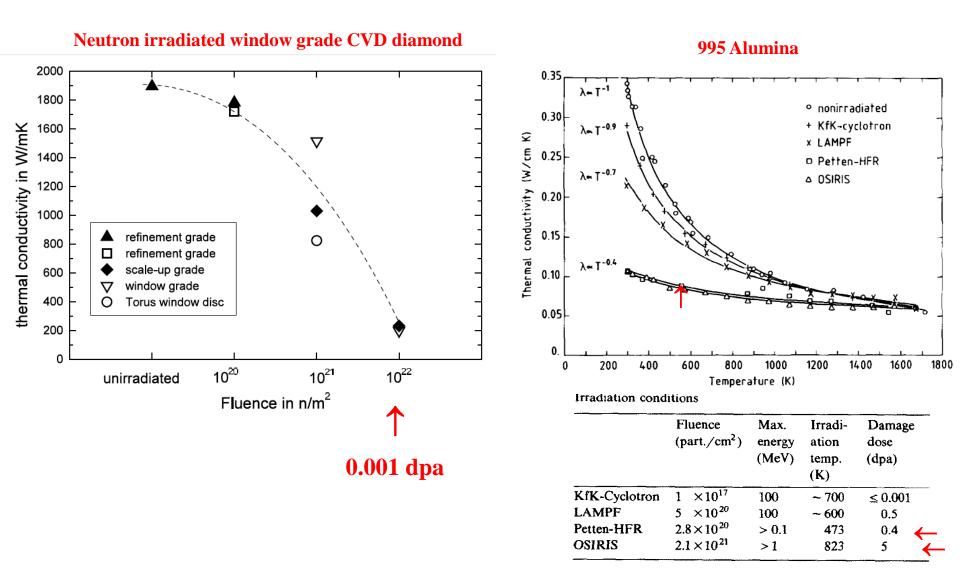
Need Remote Handling (even in JET) <u>In ITER RH is mandatory</u>

In ITER RH is mandatory

CMM entering the ITER vacuum vessel duct with a new cassette

- All maintenance and repairs remotely
- Also for 1st wall, NBI (CMM: Cassette Multifuctional Mover)

Maximum end of life appm transmutation products for alumina in ITER, DEMO, and PP, estimated from 1 MW/m² 1st wall loading (a wall loading of 0.5 MW/m² and 4700 h full power operation has been assumed for ITER) ^{1, 2}.


	Н	Не	С	Ν	Na	Mg	Si
ITER	8	14	17	1	2	12	0.2
DEMO	210	363	448	24	50	313	6
PP	394	682	842	46	93	589	11

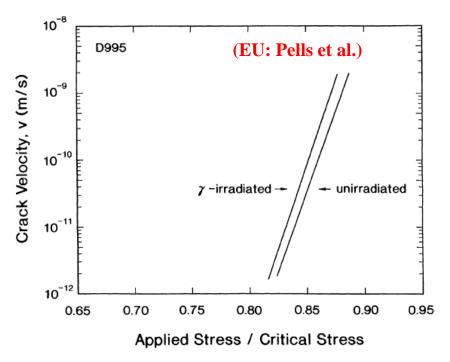
¹L.H. Rovner and G.R. Hopkins, 1976.

²G. Vayakis, E.R. Hodgson, V. Voitsenya, C.I. Walker, 2008.

In addition to H and He, note the large quantities of C, Na, and Mg

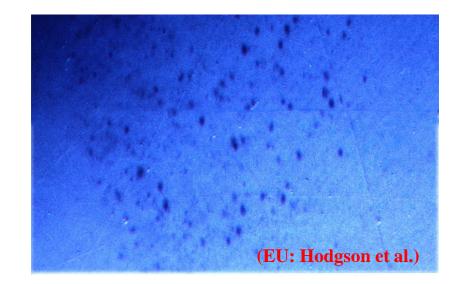
Thermal conductivity reduction

(EU: Heidinger et al.)


(EU: Rohde & Schulz)

Radiation enhanced effects on mechanical properties

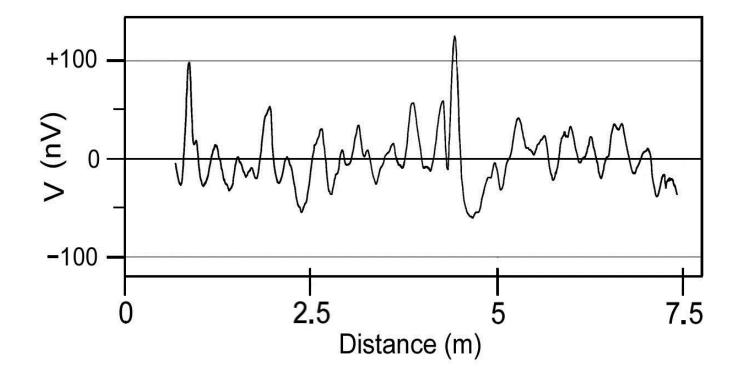
Sub-Critical Crack Growth modified by <u>γ radiation alone</u>


995 alumina \Rightarrow

x4 increase in crack velocity decrease in time-to-fracture (Even at 1.5 Gy/s, < 1 MGy)

RIED embrittlement and swelling induced by: *Radiation and E-field* ⇒

- At very low doses
- MGy and $\leq 10^{-4}$ dpa


TIEMF in MI cables

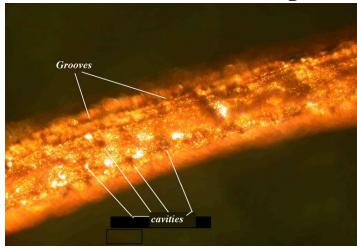
- Voltage generation along central conductor
- Depends on radiation and temperature gradient along conductor
- Experimentally difficult to separate Rad. and T effects
- More problematic than RIEMF

- TIEMF has now been studied in detail
- EMF (V) α T. No annealing up to 550 C
- Probably due to damage to wire during production

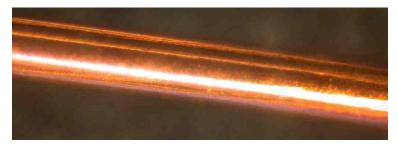
Typical TIEMF

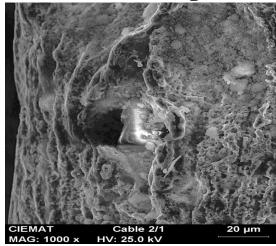
100s to 1000s of nV for Cu cored cables and 50C temperature difference

(EU Vila & Hodgson)


MI cable problem

Severe damage to Cu wire, also encrusted silica - manufacturing problem

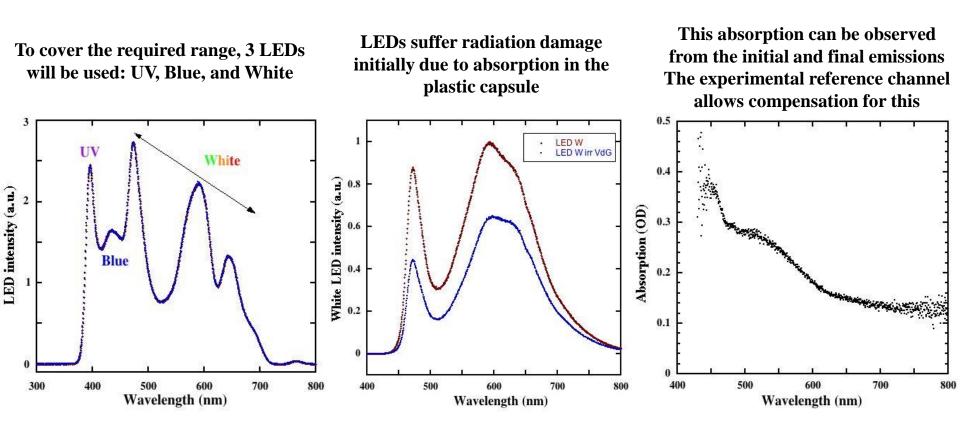

X-ray microphotograph


Optical microscopy of core ⇒ extreme surface damage

Equivalent Cu wire is "perfect"

SEM of damaged Cu core ⇒ incrusted silica grains

For "RITES" Cu is better. BUT for TIEMF SS to avoid damage


(EU: Vila & Hodgson)

Electrical behaviour for "well known" insulators

Material	Time (h)	Temp. (C)	Field (V/m)	Result
Porcelain	47	200	100	Structural failure
MgAl ₂ O ₄	5 to 150	1000	10 to 100	Increase conductivity then breakdown
MgO	150	1000	100	Increase conductivity then breakdown
Al ₂ O ₃	100	1000	1000	No increase No breakdown

F4E-OFC-358 (*CIEMAT 5*)

System will use LEDs for *in situ* measurement of absorption in scintillators and lenses

A. Moroño, M. Malo, I. Garcia-Cortes, J. Valle, F. Jimenez, P. Valdivieso, E.R. Hodgson CIEMAT

F4E-OFC-358 (CIEMAT 1)

July 2013: F4E framework service contract on radiation testing for ITER prototype components and systems awarded to SCK•CEN and CIEMAT

LOT2 (to start 2016): gamma irradiation tests on components required for diagnostics, H&CD, and RH. Will include some of the following:

Inductive magnetic coils and steady state magnetic sensors Pressure gauges, Bolometers, Neutron and gamma-ray detectors Electrical cables, looms, conduit, joint, feedthroughs and connectors. Photonic devices (waveguide, fibre, bulk optic, scintillator, mirrors, optical coating, window, integration sphere, polarizer, connector, joint-splice, index gel) Actuators and mechanical shutter mechanisms. Microelectromechanical systems Electronics and optoelectronic devices (laser, light emitting diode, charge coupled device, photomultiplier tube, photodetector). Sensors and calibration systems Thin-films and coatings. Adhesives, Seals. Electrical actuators Hydraulic components (actuators, seal, fittings and valves). Grease-less bearings. Power supplies. Position sensors (resolvers, proximity).Piezoelectric devices. Sensors (temperature, pressure) Electronic circuits for sensor read-out, data transmission and (de)multiplexing of signals, as well as local control functions. Power and I&C cables with associated remote handling compatible connectors and feedthroughs. Cameras and illumination tools. Optoelectronic, photonic, microelectromechanical devices, etc..

F4E-OFC-358 (CIEMAT 2)

CIEMAT (Research Centre for Energy, Environment, and Technology)

Over the years different experimental systems have been developed in the beam lines of a 2 MV Van de Graaff electron accelerator and a 60 keV ion implanter, as well as for a ⁶⁰Co gamma pool irradiation facility.

These allow one to study *in situ* numerous radiation enhanced and induced effects such as electrical, optical, and diffusion properties in relevant fusion insulating materials.

For this contract the ⁶⁰Co facilty will be used to examine the following scintillators, as well as lenses:

Manufacturer	Туре	Features		
ELIEN- Technologies	EJ301	liquid, flash point 70 °C (hazard concern)		
ELIEN- Technologies	EJ309	liquid, flash point 144 °C (hazard concern)		
ELIEN- Technologies	EJ299-33a	plastic, softening should be >70°C		
EUEN- Technologies/ Saint Gobin	EJ228-230/BC-418	plastic, softening point 70 °C		
Inrad Optics Detect	Stilbene and/or equivalent	single crystal, melting point 124 °C		

Although the tests are component oriented, they can also provide basic information on radiation effects in the materials