Structural Sensor & Technologies for TBM (ITER)

## Dra. Nieves Murillo Iñigo Lazkanotegi TECNALIA

Barcelona, 19th November 2015





# Who are we? Tecnalia Spirit & Mission



TECNALIA

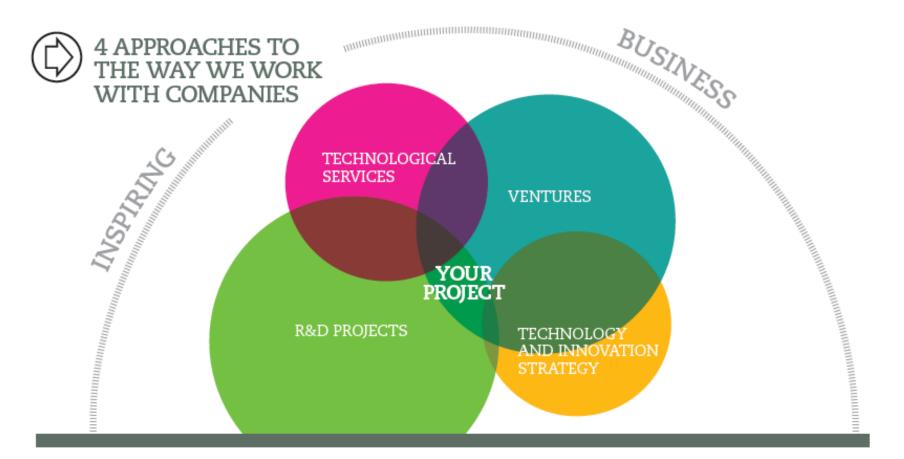
# Inspiring Business



TECNALIA is the first applied research centre in Spain and one of the most important in Europe with around 1.500 people on staff, 122€ millions turnover and more than 4.000 clients.

A unique commitment, an opportunity, a challenge.

To Transform knowledge into GDP. Identifying and Developing Business Opportunities. Expertise and Specialization in each market.






#### TECNALIA

#### MODEL

## TO GENERATE BUSINESS OPPORTUNITIES THROUGH APPLIED RESEARCH







Crear ideas, crear riqueza

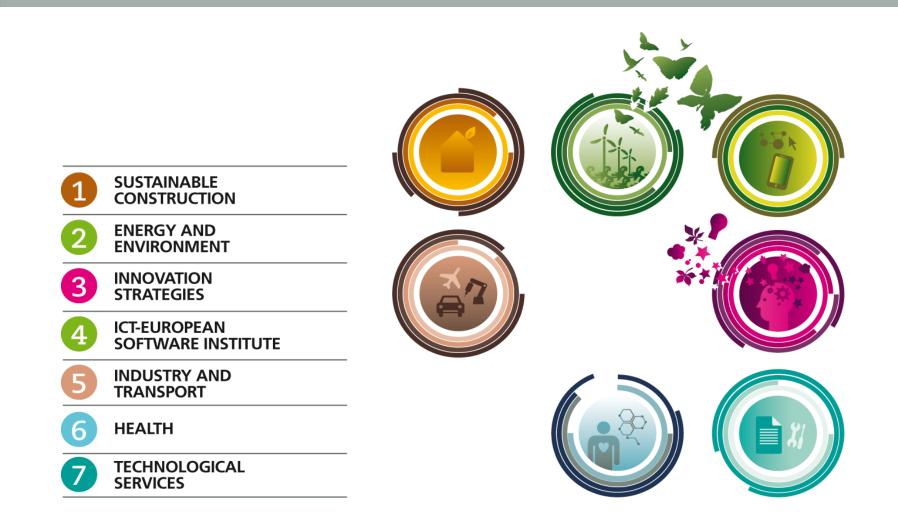
VII Programa Marco

53 patentes solicitadas

11 concedidas

3 licenciadas

1M € de ingresos por licencias Con participación en 31 NEBTs. 169 ..... Proyectos aprobados


34 ..... Proyectos liderados

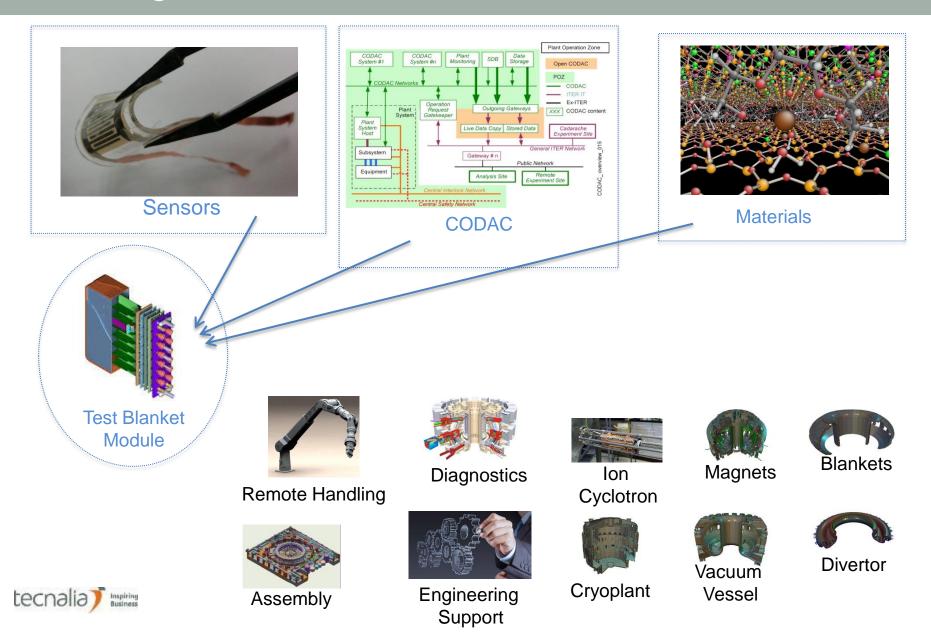
58,07 ..... millones de Euros



#### TECNALIA

#### Organized in 7 Business Divisions




We work from the experience and the expertise in each of the markets in which we operate, with an efficient and proactive attitude.

# What do we do?

# **Technologies**



## Technologies



## Technologies

Remote Handling R&D and Technological Solutions

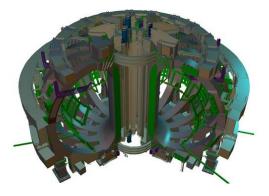




- ✓ Neutral Beam RH
- Engineering support activities for studies in general areas
- ✓ Design activities:
  - DTP2 extension and upgrades
  - Studies on transfer cask path













## Materials for Magnetic Environment R&D

- ✓ Closure welding
- ✓ DGEBA epoxy resin
- ✓ Cyanate ester
- Development of welding procedure
- ✓ NDE procedure
- ✓ Irradiation resistant resin





### Vacuum Vessel



- Stainless steel material procurement
- Local vacuum EB weld system development
- ✓ Weld distortion control of VV segment manufacture.
  - Design & development
  - Corrosion issues
  - Consultancy support to material procurement



## Technologies

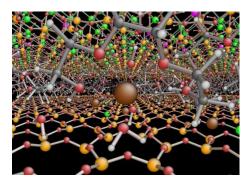
## ION CYCLOTRON H&CD antenna

- RF windows
- Faraday shield
- Characterisation of window materials
- Bonding methods
- Braze qualification /optimisation
- $\checkmark$  H<sub>2</sub> embritlement of Ti alloys
- ✓ Plating Ti
- ✓ Validation of thermal capability of FS protection bars





#### **Divertor**



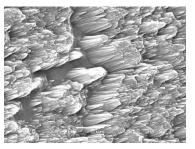

- CFRP for the inner vertical target prototype
- Characterisation of alternative CFC material
- Destructive examination of mockups
- ✓ High heat flux (HPPF/HOVF) test and TVC
- Manufacturing mock-ups
- Qualification of repair technologies



## Materials

EUROFER base materials and welds for TBM

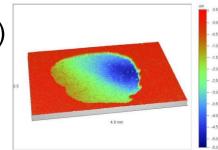



- Characterisation and validation of both materials and welds
- Testing design
- ✓ SiC-SiC brazing
- Heat flux and thermal fatigue test on CuCrZr
- ✓ CuCrZr with different materials joining development (HP/Brazing)
- ✓ Chemical, Morphological and Mechanical testing



## Engineering support

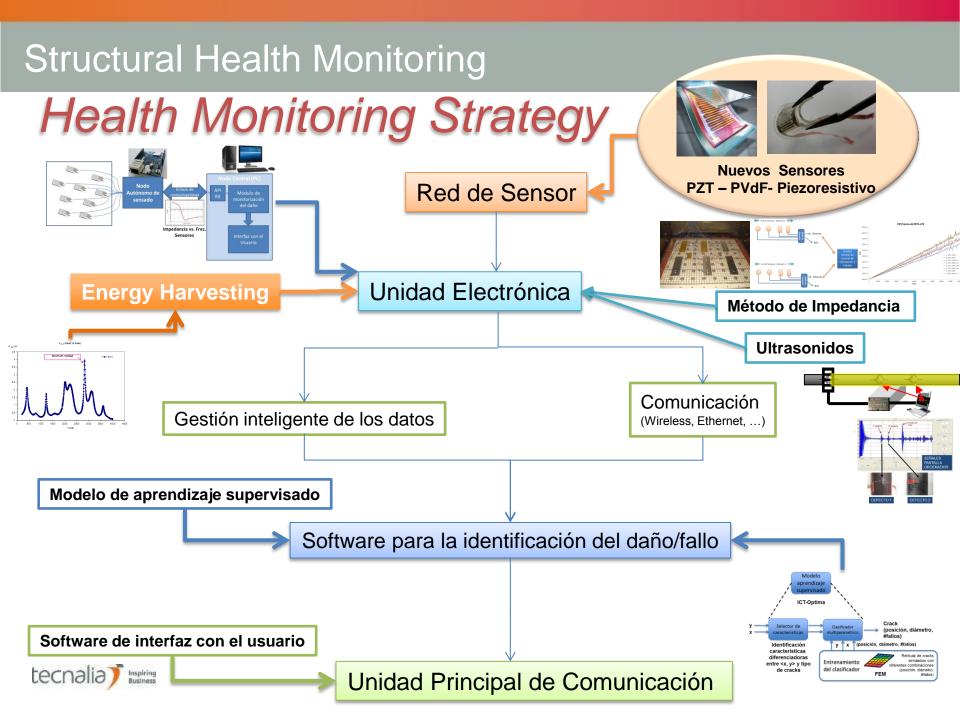



- Mechanical analysis (Stress analysis and support on components manufacturing
- Structural design criteria for in-vessel components





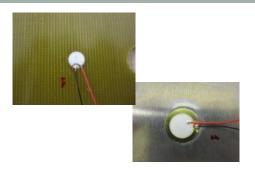
#### Plasma

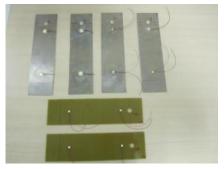

- Experimental Plasma-wall interaction
- Ion sputtering accelerated test (metals & ceramics)

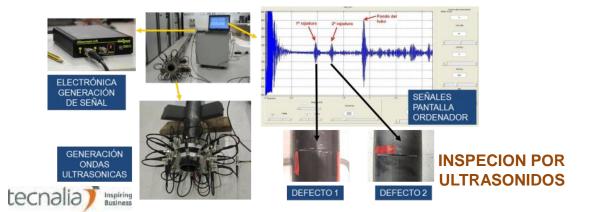




# What do we do? SHM Technologies





## Determinacion de la Salud Estructural - SHM

# Determinación de defectos y corrosión en líneas de transmisión y contenedores basados en tecnologías de sensores piezoeléctricos:

- Monitorización de defectos en materiales metálicos compuestos o plásticos incluyendo cableado.
- Sensores PZT ensayados bajo condiciones de T<sup>a</sup> y Humedad controlada.
- Diseño de sensores a medida
- Redes de sensores de bajo consumo con capacidad para la comunicación Wireless.
- Inspección por ultrasonidos de grandes longitudes de tuberías.
- Estrategias a medida en función de las necesidades de monitorización y la frecuencia de seguimiento de los sensores.
- Posibilidad de auto-alimentacion de las redes de sensores mediante estrategias de *energy harvesting*.









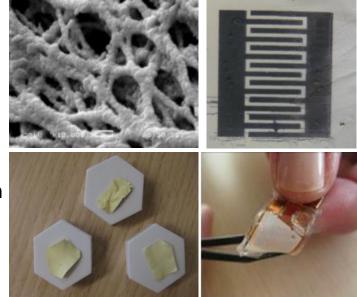


SENSOR PZT ULTRAFLEXIBLE

# Materials & Technology CERAMIC & POLYMERIC

- High sensitivity & fast response
- Frequency: High range of operation
- Low power consumption & cost
- ✓ Robustness

High integration into complex structuresWide range of geometries


# Capacity for

- ✓ Definition of specifications
- Active material design & fabrication
- ✓ Sensors/actuator design & fabrication
- ✓Component testing
- ✓ Prototype development



✓ System modeling

# Advantages



## High Temperature Piezoelectric Transducer

| MATERIAL                                                               |                                                   | T <sub>c</sub> (≌C) | T <sub>o</sub> (≌C) |
|------------------------------------------------------------------------|---------------------------------------------------|---------------------|---------------------|
| PZT                                                                    | PZT                                               | 350                 | 150-200             |
|                                                                        |                                                   |                     |                     |
|                                                                        | PZT-5a                                            | 365                 |                     |
|                                                                        | Piezocomposite PZT                                |                     | 180                 |
| Bismuth<br>Titanate<br>Bi <sub>4</sub> Ti <sub>3</sub> O <sub>12</sub> | Pz45                                              | 500                 |                     |
|                                                                        | Pz46                                              | 650                 | 500-550             |
|                                                                        | B8613                                             | N.A.                | 500                 |
|                                                                        | PzS90                                             | 670                 | 500                 |
|                                                                        | PzS96                                             | 920                 | 700                 |
|                                                                        | Modified Bismuth Titanate (Kezite K15)            | 600                 |                     |
| Lindo <sub>3</sub>                                                     | Lithium Niobate                                   | 1210                | 600                 |
|                                                                        | LNN based on LiNbO <sub>3</sub>                   |                     | 650                 |
| Lead<br>Metaniobate                                                    | Lead Metaniobate PbNb <sub>2</sub> O <sub>6</sub> | 540                 | 300                 |
|                                                                        | Modified Lead Titanate                            | 400                 |                     |
|                                                                        | Pz32                                              |                     |                     |
|                                                                        | Modified Lead Metaniobate                         | 570                 | 300                 |
|                                                                        | K-81, K-83                                        |                     |                     |
| Galium Orthophospate GaPO <sub>4</sub>                                 |                                                   |                     | 700                 |
| Aluminium Nitride AIN                                                  |                                                   |                     | 1100                |
| BMT-PT                                                                 |                                                   | 450                 |                     |
| BS-PT                                                                  |                                                   | 400                 |                     |



# What do we do?

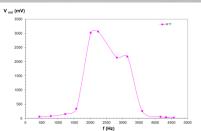
# **Energy Harvesting**



## ENERGY HARVESTING (I)

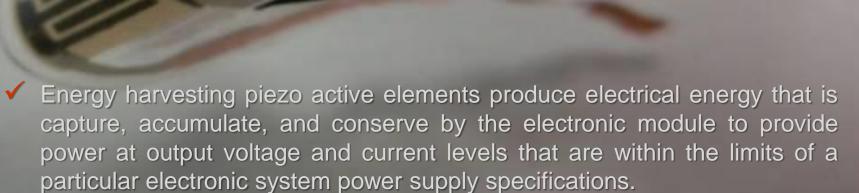
## PIEZO ACTIVE MATERIALS

- Design of Harvest piezoactive strategy.
- Piezoelectric Material development.
- Fabrication of piezo-actuator for the power required.
- Definition of the Harvest unit to collect energy maximizing the efficiency as function of the mechanism (vibration, environment, movement, pressure, ...)
  - Power output from few  $\mu$ W to 900  $\mu$ W as function of frequency, Force and sensor configuration.


Piezoelectric materials and systems for harvest the energy






## ENERGY HARVESTING (II)

#### VOLTAGE GENERATION

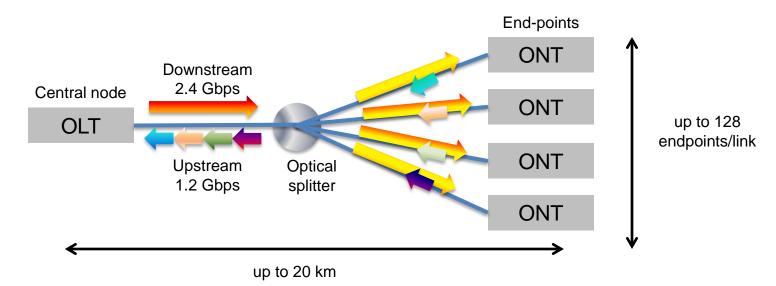


 $v_{ad}$  (Peets to Peet)

tecnalia



**Electronic Module** 


# What do we do?

# CODAC



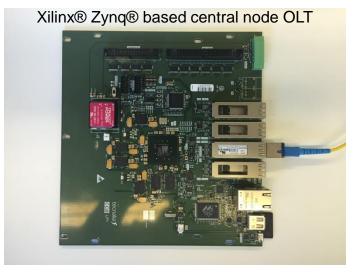
### PON based Monitoring and Control Communication System

#### Passive Optical Networks (PON)



- Point to Multipoint optical to the end-point network
- Passive (unpowered) distribution network using splitters
- A single fiber serves up to 128 end-points
- Donwstream signals are broadcast @ 2.4Gbps
- ✓ Upstream signals are multiplexed and combined (TDMA) @1.2Gbps
- Extensively used in access networks (FTTH)




### PON based Monitoring and Control Communication System

#### Why PON?

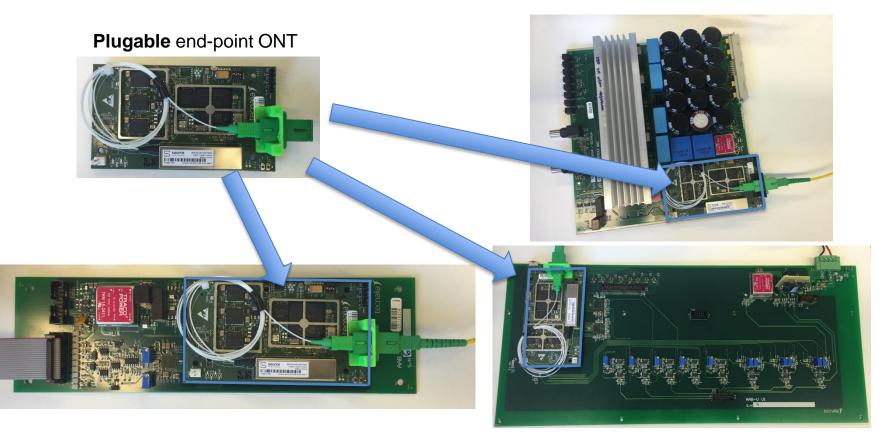
- Point to Multipoint architecture fits with many monitoring and control applications
- ✓ All information sent by central node is received simultaneously by all end-points
- ✓ If and end-point crashes the network is not affected
- Simple distribution network with passive components
- Only one fiber from central node to splitter to serve up to 128 end-points (Tx and Rx)
- ✓ Up to 20 km reach
- Few nanoseconds Synchronization accuracy
- ✓ High-speed: 2.4 Gbps downstream / 1.2 Gbps upstream



#### TECNALIA's PON based Monitoring and Control Communication System



Xilinx® Artix-7® based end-point ONT




- Existing PON devices and protocols have been designed to replace copper (ADSL) in access networks for triple play services (voice, internet data and video)
- Monitoring and Control systems have different requirements: synchronization, reliability, determinism, etc. => NEW HARDWARE AND PROTOCOLS NEED TO BE DEVELOPED
- Tecnalia has developed FPGA based hardware and protocols for both OLT (central node) and ONTs (end-points)



### PON based Monitoring and Control Communication System

#### **TECNALIA's PON based Monitoring and Control Communication System**



These ONTs developed by Tecnalia have been designed to provide PON based communication to different application specific hardware



#### PON based Monitoring and Control Communication System

#### First success story

#### Modular Multilevel Converter

- Main cabinet includes Central Communications node (OLT) and optical splitter
- 3 different types of hardware devices for monitoring and control are equiped with communications endpoints (ONTs):
  - 48 Submodules with voltage and temperature sensors and 6 MOSFETs synchronously switching as commanded by the Central Node.
  - 6 System Current Supervisor units
  - 1 System Voltage Supervisor unit

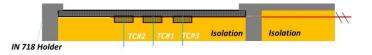


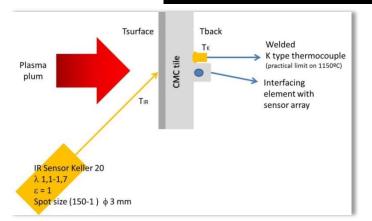


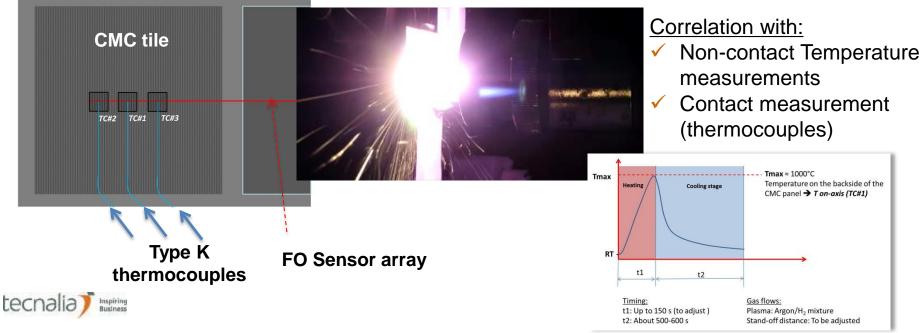
## What do we do?

# Fibre Optic Operational Testing




## FIBRE OPTICS HIGH TEMPERATURE MONITORING SYSTEM


#### ESA CONTRACT No. 4000114501/15/NL/RA/zk


Prime contractor: EMBEDDED INSTRUMENTS AND SYSTEMS, S.L.

#### Role of TECNALIA (Subcontractor):

- Assembly to interfacing elements (CMC tile).
- Functional testing under relevant service conditions for TPS applications (max. service temperature ~1100°C)









# What do we do?

# REFERENCES



#### ULTRASONIC GUIDED WAVES BASED SHM SYSTEM

USER INTERFACE

DATA

ANALITICS SW

**CONTROL SW** 

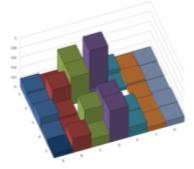
ULTRASONIC HARDWARE

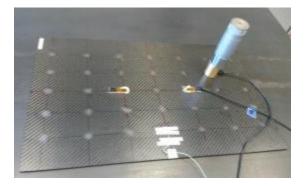
**GUIDED WAVES** 

ULTRASONIC

TRANSDUCERS

DISPERSION


CURVES / US SIMULATION Tecnalia has developed a n SHM system for aeronautic structures based on guided waves able to:


- Detect damages produced by impact and fatigue
- · Detect bending
- Calculate Damage Index or Bending Index by using SDC technique

Characteristics:

- The damages have been evaluated in plate composite structures by using Accelent single sensor and piezoelectric materials.
- The system is composed by a HW that controls the emission and reception parameters and a SW that calculates de Damage Index (DI) or bending Index comparing the signal before and after the damages.
- Dynamic pattern generation SW has been developed to compensate temperature effect in measures.
- Data analytics and IA techniques are applied to calculate Damage index

500 kHz - AMPLITUDES







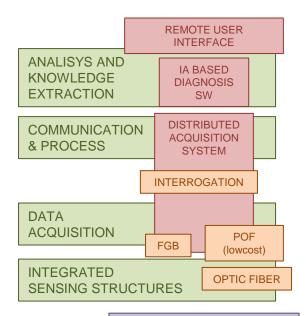


ANALISYS AND

COMMUNICATION

DATA ACQUISITION

SENSING STRUCTURES


& PROCESS

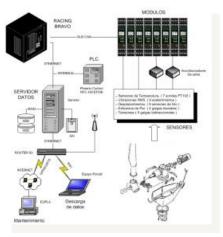
**INTEGRATED** 

**KNOWLEDGE EXTRACTION** 

#### **OPTIC FIBER BASED SHM**

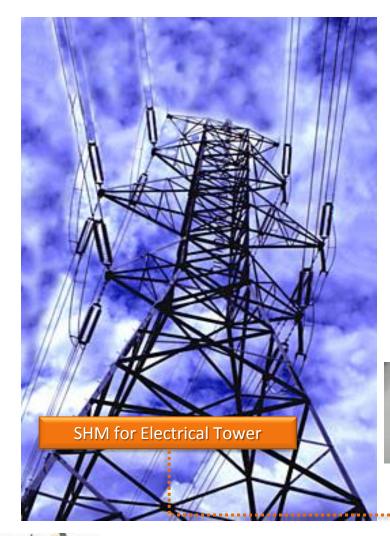





EXPERTISE ON COMPOSITE MATERIALS CHARACTERIZATION & PROCESSESS Applications:

- Ice detection system using non-intrusive sensors
- Vibration measurement, strain monitoring.
- Instrumentation for temperature gradient in gearboxes
- Prediction system for torque determination, etc...

Characteristics:


- Integration of wired and wireless sensors in extreme conditions: FBG or POF networks,
- Integration of the system in composite material structure with adhoc conectors
- Control-communication-signal processingfiltering-monitoring
- Local data pre-processing through embedded computing
- Monitoring system can be implemented on the composite structure during the manufacturing procedure and will monitor de assemblies status through its entire life.







#### **MIPMADE – Increasing European Resilience Electrical Tower SHM**



tecnalia

Inspiring Business

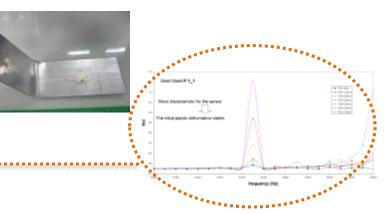
#### Company

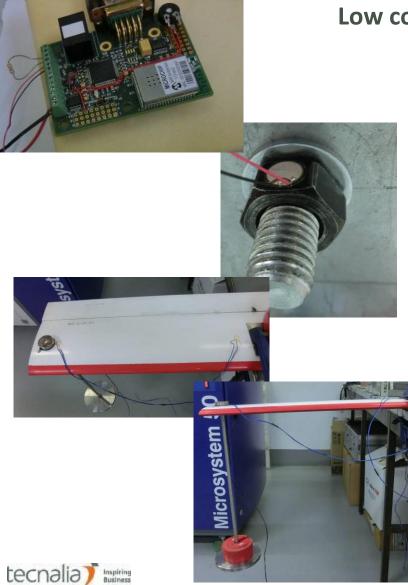
ISDEFE

#### Description

Piezoelectric sensor network for electrical tower structural integrity monitoring.

#### Technologies


Impedance based SHM network based on PZT sensor.


#### Our main role

Sensor design , integration and testing under field conditions.

#### Benefits obtained in facts

Low cost solution Easy to integrated in long areas to guarantee the structural integrity of electrical tower.





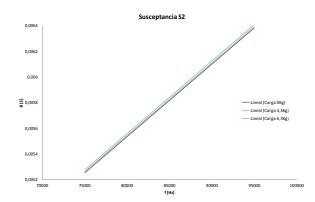
#### Low cost Piezoelectric sensor network for UAVs

Company INDRA

#### Description

PZT sensors network for damage identification and the health monitoring. of components.

#### **Technologies**


Impedance method based SHM network based on PZT sensor.

Our main role

Sensor design , integration and testing under field conditions.

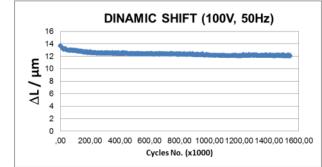
#### Benefits obtained in facts

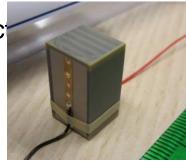
Low cost solution . Low power consumption sensor network.



# What do we do?

# **Smart Actuators**



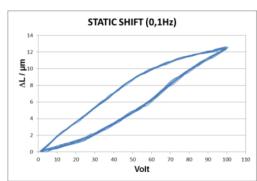


# Piezoelectric Actuators

Positioning and actuation systems of mechanical struc

Multilayer piezo stack actuators for:

- ✓ Static operation.
- ✓ Dynamic operation.






# **Benefits**

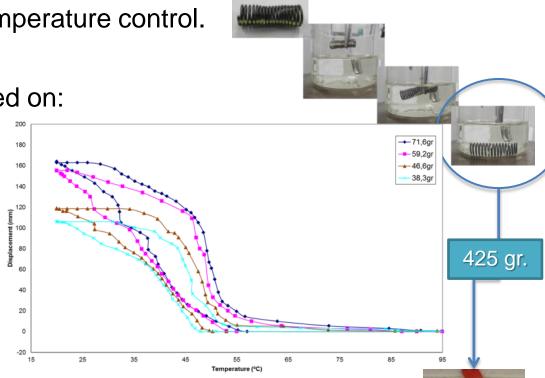
- Superior lifetime even under extreme conditions.
- Very large operating temperature.
- High humidity resistance.
- ✓Temperature stability.
- ✓ High stiffness

tecnalia

✓ High repeatibility






## SMA Actuators

✓ Actuation applications by temperature control.

Multishape SMA actuators based on:

✓ Wires

Springs



# **Benefits**

Superior lifetime even under extreme conditions.
Very large operating smart structures.

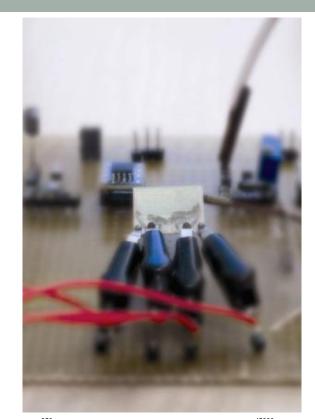
✓ High resistance.

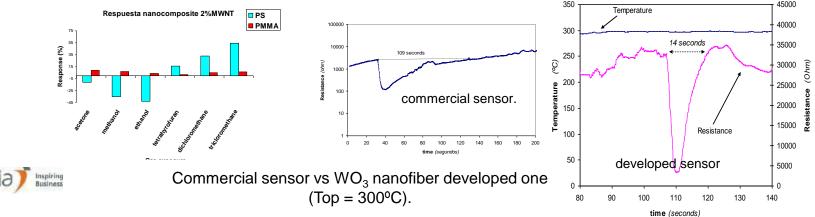
Temperature stability and cycles operation.



# What do we do?

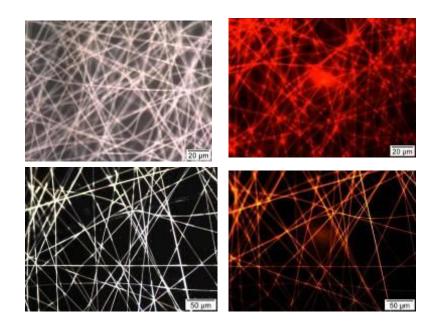
# **Other Sensors Technologies**





## Gas Sensors

- Lower detection limits
- ✓ Faster response time
- ✓ Faster recovery time
- Low cost

tecna


- Extreme T operation (market niche for monitoring combustion systems no commercial solutions available)
   Resistive sensors
  - $\rangle$  Ceramic sensors: SnO<sub>2</sub>, ZnO, WO<sub>3</sub>, Nb<sub>2</sub>O<sub>3</sub>, MoO<sub>3</sub>, CeO<sub>2</sub> and Ga<sub>2</sub>O<sub>3</sub>.
  - > Mixed oxides:  $Cr_2O_3$ -Ti $O_2$  and  $WO_3$ -Ti $O_2$ .
  - > Polymeric sensor with CNTs, Graphene, ...





## Luminescent optosensor

- ✓ Detection of Chemical
- ✓ Advantages
- High sensibility
- Low limit of detection
- Multidetection capability combining different materials
- Robust
- Low cost and simple to use



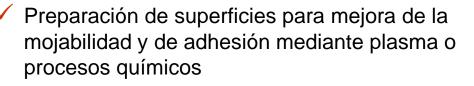


- ✓ Luminescent nanofibers based on Ru-probe.
  - Blue led interrogation with red answer
  - Higher sensitivity than thin films or coatings.



# DESARROLLOS EN TINTAS FUNCIONALES

# TINTAS




#### ✓ Tintas conductoras: Ag y Cu

- Tintas funcionales:
- Fluorescentes/Fosforescentes/Luminiscentes
- Sensibles a distintos estímulos: pH, temperatura
- Superhidrófobas/superhidrófilas
- Capacidad autoreparante
- ✓ Fluidos térmicos:
- Introducción de Phase Change Materials (PCMs) en diversos fluidos
- ✓ Base tintas:
- Agua
- Ethylene- or tri-ethylene-glycols, MEK, etanol y otros alcoholes
- Aceites y otros lubricantes
- Soluciones poliméricas

### APLICACIONES

- Circuitos flexibles
- Electrodos
- Textiles
- Hologramas seguridad
- Superficies sobre las que trabajar:
  - Poliméricos
  - Vidrios
  - Cerámicas
  - Textiles
  - Papel





- SUSTRATOS
- Métodos de deposición:
  - ink-jet printing
  - screen-printing
  - spinner-sprayer
  - microcontact printing

## Recubrimientos-Films conductores transparentes base Grafeno

Dispersiones nanoestructuras carbonosas, especialmente grafeno
 Recubrimientos mediante spin-coating, dip-coating, spray-coating
 Ink-jet printing





✓ Colaboración con la Univ. Barcelona, grupo de Electrónica

✓ Aplicaciones:

tecnal

- Films conductores transparentes
- Electrodos : eHUD (Head-Up Display), Sensores, diodos orgánicos emisores de luz (OLEDs)

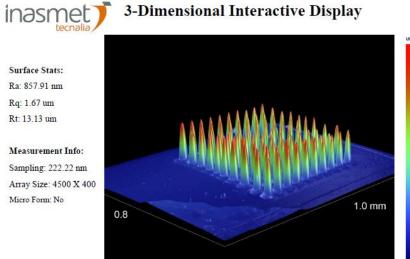
## Lentes Reconfigurables basadas en microfabricación

9.0

8.0

6.0 5.0

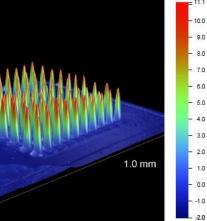
4.0

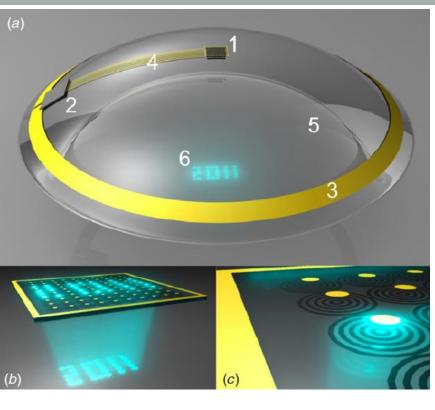

3.0

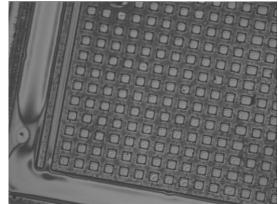
2.0

1.0 0.0

## Materiales Inteligentes


Swelling and de-swelling under several stimuli: pH, temperature, humidity, etc.. Changes in the refractive index or in the curvature of the lenses





Title: 011846-002 Note: Mapa Lente Humeda



**3-Dimensional Interactive Display** 







# What do we do?

# Physical surface treatment



# Surface technologies:

## ✓ DRY SURFACE TREATMENTS & COATINGS TECHNOLOGY

### ✓ WET SURFACE TREATMENTS & COATINGS TECHNOLOGY



#### ADVANCED SURFACES AND COATINGS

#### Dry treatments



**MW-Plasma Surface tratment** 



**PVD-Magnetron Sputtering** 



Ion Gun Surface treatment



Plasma spraying (APS, HFPD)



**Plasma thermochemical treatment** 



# What do we do?

# **Materials**



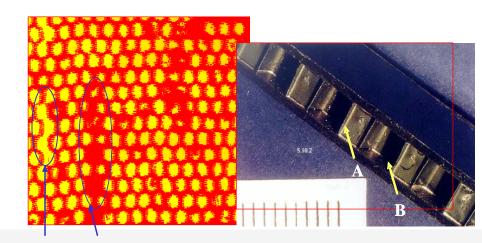
## Materials for advanced systems

- Uniaxial Hot-pressing
  - Manufacturing of high-performance ceramics and ceramic composites (SiC, B<sub>4</sub>C, AIN, Si<sub>3</sub>N<sub>4</sub>, BN & Al<sub>2</sub>O<sub>3</sub>, based composites)
- Advanced ceramics processing
  - Ceramic and metallic foams
  - Pressureless sintering of  $B_{4}C$  for ballistic applications
  - Multilayer Ultra High Temperature Ceramics (UHTCs) based on ZrB<sub>2</sub>
- SHS (Self-propagated High-temperature Synthesis)
  - Synthesis of ceramics (carbides, borides, oxides, nitrides, hydrides) and intermetallic (Ti, Al, Ni, Si and/or Fe based) in form of powder, porous structures and/or fully dense components.
- PIM (Powder Injection Molding) and micro-PIM
  - Al<sub>2</sub>O<sub>3</sub> based ceramics, porcelains, ferrites, carbon steels and stainless steels and Ni based intermetallics.
- Dielectric processing of materials (microwave, RF, Induction)
  - Reactive synthesis, drying, firing/sintering.
  - Firing / melting of glass
  - Out of autoclave composite curing
- Micro/Nano material processing
  - Nano-reinforced ceramics (CNF-ZrO<sub>2</sub>)
  - Structural functionalization carboneous structure (CNT, graphene)
  - UV of thermal NIL for Nanotexturing of functional surface
  - Micro & nanofibers by electrospinning for sensors and filters
- Coatings
  - Thermal barriers / protective coatings (impact/environment/...)
  - Development of thermal spraying techniques (APS, HVOF, OFI...)
  - Electroless coating of Nano-particles









## JOINING MATERIALS FOR HIGH TEMPERATURE

\$21 .6



# Technology and knowledge

- Sandwich structure for different metallic alloys: Base Nickel alloys, Base Titanium alloys Dissimilar sandwich structures (core and skin)
- Development of joints for High temperature applications.
- Metal-ceramic & ceramic-ceramic
- Development of materials as filler metals for high temperature applications.







## **SMARTEES**

# TPS technology sample assembly smartees

# Ceramic –Ceramic joints for ultra high temperature applications

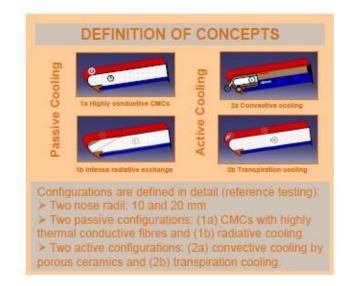
- Development of joining routes for
   C/SiC ,SiC multilayers, ZrB2 for
   ultra high temperatures
- Development of new filler materials for ultra high temperatures
  - Definition of joining processes conditions for the best performance and avoiding damaging ceramic materials
- Joinings for creating a TPS material

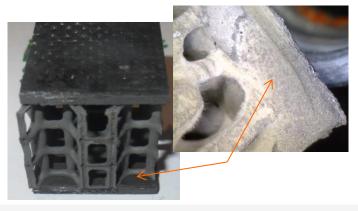


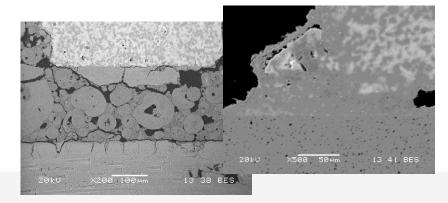




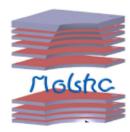



## THOR


tecnalia


Inspiring

# Joining of CCM to ceramic foam and lattice structures by different joining processes for high temperature applications


- Development of joining routes for Monolithic SiC and SiC/SiC to SiC foam
- Different type of filler materials developed for this kind of joinings, as modificated adhesives, resins or filler alloys.
- Proccess adecuated to different kind of foam structures with different geometry and properties







## MOLSTRA

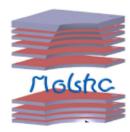


## Development of moulds by brazing process.

Moulds by stratoconception

<u>Objective</u>: Moulds for High Pressure casting

- Selection of the base materials and filler metals.
- Definition of the process and parameters for joining
- Validation of the process by melting 1000 pieces.
- Quality control after tests: planarity and non










## MOLSTRA



## Development of moulds by brazing process.

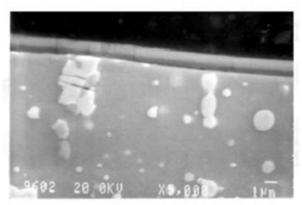
Moulds by stratoconception

<u>Objective</u>: Moulds for High Pressure casting

- Selection of the base materials and filler metals.
- Definition of the process and parameters for joining
- Validation of the process by melting 1000 pieces.
- Quality control after tests: planarity and non










## EXTREMAT: new materials for extreme enviroments

#### **Objective:**

- New materials for heat sink, radiation resistance, chemical and technologies application, for manufacturing.
- Developmento of MMC's with nannoperformance



SEM micrograph of MoS<sub>2</sub> film on steel





#### www.tecnalia.com

# Thanks

nieves.murillo@tecnalia.com iñigo.lazkanotegi@tecnalia.com

tecnalia

Inspiring Business