

Status of ITER HCLL and HCPB Test Blanket Systems instrumentation development

P. Calderoni (F4E)

Seminario Cientifico-Industrial ITER Monitoring & Control instrumentation and diagnostics B_Tec/IREC, Barcelona, Nov 19, 2015

EU TBM program mission

The mission of the EU TBM program is to test and validate during ITER operation the HCLL and HCPB DEMO tritium <u>breeding blanket</u> concepts

DEMO design is presently being update by EUROFUSION Reference parameters based on the EFDA Power Plant Conceptual Studies (PPCS)

P. Calderoni, Status of ITER HCLL and HCPB TBS instrumentation

BB function: tritium self-sufficiency

BB function: power extraction

P. Calderoni, Status of ITER HCLL and HCPB TBS instrumentation

System requirements

Any Breeding Blanket (BB) consists of:

- ➢Li bearing breeding material
- neutron multiplier
- structural material
- ➤ coolant

Any acceptable combination has to be satisfactory with respect to:

safety

HCLL-DEMO reactor (2007, CEA)

P. Calderoni, Status of ITER HCLL and HCPB TBS instrumentation

Concept studies (and associated R&D) on breeding blankets in the world (since the 80's)

Blanket type	WCLL	HCLL	НССВ	WCCB	LLCB	DCLL	Molten Salt	Li-V	Adv. HCCB	SCLL	Li Evap.
Structural material	RAFM	RAFM	RAFM	RAFM	RAFM	RAFM + ODS	Ferritic Steel	V alloy (+ insulation)	SiCf/SiC	SiCf/SiC	W alloy
Breeder	Pb-16Li (liquid)	Pb-16Li (Liquid)	Li ₄ SiO ₄ , Li ₂ TiO ₃ (pebbles)	Li ₂ TiO ₃ (pebbles)	Pb-16Li (liquid) + Li ₂ TiO ₃ (pebbles)	Pb-16Li (liquid)	FLiBe (liquid)	Li (nat.)	Li ₂ TiO ₃ , Li ₂ O (pebbles)	Pb-16Li (liquid)	Li (nat.)
Neutron Multiplier			Be (pebbles)	Be (pebbles)			Be (pebbles)		Be (pebbles)		
Coolant	H ₂ O (15 MPa)	He (8 MPa)	He (8 MPa)	PWR and Supercritical H ₂ O (15.5 - 25 MPa)	He (8 MPa)	He (8 MPa) + Pb-16Li	FLiBe (liquid)	Li (nat.)	He (10 MPa)	Pb-16Li	Li (nat.) evap.
						300 - 480 (He)					
T coolant	265 - 325	300 - 500	300 - 500	290 - 520	325 - 500	460 - 700 (PhLi)	450 - 550	330 - 610	600 - 900	765 - 1100	1100 - 1200
T Structural material	265 - 550	300 - 550	300 - 550	290 - 550	300 - 550	300 - 550	max. 550	330 - 700	700 - 1150	765 - 1000	max. 1300
Reactor concept studies	PPCS-A	PPCS-AB	PPCS-В	SSTR	DEMO-S	ARIES-ST APEX PPCS-C	FFHR-2	ARIES-RS	DREAM A-SSTR2	ARIES-AT TAURO	APEX- EVOLVE
&			*):		6						
R&D		*1	*							$\langle \rangle$	
			* •*			*3					

3rd ITER Council (2008) established the TBMs program in ITER

Th

The TBM project provides test blankets to test and validate design concepts of tritium breeding blankets

relevant to a powerproducing reactor.

- ITER Project Requirements

P. Calderoni, Status of ITER HCLL and HCPB TBS instrumentation

TBM Systems will test technological solutions

- <u>DEMO concept studies and basic R&D</u> are not sufficient to decide on selection/ranking of concept(s)
- ⇒ Need for ROX (Return On eXperience)
 - Performances under tokamak actual and multiloadings conditions (B, n, heat flux)
 - Implementation of regulatory obligations (e.g. ESPN, waste disposal, etc.)
 - Methodology for integration of new materials/fabrication in C&S
 - Involvement of Industry, cost
 - Availability (failures database)
 - The Test Blanket Module (TBM) Program in ITER is organizing the implementation & test of blankets <u>technological solutions</u>:
 - Test in tokamak (ITER)
 - Regulatory obligations (ITER nuclear plant, ASN)
 - Involvement of Industry; project budgetary constraints; etc.

Concepts selected for the TBM Program in ITER

European TBI	M Progra	m										
Blanket type	WCLL	нсі	L H(ССВ	WCCB	LLCB	DCLL	Molten Salt	Li-V	НССВ	SCLL	Li Evap.
Structural material	RAFM	RAF	M RA	4FM	RAFM	RAFM	RAFM + ODS	Ferritic Steel	V alloy (+ insulation)	SiCf/SiC	SiCf/SiC	W alloy
Breeder	Pb-16Li (liquid)	Pb-1 (Liqu	6Li Li ₄ id) (pel	SiO ₄ , TiO ₃ obles)	Li ₂ TiO ₃ (pebbles)	Pb-16Li (liquid) + Li ₂ TiO ₃ (pebbles)	Pb-16Li (liquid)	FLiBe (liquid)	Li (nat.)	Li ₂ TiO ₃ , Li ₂ O (pebbles)	Pb-16Li (liquid)	Li (nat.)
Neutron Multiplier			(pel	Be bbles)	Be (pebbles)			Be (pebbles)		Be (pebbles)		
Coolant	H ₂ O (15 MPa)	He (8 M	e I Pa) (8 I	He MPa)	PWR H ₂ O (15.5 MPa)	He (8 MPa)	He (8 MPa) + Pb-16Li	FLiBe (liquid)	Li (nat.)	He (10 MPa)	Pb-16Li	Li (nat.) evap.
T coolant	265 - 325	300 -	500 300	- 500	290 - 520	325 - 500	300 - 480 (He) 460 - 700 (PbLi)	450 - 550	330 - 610	600 - 900	765 - 1100	1100 - 1200
T Structural material	265 - 550	300 -	550 300	- 550	290 - 550	300 - 550	300 - 550	max. 550	330 - 700	700 - 1150	765 - 1000	max. 1300
TBM Leaders		ं	*		•	•						
	of			Po	tentially t second p of ITER c	ested hase op.						

Outline

Mission of the EU TBM Program in ITER

The mission of the TBM program is to **test** and **validate** during ITER operation tritium breeding blanket concepts for application to fusion energy systems, with focus on DEMO.

This is achieved by:

- Providing a test environment (= the TBM) that reproduces operating conditions foreseen in the DEMO Breeding Blanket (BB)
- Providing systems (Helium, Tritium, PbLi) to establish the conditions above that adopts technologies relevant to the DEMO BB, when compatible with ITER operational requirements
- Developing and validating predictive modeling tools that are essential for the design of the DEMO BB;
- Contributing to the understanding of the **licensing process** for the construction and operation of a tritium breeding nuclear system involving a Nuclear Regulator.

	HCLL (He-Cooled lithium-Lead)	HCPB (He-Cooled Pebble-Bed)
Structural material	EUROFER97	(RAFM steel)
Coolant	Helium (8 MP	a, 300-500°C)
Tritium breeder, Neutron multiplier	Liquid: Pb-16Li	Solid pebbles: Li ₂ TiO ₃ / Li ₄ SiO ₄ , Be
Sub-systems	HCS, CPS, TES, PbLi loop	HCS, CPS, TES

The HCLL and HCPB TBM Systems (TBS)

P. Calderoni, Status of ITER HCLL and HCPB TBS instrumentation

In order to perform a comprehensive experimental campaign under the different ITER operating conditions 4 TBMs will be deployed for each DEMO breeding blanket concept:

- Electro-Magnetic (EM) TBM (plasma H-He phase)
- Neutronic (NT) TBM (plasma D and short-pulse DT phases)
- Thermo-mechanic and Tritium control (TT) TBM (DT phase)
- Integral (IN) TBM (DT phase)
- All TBMs are designed with a common set of instruments participating in control functions for pressure, temperature and strain
- Additional sensors are deployed on each TBM to perform specific experiments in **fulfilment of** the program scientific mission (neutronics, thermo-mechanics, MHD, EM response, tritium control and management) tailored to ITER operating conditions
- Sub-system are fully instrumented at the initial installation (not including TAS and NAS)

Outline

P. Calderoni, Status of ITER HCLL and HCPB TBS instrumentation

System/ Subsystem	Temperature	Pressure	Flow Rate	Level	Other	Total
HCS (PC)	3	3	2	0	0	8
HCS (CVCS)	4	5	4	0	0	13
CPS	19	8	3	0	5	35
PbLi Loop	15	6	8	2	7	38
TRS (PC16)	1	3	2	0	2	8
TRS (B14)	2	6	2	0	4	14
HCLL	44	31	21	2	18	116

Temperature

Endress-Houser Tc for 8 Mpa helium (HELOKA)

K-type thermocouples inserted in thermowells.

For safety (and possibly interlock) sensors digital switches are being integrated in the Preliminary Design. For conventional sensors head mounted voltage to current converters are considered for higher accuracy, but qualification for Port Cell 16 conditions (radiation, EM noise) is on-going as part of development activities. Heating elements not yet considered in the analysis.

System/ Subsystem	Temperature	Pressure	Flow Rate	Level	Other	Total
HCS (PC)	3	3	2	0	0	8
HCS (CVCS)	4	5	4	0	0	13
CPS	19	8	3	0	5	35
PbLi Loop	15	6	8	2	7	38
TRS (PC16)	1	3	2	0	2	8
TRS (B14)	2	6	2	0	4	14
HCLL	44	31	21	2	18	116

Siemens differential pressure sensor for 8 Mpa helium (HELOKA)

Pressure

Diaphragm pressure transmitters on tap lines (capillaries) for temperature control. Comparison of performance of sensors based on ceramic and metallic diaphragm and design and qualification of electronics to environmental conditions are ongoing.

For measurement of the hydraulic pressure of Pb-16Li the pressure taps are filled with an incompressible intermediate liquid - reference from Pb-Bi systems, eutectic sodiumpotassium molten salt (Na-22K). Design optimization and experimental validation are ongoing.

Gefran Pb-16Li senosrs tested in IELLLO (ENEA)

System/ Subsystem	Temperature	Pressure	Flow Rate	Level	Other	Total
HCS (PC)	3	3	2	0	0	8
HCS (CVCS)	4	5	4	0	0	13
CPS	19	8	3	0	5	35
PbLi Loop	15	6	8	2	7	38
TRS (PC16)	1	3	2	0	2	8
TRS (B14)	2	6	2	0	4	14
HCLL	44	31	21	2	18	116

Flow rate

Reference technology for conventional sensors for helium and Pb-16Li is Coriolis flow meter. Performance validation is ongoing.

Differential Pressure flow meters now considered as safety sensors (simple, reliable).

Coriolis mass flow meter operating principle involves **inducing a vibration of the flow tube** through which the fluid passes, which provides the rotating reference frame which gives rise to the Coriolis effect.

Sensors **monitor changes in frequency, phase shift, and amplitude** of the vibrating flow tubes and relates to mass flow rate and density of the fluid.

Feasibility and optimization for Pb-16Li is part of development activities.

Main advantages:

- **measure mass flow** directly, independent of operating temperature, pressure, or composition
- not affected by EM noise.

System/ Subsystem	Temperature	Pressure	Flow Rate	Level	Other	Total
HCS (PC)	3	3	2	0	0	8
HCS (CVCS)	4	5	4	0	0	13
CPS	19	8	3	0	5	35
PbLi Loop	15	6	8	2	7	38
TRS (PC16)	1	3	2	0	2	8
TRS (B14)	2	6	2	0	4	14
HCLL	44	31	21	2	18	116

Liquid metal level

Radar level sensor technology (based on high frequency microwaves) is selected as reference option.

The sensor emits a microwave signal and monitors its reflection from the liquid metal surface. The distance is determined based on the time of flight.

Sensitivity and measurement range depend on the shape of antenna but the sensor response is not affected by dust or condensation.

COTS sensors are available and experimental validation is planned as part of development activities.

Vegaflex 86 probes installed on IELLLO (ENEA)

System/ Subsystem	Temperature	Pressure	Flow Rate	Level	Other	Total
HCS (PC)	3	3	2	0	0	8
HCS (CVCS)	4	5	4	0	0	13
CPS	19	8	3	0	5	35
PbLi Loop	15	6	8	2	7	38
TRS (PC16)	1	3	2	0	2	8
TRS (B14)	2	6	2	0	4	14
HCLL	44	31	21	2	18	116

Other sensors relate to the measurement and control of the concentration of H isotopes and impurities in fluid streams (in addition to TAS).

- Tritium concentration in Pb-16Li next slide
- H2 and impurities concentration in CPS: reference design based on mass spectrometer coupled with infrared spectroscopy. An alternative is a system based on a gas chromatography coupled with a humidity sensor. Both options are being tested as part of development activities.
- Control of H2 concentration in helium purge streams (TRS and TES): reference design based on COTS components, flow meters and controllers (for helium and hydrogen) and hydrogen meters based on thermal conductivity detector (TCD) technology.
- Control of cover gas in PbLi loop: reference design based on COTS components, flow meters and controllers.
- Gamma ray detectors embedded in the PbLi loop storage tank and cold trap.
- Additional instrumentation deployed to control and monitor the performance of specific components not identified at this stage of design, for example heating systems and getter bed vessels.
- Chemical analysis of the liquid metal are limited to PIE activities. Feasibility of periodic sampling in the CT by-pass leg coupled with a compact chemical analysis system is under consideration for the next phase of design.

Note:

The monitoring of environmental conditions in PC16 related to radioactive inventories (tritium, including room air and surface concentration monitoring and neutron induced) is outside of the scope of TBS instrumentation because its development and procurement belongs to the operator responsibilities (IO).

Tritium measurement in Pb-16Li

Permeation capsules is the reference technology tested as part of F4E activities Electro-chemical sensors based on doped perovskites ceramics are under development

Isolated volume Wait for $\Delta P/\Delta t = 0$ $C_{L,H} = K_{S,L} P_{eq}^{0.5}$

Dynamic mode

Measured out flow Wait for $\Delta P/\Delta t = c$

 $\mathbf{J}_{\text{out,ss}} = \mathbf{f}(\mathbf{P}_{\text{eq}}, \mathbf{K}_{\text{S}}, \mathbf{D}_{\text{m}}, \mathbf{K}_{\text{m1}}, \mathbf{K}_{\text{m2}})$

Several design implementations of pure Fe cylindrical capsules tested at ENEA

Remaining challenges:

- Response time (eq mode)
- Stability of surface conditions
- Accuracy of isotopic composition measurement (H/T)

Coated membrane capsules (Pd on vacuum side) under development

Tritium Accountancy Station (TAS)

The design of TAS is driven by its two main functions:

- Accountancy, by measuring the amount of tritium that in a given period of time enters the Tritium Plant an administrative service of basic importance for the nuclear operator.
- Discrimination: through the independent measurement of the tritium amount collected at the end of each TBS sub-system (including isotopic composition when relevant) provides data towards the fulfillment of the TBM project scientific mission. In particular, allows the validation of modeling tools to predict the amount of tritium generated in the TBMs and its transport along the TBS sub-systems.

Static vs dynamic approach

Conceptual design of TAS

Priority on reliability, simplicity and validated performance

	Approach	Total amount	Tritium concentration	Accuracy
HCPB-TES-AC	No accountancy	Coriolis	In-line ionisation chamber	n.a.
HCPB-TES-PC	Dynamic	Thermal mass flow meter	On-line ionisation chamber	4%
HCPB-TES-GB	Dynamic	Coriolis mass flow meter	On-line ionisation chamber	4%
HCLL-TRS-GB	Static	p∨T	Gas chromatography	5%
HCPB-CPS-AC	No accountancy	Coriolis	In-line ionisation chamber	n.a.
HCPB-CPS-PC	Dynamic	Thermal mass flow meter	On-line ionisation chamber	4%
HCLL-CPS-AC	No accountancy	Coriolis	In-line ionisation chamber	n.a.
HCLL-CPS-PC	Dynamic	Thermal mass flow meter	On-line ionisation chamber	4%

Outline

Sensors integration in TBMs (1)

3 types of mounting:

- External
- Hollow stiffening rods (BU)
- Manifold pipes

Note:

Proposed solutions are preliminary. Integration aspects related to assembly and fabrication procedures (ie, weld heat treatment) will be considered for further development.

Sensors integration in TBMs (2)

Synergies with other ITER systems

Integrate development activities (design + qualification) with blanket (PBS-16) / divertor (PBS-17):

- sensors installed outside of the TBM box to measure structure temperature and mechanical response (strain), conventional and optical fiber based;
- main aspect specific to TBM would be the different substrate material (EUROFER97) for the development and qualification of braising or other bonding procedures.

With diagnostics (PBS-55):

Area	ITER diagnostic	PBS #	Action type
Temperature measurement	Vis/IR EP	55.G1	Operational requirements
	Thermocouples	55.G2	Design synergies
EM measurements	Rogowksi coils	55.A	Design synergies
	General issues		Design synergies
Neutronics	In-situ calibration	55	Operational requirements
	Micro-FC	55.B3	Design synergies
	NAS	55.B8	Design synergies
	RNC detectors	55.B1/2	Design synergies
Tritium	No reference	55.GC	No reference
Pressure gauges	Capacitance	55.G3	Design synergies
	manometers		
F4E neutron irradiation tests		55	Operational requirements;
			design synergies

Reference thermocouples:

- Type N (Nicrosil/Nisil) for ITER in-vessel components (SCK EFDA report 2003)
- Type K (Chromel/Alumel) for TBM (operate > 150 C)

Based on effects of irradiation (de-calibration from transmutation and RIEMF) and DC magnetic field (Ettingshausen-Nernst effect).

Experimental validation of material properties database for TBM temperature range of operation (300 – 550 C) is ongoing (in particular, Nernst and Righi-Leduc coefficients).

TEMperature and POtential (TemPo) probes for Pb-16Li:

- based on modified ungrounded TCs to which a third wire is added and welded internally to the external jacket
- measure temperature and electrical potential at specified positions to map liquid metal flow distribution and directly compare with numerical simulations.

- Resistance-based strain gauges designed to operate in TBM relevant conditions are available commercially and have been partially validated in operation (in particular, test of Kyowa sensors in JMTR)
- Uniaxial gauges with nickel-chromium wires to minimize magnetic field effects
- Uniaxial, encapsulated design for compatibility with breeder materials

Experimental validation of performance of Kyowa sensors mounted on Eurofer plates at TBM temperature ongoing

Sensors for HCPB pebble beds

For validation of PBTM numerical models direct contact sensors would be desirable (piezo-electric based) but not commercially available for integration – development not foreseen

Force reconstruction method

By measuring strain on the TBM to shield attachment and the use of a force reconstruction algorithm it is possible to:

- Validate electro-magnetic models and codes predictions
- Reconstruct forces during operation as input for structural analyses as long as time scale of other loads (pressure/temperature) is decoupled

Mode 1 (19 Hz)

Distributed OF measurements

Issue: K-type Tc installed in grooves and COTS encapsulated resistive strain gauges are deployed for control and calibration, but the number proposed in design analysis for temperature and strain mapping (ie, 112 Tcs for HCLL TBM) is not compatible with integration of sensors and cables.

 \Rightarrow <u>Solution</u>: Combine limited number of Tc with distributed Optical Fiber Sensors (OFS) to measure temperature at multiple locations of a single fiber.

Distributed measurement by Fiber Bragg Grating (FBG): patterns inscribed in small sections of the fiber core with varying refractive index

For TBM application (< 600 C) reference core material is silica fiber with laser inscribed grating

FBGs for high temperature (1/5)

Sensing temperature with FBG

EISION

ERGY

- Bragg peak shifts with T°→ sensing application ~10 pm/°C
- Non-linear sensitivity over wide temperature range
- Calibration is mandatory, S_T=f[substrate, dopants, wavelength]
- Response time mainly dependent on the packaging

T° is not only a measurement parameter

- Cross-sensitivity [Strain/T°]: need for compensation techniques
- Ageing factor: decrease in reflectivity leading to grating's erasure Bragg wavelength drift, coating degradation, fiber's fragility
- Accelerated erasure at high $T^{\circ} \rightarrow typ. \Delta R=70\%$ [7 days @ 600°C]

Several ways to stabilize FBG at high T°...

FBGs for high temperature (2/5)

FBGs for high temperature (3/5)

ceatech

To regenerate Fiber Bragg Gratings:

FBGs for high temperature (4/5)

Three applications in which regenerated FBGs have a role to play

- Oil and Gas: study of catalytic agents
- Nuclear: 4th Generation of Nuclear Reactor
- ITER diagnostics and TBM project

Petrochemical process monitoring New catalytic agents

- Accurate T° profile up to 600°C
- 1 mm channel for sensor insertion
- **No moving sensors**
- « Real time » profile monitoring
- ✓ Metrology: Regenerated FBGs vs Calibrated TC

Thermal regulation along the catalytic agent

FBGs for high temperature (5/5)

Results for the calibration

Development of regenerated FBGs for distributed measurement of T and σ is ongoing. The FBG pairs will be inserted in metallic capillaries and mounted on the Eurofer plates. Assessment of irradiation effects is considered as part of F4E irradiation activities.

The TBM structure (ferritic steel) creates a local disturbance of the magnetic field that affects its performance but is not measured by ITER diagnostics. Direct and indirect measurement of the magnetic field is necessary to validate codes prediction and EM loads

Development of potential probes for the measurement of induced eddy current on the TBM external surfaces

ITER blanket modules design of Rogowski coils at grounding straps (pending TBM design integration)

Magnetic field measurements at TBM box surfaces with Hall sensors

Neutron field measurement

Why do we need to measure the neutron field inside TBMs?

Along with heat flux, is the source term of test conditions in the TBM, from thermo-mechanical loads to tritium generation

Neutron wall load (source term) not uniform

Effect of surrounding components enhanced by 120 mm recess

Neutron flux (and power density) strongly attenuated radially

Effect of breeder and multiplier materials Up to 80% attenuation

Radial power density distribution in the HCPB TBM

Energy distribution strongly modified in the TBM volume

The contribution of high neutron energy component (E>1MeV) decreases from 37% in the front to about 13% in the rear zone

Toroidal-poloidal distribution of n wall loading for the HCPB TBM U. Fischer, et al., Fusion Engineering and Design 86 (2011) 2176

Neutronic sensors

Sensors/instrumentation under development:

All sensors under development are considered for testing in JET-DT campaign

Miniaturized fission chambers

NAS feasibility analysis

TBM NAS design based on the one operating in JET, applying the same design modification proposed for ITER NAS (part of diagnostics)

Coaxial, self-cooled irradiation end based on ITER NAS. Y. Lee, et al., Fusion Engineering and Design 89 (2014) 1894.

Probe design including short-living radioisotopes (SLI) to measure the neutron flux parameters at different times within a single plasma pulse (400 s reference) – small size (8 mm OD) and inventory < 100 µCi possible

TBM design integration.

The use of hollow stiffening rods, common to all internal instrumentation, allow penetration of the module box and rear manifolds containing high-pressure coolant.

Comparison of effective cross sections of dosimetry reactions often used in neutronics experiments and the proposed dosimetry reactions leading to SLI for HCPB. The dots are connected for visual guidance only. *A. Klix, et al., Fusion Engineering and Design 87 (2012) 1301.*

The counting station consists of several spectrometers that measure gamma-rays from the activated samples. Design based on TUD facility used for testing SLI probes and JET. The assessment of a commercial fission chamber (Photonis model CFUR43/C5B-U8, 3 mm diameter) has been performed as part of F4E activities for deployment in the IFMIF High Flux Test Module (HFTM) test cell (max op T < 250 C).

It included the assessment of the sensor response by neutronic calculations with MCNP models with integrated sensor ...

... and experimental validation by test in the material testing reactor BR2 (SCK·CEN, Belgium)

A similar assessment of the integration of 3 to 6 similar sensors in the HCLL and HCPB TBM with max op T < 600 C (Photonis model CFUE32, 7 mm diam) is ongoing.

Thank you for your attention

Follow us on:

www.f4e.europa.eu

www.twitter.com/fusionforenergy

www.youtube.com/fusionforenergy

www.linkedin.com/company/fusion-for-energy

www.flickr.com/photos/fusionforenergy

Outline

HCLL TBS I&C ARCHITECTURE

Environmental conditions and related requirements are design drivers for sensors and electronics of the I&C sys: temperature, pressure, radiation and B field (RF, ...).

Radiation Hardness Assurance (RHA) is a key requirement for safety and interlock components and all system electronics and is taken in consideration from this early design phase (IO RHA Working Group observer). Main criteria is to **avoid active electronics in RHA areas**.

Radiation maps developed following RHA WG guidelines show a very inhomogeneous field during plasma operation (from PC17 cooling water shaft), with 1-2 Sv/h (equivalent dose in silicon) considered as average reference for systems in PC16.

Qualification of electronic equipment to a reference value of 100mT in the Port Cell, or to 15mT in the Tokamak corners is planned according to guidelines contained in the ITER 'Electrical Design Handbook (Part 4)'.

HCLL TBS I&C ARCHITECTURE

Plant Systems located in DACS cubicles in Tritium Building

Static magnetic field qualification not required in room 14-L2-21

Field remote I/O modules for SS are located in DACS cubicles in the Equatorial Gallery E of the Tokamak Building

I&C needs (sensors and actuators) required for the implementation of 6 safety functions identified in the 9 accident scenarios (HCLL TBS)

		AI								DI		DO	
HCLL	SIC1 cat. A SCENARIO	Equip. Type	Locations	sensor per location	Train A/B	TOTAL	Equip. Type	Locations	Train A/B	sensor per location	TOTAL	actuator per location	TOTAL
	Ex-vessel LOCA	Pressure	4	1	2	8							
	LOHS	Temperature	4	1	2	8							
HCS		Mass flow	4	1	2	8	Value	2	2	2		1	
псэ	LOFA	He circulator current	4	1	2	8	valve	2	_	2	°	1	4
		Pressure	4	1	2	8							
	In-vesser LOCA	Flow rate	4	1	2	8							
Pbi Loop	In-TBM LOCA	Pressure	4	1	2	8	Valve	2	2	2	8	1	4
TRS	-	-	-	-	-	-	Valve	2	2	2	8	1	4
					TOTAL AI	56				TOTAL DI	24	TOTAL DO	12

			AI							DI		DO	
HCLL	SIC2 cat.B SCENARIO	Туре	Locations	sensor per location	Train A/B	TOTAL	Туре	Locations	Train A/B	sensor per location	TOTAL	actuator per location	TOTAL
HCS	-	-	-	-	-	-	Valve	10	1	2	20	1	10
CPS	CPS pipe break	Pressure	4	1	1	4	Valve	3	1	2	6	1	3
PbLi Loop	PbLi pipe break	Pressure	4	1	1	4	Valve	5	1	2	10	1	5
TRS	TRS pipe break	Pressure	4	1	1	4	Valve	3	1	2	6	1	3
					TOTAL AI	12				TOTAL DI	42	TOTAL DO	21

Note: HCS-PCS failure was not considered at the time of the analysis

Rad-waste disposal: development of low activation structural material

Ferritic Steel

Level in Coal Ash

Vanadium ARIES-ST 8 100 v 1 mo 1 y 10^{10} 10^{11} 10^{4} 10^{5} 10^{6} 10^{7} 10^{8} 10^{9} Time Following Shutdown (s) After 100 years, only 10,000 Ci remain in the 585 tonne ARIES-RS fusion core.

 10^{0}

10

 10^{-2}

 10^{-3}

 10^{-4}

10-5

 10^{-6}

 10^{-7}

Fe-9Cr steels: builds upon 9Cr-1Mo industrial experience and materials database

9-12 Cr ODS steel is a higher-temperature option

SiC/SiC: High risk, high performance option (early development) W alloys: High performance option for PFCs (early development)

High thermodynamics efficiency of power cycle

Tritium self-sufficiency condition

Achievable TBR

Required TBR

Ar is 1 + G, where G is the margin required to account for:

- Losses via radioactive decay (5.5%/year)
- Next power plant: start-up inventory and doubling time
- Tritium factional burn-up
- Reserve time
- Fuel cycle required processing time and efficiency
- Trapped Tritium inventories

 Λa is a function of the Tritium Production Rate (TPR) but also of other technological, material and physics phenomena:

- Blanket design solutions
 - Breeder materials (Li⁶ enrichment, ...)
 - FW thickness
 - amount of structure

Conceptual designs do not include rigorous structural mechanics analysis to determine structural requirements.

- In-vessel components (additional coils, plasma heating/fueling/exhaust,...)
- Plasma heating/fueling/exhaust, PFC coating/materials/geometry.
- Plasma configuration

Test Blanket Modules (TBM) for testing in ITER

Contents

GLOBAL DESIGN DESCRIPTION

HCLL/HCPB TBM DESIGN TBM-TO-SHIELD ATTACHMENT DESIGN SHIELD DESIGN

CODES & STANDARDS

METHODOLOGY FOR DESIGN ANALYSIS

FINITE ELEMENT MODELS THERMAL-MECHANICAL ANALYSIS

STRUCTURAL ANALYSIS (SEISMIC AND EM LOADS)

CAPACITY CHECKS

RESULTS

THERMAL-MECHANICAL ANALYSIS

CAPACITY CHECKS

OPERATIONAL DOMAIN FOR TBMS

CONCLUSIONS

TBM-sets integration in the Equatorial Port Plug #16

Helium Cooled Pebble Bed TBM

Helium Cooled Lead Lithium TBM

